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Abstract 
 
This paper presents the design and pricing of financial contracts for the supply and procurement 
of interruptible electricity service. While the contract forms and pricing methodology have 
broader applications, the focus of this work is on electricity market applications, which motivate 
the contracts structures and price process assumptions. In particular we propose a new contract 
form that bundles simple forwards with exotic call options that have two exercise points with 
different strike prices. Such options allow hedging and valuation of supply curtailment risk while 
explicitly accounting for the notification lead time before curtailment. 
 
The proposed instruments are priced under the traditional GBM price process assumption and 
under the more realistic assumption (for electricity markets) of a mean reverting price process 
with jumps. The latter results employ state of the art Fourier transforms techniques. 
 
 
 
 
 
 
 
 
 

Version: January 26, 2000



 1

Exotic Options for Interruptible Electricity Supply Contracts 
 

Rajnish Kamat and Shmuel S. Oren1 
 

 
1.  Introduction 
 

Sweeping changes in the electric power industry have been directed at increasing 

competition in the generation of electricity. This has been accompanied by a commoditization of 

electricity with the emergence of spot markets, along with forward and derivative markets. On the 

operations side, standard financial instruments can be used to emulate various contracts that serve 

purposes such as risk management and improving efficiency. This paper focuses on the pricing 

and hedging of such contracts under standard financial instruments such as forwards and options 

using different price process specifications that increasingly capture realistic aspects of observed 

prices. 

One efficiency-motivated contract known as an interruptible service contract (see Chao 

and Wilson (1987)) involves giving firms a discount on the forward price of electricity for a 

particular delivery date while providing suppliers with the option of curtailing supply to these 

customers when the price is above some cutoff value specified by the customer. This allows 

suppliers to provide electricity to those customers who are willing to pay the highest prices in 

times of scarcity and gives customers lower rates. If the time of notification of curtailment is only 

a few minutes before delivery, the supplier can substitute these demand side measures for reserve 

capacity that it must have on-hand for reliable operation of the grid, thus reducing costs of 

operation and need for expansion of capacity. 

However, it is expected that not many customers, particularly industrial ones, will 

provide viable cutoffs as the costs of unexpected shutdowns may be very high. On the other hand 

including another earlier date, perhaps even a few months before delivery, will provide incentive 

for these firms to plan shutdowns in a period of forecasted scarcity, such as when there is a weak 

rainy season for a hydro-dominated grid, or planned shutdowns of some major electricity plants. 

We will call this contract an interruptible service contract with early notification. Another type of 

contract known as a dispatchable Independent Power Producer (IPP) supply contract, involves the 

customer paying a premium for the option to cancel purchase in the event the spot price is below 

the contracted price. This caps the price at which the customer buys electricity. 
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All of the above contracts have one feature in common - they involve forward contracting 

with some optionality built into the forward contract. One can therefore use standard financial 

instruments like forwards and options to price these contracts. 

Section 2 describes the formulation of these contracts using standard financial 

instruments. Section 3 presents pricing formulae and hedging portfolios associated with these 

contracts using geometric brownian motion (GBM) and an affine diffusion process (AD) that 

incorporated mean-reversion in the price process. Section 4 uses an affine jump-diffusion process 

to model electricity prices and uses transform analysis to price these contracts. Concluding 

remarks and a discussion of further research are presented in section 5. Proofs are presented in an 

Appendix. 

 

2.  Formulation 

As in any commodity market, financial instruments can be used in the electricity market 

to hedge against and diversify risk. The simplest hedge is a forward contract that guarantees a 

fixed price for power regardless of the spot price. The call (put) option, gives its holder the right 

but not the obligation to buy (sell) electricity at a pre-determined "strike" price. The call (put) 

option will be excercised only when the spot price is higher (lower) then the strike price. More 

complex payoff structures can be simulated by holding portfolios of these basic securities. These 

contracts can be settled physically or financially. In any commodity market the volume of traded 

commodity contracts usually exceeds by far the volume of actual physical deliveries (by a factor 

of ten or more). 

