III: Emerging Intermediaries
Chapter 10: Auctions, Bidding and Exchanges Design

Jayant Kalagnanam
IBM T.J. Watson Research Center
Yorktown Hts, NY 10598
jayant@us.ibm.com

David Parkes
Engineering & Applied Science
Harvard University
parkes@eecs.harvard.edu

1. Introduction
 - Auction as a (price) negotiation mechanism,
 - Basic types, (English, Dutch, open-cry, sealed-bid, single-sided vs double auctions)
 - Advanced auctions required for negotiation at Business-to-Business level (Combinatorial, Volume Discount auctions, Multi-attribute auction, Exchanges and Double Auctions)

2. Basic Ideas
 - Fundamental results from auction/game theory, linear programming
 - Private vs Common values, Revenue equivalence
 - Allocative efficiency, revenue maximization
 - Pareto optimality
 - Bayesian /Nash equilibrium and its analysis, dominant strategies
 - Price equilibria and Duality
 - Mechanism Design
 - Direct Revelation Principle and Impossibility results
 - Incentive compatibility and/or strategy proofness,
 - Vickrey pricing
 - Models of agent rationality
 - Budget balance
 - Linear Programming and its importance for mechanism design

3. Characterization and Computational Considerations for Auction Design
 - Open-cry (iterative) vs Sealed-bid (one-shot)
 - Bidding Rules, Bid types (bundled all-or-nothing, volume discount curves, multi-attribute bids etc)
 - Compact Bid Representation (Bidding languages, XOR, OR, XAND etc)
 - Winner Determination (computational complexity of different auction types)
 - Bid Formulation/Reformulation (myopic best response, strategic bidder etc)
 - Price Signalling

4. Design and Analysis of Some Interesting Auction Mechanisms
 - Simple auctions (English, Dutch etc)
 - Combinatorial auctions (example of more difficult cases)
 - Multi-unit homogeneous auctions (Ausubel, Gale, Demange, Sotomeyer etc, Vohra et al)
 - Multi-unit heterogeneous auctions with additive utility functions (Volume discount)
 - Heterogenous auction with sub/super additive utility functions – combinatorial (Parkes & Unger, Bikchandani et al)
 - Procurement Reverse Auctions
 - Capacity constrained allocation mechanisms (Gallien & Wein)
 - Business rules as side constraints for combinatorial and volume discount auctions (Davenport & Kalagnanam)
 - Multi-attribute auctions (Che, Branco, Wein & Beil)
 - Double Auctions/Exchanges
 - Call markets (continuous vs periodic clearing)
- McAfee, k-DA, Nisan, Sandholm, Davenport & Kalagnanam
- Combinatorial exchanges
- Parkes et al, Kalagnanam et al.

5. Simulation and Experimental Economics
 - simulation as a tool for mechanism design and equilibrium analysis
 - Kephart, Greenwald,
 - experimental economics and its use for mechanism design (tentative)
 - Ledyard, Plott, Gjerstad