The proliferation of financial derivatives has led to many developments in techniques for 

modeling these instruments (see Cox and Rubinstein (1985), Hull and White (1998)). The 

literature dealing specifically with financial modeling in electricity markets is more recent (see 

Cater (1995), Oren (1996), Kaminsky (1997) and Deng (1999)). Earlier papers use geometric 

brownian motion (GBM) to model electricity prices. It has been observed, however, (see 

Kaminsky (1997)) that electricity prices show characteristics such as mean-reversion due to 

production characteristics and seasonality effects, jumps and spikes (or regime switching) due to 

non-storability and unpredictable outages, and stochastic volatility due to uncertain weather and 

demand patterns. Hence the GMB assumption produces systematically erroneous results for 

pricing of electricity contracts and derivatives. Deng (1999) was the first to use affine jump-

diffusions, introduced in Duffie and Kan (1996,) to describe electricity spot prices and price 

electricity contracts. This specification can capture the aformentioned characteristics of the price 
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process. Further, one can use transform analysis (see Duffie, Pan and Singleton (1998)) to 

compute the prices and hedging portfolios of various derivatives. 

Gedra (1991) and Gedra and Varaiya (1993) introduce the concepts of "callable 

forwards" and "putable forwards" and provide a thorough analysis of their efficiency properties 

and their potential as substitutes to interruptible service contracts and dispatchable Independent 

Power Producer (IPP) supply contracts, respectively. As explained above, these contracts have 

optionality in them which translates into a discount or premium of the forward price paid by the 

holder of the option. 

In a "callable forward", the customer is "long" 1 forward contract and "short" 1 call 

option which has a customer-selected strike price. The supplier holds opposite positions and can 

exercise the call option whenever the spot price exceeds the strike price, effectively canceling the 

forward contract at the time of delivery. The discount that the customer gets on the forward price 

is the option price at the time of contracting scaled to the delivery date. 

In a "putable forward" the customer is "long" 1 forward contract and "long" 1 put option 

which has a supplier-selected strike price, while the supplier holds opposite positions. The 

customer can exercise the put option whenever the spot price is below the strike price, effectively 

canceling the forward contract at the time of delivery. The premium that the customer pays on the 

forward price is the option price at the time of contracting scaled to the delivery date. 

Oren (1996) considers another instrument that captures an early notification option in a 

"callable forward" contract. The call option embedded in the forward contract now has an 

additional, earlier date at which the supplier can cancel the forward contract. For a forward 

contract with delivery at time T2, two strike prices are specified by the customer, 
1Tk  and 

2Tk , for 

times T1 and T2, respectively. T1 is an intermediate time when the supplier has the option of 

notifying the customer that he will be curtailed at time T2. It is expected that the T1 strike price 

will be lower than the one at T2. 

Oren shows that the strike prices specified by a rational customer will be its reservation 

prices (from shortage costs) and the instrument will be able to replicate an efficient outcome that 

would reflect decisions taken by a benevolent central planner with perfect information. More 

specifically, curtailment will occur at time T2 only if the electricity spot price is above the 

reservation price, 
2Tk , of the customer (and if curtailment has not occurred at T1). The payoff to 

the supplier at time T2 is therefore exactly like a call option on the forward with strike price 
2Tk  

expiring at T2. On the other hand, notification of curtailment will occur at time T1 if the payoff to 

the supplier from curtailment (say, by entering into a forward contract with another party) is 
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greater than the value of the time-T2 call option that is killed by the notification of curtailment. 

Thus, there will be a region above the T1 strike price where the supplier will not curtail the first 

customer. The payoff of the call option at the two time points is described in Figure 1. The 

discount that the customer gets on the forward price is the price of this double-call option at the 

time of contracting scaled forward to the date of delivery. 

 

 

 

 

 

 

 

                                

 

 

 

 

                       
1Tk                                                     

2Tk  

 

Figure 1.  Payoff of the double-call option at time T1 and T2. 

 
3.  Pricing and Hedging Portfolios - GBM and AD 

Oren (1996) uses Geometric Brownian Motion (GBM) to describe the electricity price 

process and derives prices of the three contracts under this canonical form. This section revisits 

the pricing problem under GBM and shows that the formulae can be easily extended to the case 

where the spot price is mean-reverting. Section 4 considers jump behavior in the spot price 

process and uses transform analysis to arrive at almost-closed form solutions of the option price. 

 

3.1 Geometric Brownian Motion (GBM) 

Consider the spot price process: 

tt
t

t dBdt
S

dS
σµ +=         (1) 

where St is the spot price, µt and σ (we treat σ as a constant) are parameters and Bt is standard 

brownian motion. It can be shown (by an application of Girsanov's theorem (see Oksendal 

Payoff at T2 
Payoff at T1 

 

Effective Strike 

Price, k  
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(1995))) that under the equivalent martingale measure or the risk-neutral measure, the process 

will follow: 

Q
t

t

t dBrdt
S

dS
σ+=         (2) 

where BQ is brownian motion under the risk-neutral measure and r is the interest rate. We can 

write down the process for lnSt by applying Itô's lemma (see Oksendal (1995)). Observe that lnST 

given St will be Normally distributed. 

Q
tt dBdtrSd σσ +−= )(ln 2

2
1       (3) 

The above implies that ))(),)(((~ln 22
2
1 tTtTrN

t

T

S
S −−− σσ and thus the spot price is 

lognormal at time T. This is the usual brownian motion model used to model stock prices. 

 

3.1.1 Forward Prices 

Consider a forward contract for delivery at time T2. The forward2 price of an underlying 

is defined as the price paid at delivery that sets the price of a derivative with the payoff - (ST - 

ft,T2)
+ - at time t to zero. As the values of all derivative securities will be martingales (after 

discounting) under the risk-neutral measure (see Harrison and Kreps (1979), Duffie (1996)) the 

forward price can be expressed as: 

}][exp{ln][
222, T

Q
tT

Q
tTt SESEf ==       (4) 

As the forward price is an expectation of a time-T2 random variable it will be a 

martingale under the risk neutral measure before time T2. Using Itô's lemma: 

)}()(exp{
22 2

2
2
1 Q

t
Q
TtT

Q
ttt

BBtTff

dBfdf

−+−−=∴

=

σσ

σ
    (5) 

Forward prices are also lognormal under this model. 

 

3.1.2 Option Pricing 

As described before, a call option expiring at time T2, on a forward contract for delivery 

at the same time is a security with a payoff of +− )(
22 tT kf , where 

2Tf  is the price of the 

underlying at the time of expiration, and 
2t

k is the strike price. Using the valuation principle 

described in the section above, the call option can be valued as follows: 

])([)(
22

2

2

)(
ttT

tTrQ
tTt fkfeEfkC +−− −=      (6) 

                                                        
2 Under constant interest rates, futures prices will equal forward prices at the time of contracting. 
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Evaluating the above expectation using equation 5 for the forward price at T2, one can 

derive the option price (see Figure 2 for a plot of option prices at various times before expiration). 

The resulting formula is also known as Black's formula (see Black (1976)). 

 

Proposition 1  The option value in a "callable forward with early notification" after time T1 is the 

price of a simple call option on the forward. The discount on the forward price in a "callable 

forward" is 2rte times the option price given by:     

)(
2 tTt fkC = )]()([ 21 2

2 dNkdNfe Tt
rt −−      (7) 

where, tf  is forward price at time t; 
2Tk is the strike price of the option; 

),,(;
),,(

),,(
2

1
)(ln

212
2

2
2

1

2

TtGBMdd
TtGBM

TtGBM
d

T

t
k

f

σ
σ

σ
−=

+
= ; 

t2 = T2 – t and )(),,( 12
2

21
2 llllGBM −= σσ . 

The premium on the forward price in a "putable forward" is 2rte times the price of a put 

option given by: 

)(
2 tTt fkP = )]()([ 21 2

2 dNkdNfe Tt
rt −−−−      (8) 

Proof : see Appendix or Black (1976) for an alternative derivation. 
 
 

 

Figure 2.  Value of the Simple Call Option under GBM (t3 = T2 – T1). 
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3.1.3  The Callable Forward with Early Notification 

The holder of a double call option emulating an interruptible contract with early 

notification will exercise it at time T1 if the forward price is above the effective strike price k . If 

early exercise is not optimal, the holder will exercise the option at T2 only if the spot 

price is above the T2 strike price. Figure 3 shows an example where the forward price at 

T1 is $50 and the spot price at T2 is $40.  

 

 
Figure 3.  Optimal Exercise Policy for the Double-call Option. 
 

The double-call option will be excercised at T1, if the T1 strike price is below the 

indifference curve corresponding to 
1Tf = $50. Additionally, if the T1 strike price is above this 

curve, but the T2 strike price is below the T2 spot price of $40 (shaded area in the example), the 

option will be excercised at T2. 

To calculate the discount given to a customer in a "callable forward with early 

notification" we need to price the double-call option embedded in the forward contract. We begin 

by analyzing the payoff of the double-call at time T1. Excercising the double-call option at T1 

means that the time T2 option embedded in it is killed. The double-call will be excercised only 

when the payoff to the supplier, say, by entering into a new forward contract at time T1 is higher 

then the value of the killed option. One can therefore calculate a forward price k , which is the 

effective strike price at which the double-call is excercised at T1. 
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One can now proceed by breaking up the payoff of the double-call at T1 into payoffs of 

simpler derivatives. Observe that the payoff can be seen as that of a special call option (as actual 

payoff at T1 does not accrue until T2 the slope of the effective payoff is not equal to 1) expiring at 

T1 with strike price k , plus the value of the later call option given that the forward price is k , 

less the price of a compound put option with strike price 3rte − ( k -
1Tk ) (see Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

              

                                        
1Tk  

 

 

Figure 4.  Analyzing the Payoff of the Double-call Option at time T1. 

 

The price of the call option before time T1 can therefore be written as: 

))(()()(),(ˆ
1

3

1121

1

1,21 ,
)(

tT
rtco

TtTTT
Ttr

ttTTt fkkePkfkCefkCfkkC
Tt

−−=+′= −−−  (9) 

where, 

The first term is the value of a special call option expiring at T1 with strike price k ; 

The second term is the discounted sure value of the later call option at forward price k ; 

The third term is the price of a compound put option that allows the holder to sell a call option for 

time T2 at strike price 3rte − ( Tkk − ). The payoff of this put at time T1 is 

+− −− )]()([
2211

3
, TTTtT

rt fkCkke . Figure 5 gives the value of the double call option under GBM. 
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Proposition 2  The discount on the forward price is 2rte times the price of the double-call option 

given by: 

),(ˆ
21 tTTt fkkC = )()]()([)]()([ 1,2143 12

22
t

co
TtT

rt
t

rt fkPdNkdNkedNkdNfe −−+− −−   (10) 

 
where, tf  is the forward price at time t;  

t1 = T1 – t; t2 = T2 – t; t3 = T2 – T1 and  
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Figure 5.  Value of the Double Call Option under GBM (t3 = T2 - T1). 
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where N2(a, b; ρ) is the bivariate Normal distribution with correlation ρ; k1 = )(
1

3
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Proof: see Appendix. 

 
3.2  Affine Diffusion (Mean reverting) 

A class of processes which incorporates many characteristics useful for modeling 

electricity spot prices are Affine Jump-Diffusions (AJDs), first introduced in Duffie and Kan 

(1996). One can incorporate various aspects of the price process such as mean reversion, 

stochastic volatility and jumps using this class of processes. An advantage in calculating option 

prices using AJDs is that the Fourier transform of the distribution of the underlying is known - for 

some cases up to the solution of ODEs. 

In this section we consider a special case - an Affine Diffusion (AD) - for the log spot 

price under the risk-neutral measure. This incorporates mean reversion in the spot price process 

and results in time dependent volatility for the forward price. We show that spot and forward 

prices remain lognormal in the mean-reverting case with different volatility than the GBM case. 

As the forward price will converge in value and variance to the spot price at the delivery date, 

pricing formulae under an affine diffusion will have the same form as the GBM case with a 

different variance term. 

 
Proposition 3  Option prices, and hence discounts in the forward contracts under an affine 

diffusion will have the same form as the GBM case with the variance term replaced by 

)}](2exp{1[
2

),,( 12

2

21
2 ttttMR −−−= κ

κ
σ

σ . 

Proof: see Appendix. 

 

Figure 6 shows the value of a simple call option under a mean-reverting spot price. As 

information about mean reversion is included in the forward price, the only noticeable difference 

between option prices under GBM and the affine diffusion is the lack of time value in the affine 

diffusion case for longer time periods before expiration i.e., the value converges rapidly to a 

steady state. Figure 7 which shows the optimal excercise policy for the double call option under 

this mode, while Figure 8 shows the value of the double-call option under the affine diffusion. 
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Figure 6.  Value of the Simple Call Option under an Affine Diffusion (Mean Reverting)  

   (t3 = T2 - T1). 
 
 
 

 
 
Figure 7.  Optimal Exercise Policy for the Double Call Option  

   under an Affine Diffusion (Mean Reverting) 
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Figure 8.  Value of Double Call Option under an Affine Diffusion (Mean Reverting) (t3 = T2- T1). 
 
 

4  Affine Jump-Diffusion (AJD) 

This section extends the models in section three to include jump behavior in the price 

process. Non-storability of electricity causes steep changes in prices with changing supply and 

demand conditions. Deng (1999) uses AJDs to model electricity prices. Deng presents several 

specifications, one having regime switching and one with another factor to capture stochastic 

volatility. Apart from flexibility that this class of processes offers, one advantage is that one can 

use transform analysis to arrive at almost-closed form solutions of the option price. Including 

stochastic volatility or regime switching behavior means that call option prices will depend on 

two random factors. While this does not create difficulties in pricing simple call options, 

analytical pricing of the double-call becomes very difficult. The main difficulty comes in 

specifying the set over which the double-call will be excercised at time T1. We therefore 

concentrate on the specification having only one factor and leave the others for future research. 

We assume that the log spot price follows an affine jump-diffusion under the risk neutral 

measure. 

t
Q
ttt dZdBdtXdX +++= σκκ )( 10       (11) 

where Xt = lnSt, σ is the volatility of the spot price (which will be taken to be constant), Bt is 

standard brownian motion under the risk-neutral measure, and Z is a pure jump process with 

arrival intensity λ and jump-size transform φ(c, t). The drift and variance terms have an affine 

form (we assume constant volatility).  

t<T2- 3t3 

t=T2-2t3 
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Both previous cases can be seen as special cases of an AJD. The GBM formulation uses 

κ0 = r-1/2σ2, κ1=0. The mean-reverting affine diffusion uses κ0 = κθ, κ1= -κ. Both specifications 

use constant volatility, σ, and do not model jump behavior. For this section we continue to use the 

affine diffusion parameters and add jump behavior to the model. We assume two independent 

jump processes with intensities, λ1 and λ2 and jump-size tranform: 

c
tc

j
j µ

φ
−

=
1

1
),(         (12) 

 

4.1   Transforms and Forward Prices 

Define the transform of the distribution at T2 as: 

]}exp{[),,,(
2

2 )(
2 tT

tTrQ
tt fXveEXTtv −−=Ψ  

where Q
tE denotes expectation under the risk-neutral measure Q. 

As this is the discounted payoff of a single random variable, Ψ e-rt will be a martingale 

under the risk-neutral measure (some regularity conditions are required (see Duffie et al, 1998)).  

Following Duffie et al (1998), it is conjectured that the transform will have the form: 

])),(()),((exp[),,,( 222 tt XvtTvtTXTtv −′+−′=Ψ βα    (13) 

As special cases of this process are Gaussian, the exponential affine form is a natural choice. It 

can be shown, by applying Ito's lemma, that the transform takes this form for the one timepoint 

case, where α′ and β′ solve: 

0),0(0)),,('(),('

),0(0)),,((),(

=′=+

=′=′+′

vtvtAvt
dt

d

vvtvtBvt
dt

d

αβα

βββ
    (14) 

where, for complex c, 

∑ −+−+=

−=

)1),((),(
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2

2
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ctcB

jj φλσκθ

κ
    (15) 

We can integrate the differential equations to get: 

 tevt κθνβ −=′ ),(  

∑ −

−−−
−−−−+−=′

j
e
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µ
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νσκθνθα    (16) 

The forward price is given by: 

),,,1( 2
)( 2

t
tTr

t XTtef Ψ= −  
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12
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2

t
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e

tt Xertee t
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j κθ
µ
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κ
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κ
σκθ

κθ −
−

−−− +−−−+−= ∑ −  (17) 

We take parameter values from Deng (1999) (see Table 1 in Appendix) for illustrative 

purposes. Figure 9 shows forward curves under contango (spot price = $24.63) and 

backwardation (spot price = $120.00). The longterm mean spot price is $30.00. 

 
Figure 9.  Forward Curves under Contango and Backwardation (Affine Jump-Diffusion). 

 

The forward price will converge to a higher quantity than the longterm mean, depending 

on the parameters for the mean-reverting and jump parts of the model. Observe that the increased 

volatility from the jumps contributes a significant amount in forward prices and that they 

converge well above the long-term mean. 

 

4.2  Option Pricing 

We calculate option prices under this model by expressing the option price in terms of 

simpler securities and price these directly using the transform calculated in (13) and (16). Let 

Ga,b(y) denote the price of a security that pays eaX
T at time T in the event b.XT  ≤ y. Thus, one can 

express the call option price expiring at T2, in terms of these simpler securities: 

)ln()ln()(
2222 1,01,1 TTTtTt kGkkGfkC −−−= −−      (18) 

To determine the price of the simpler securities we express them in terms of the 

transform of the uncertainty in log spot price at T2, and then use inversion formulae to derive 

almost-closed form solutions of the call option price (see Figure 10 for the value of the simple 

call option under an affine jump-diffusion).  
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Proposition 4  The option value in a "callable forward with early notification" after time T1 is the 

price of a simple call option on the forward. The discount to the forward price in a "callable 

forward" is 2rte times the option price given by:  

)
]),,,1(Im[
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1
()(
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21
22

2

2 ∫
∞
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t
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π   (19a)  

where,  ft is the forward price at the time of contracting; 
2Tk is the strike price; Ψ is the transform 

of the spot price distribution at T2. 

The premium on the forward price in a "putable forward" is 2rte  times the price of a 

simple put option given by: 
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Proof: see Appendix. 

 

Figure 10.  Value of late Call option under an Affine Jump-Diffusion. 

  

It may seem surprising that for a given forward price, the simple call option value under 

an AJD is lower than under an AD. This is because a given forward price under the two models 

t>2t3 
t=t3 

t=0.75t3 

t=0.5 t3 
t=0.25 t3 
t=T2 
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does not correspond to equal spot prices at the time of contracting. The corresponding spot price 

under an AD would be significantly higher and hence would yield a higher option price. 

 

4.3  Callable Forward with Early Notification 

As before, one can determine a unique k  at time T1, as the forward price at which : 

)(
121

3

1
kfkCekk TTT

rt
T ==− . The optimal exercise policy will therefore remain the same. One 

can now proceed in a similar manner pricing the double-call option before time T1 by breaking up 

the payoff and using transform analysis. For t < T1 
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1121
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tTttTTt fkkePkfkCefkCfkkC −−=+′= −−  (20) 

where, 

The first term is the value of a special call for time T1 and strike price k . 

The second term is the discounted sure value of the later call option at price kf t =  

The third term is the price of a compound put option that allows the holder to sell a call option for 

time T2 at strike price k1 = 3rte − (
1Tkk − ). The payoff of this put at time T1 is :  

+− )]([
1211 TTT fkCk . 

In section 3 we had derived the process followed by the forward price and we could price 

the intermediate call option, C', directly using this process. Here, we begin by determining the 

transform of the forward price uncertainty at T1. We can write this as: 

]}exp{[),,,(
1

1 )(
1 tT

tTrQ
tt fYeEXTt γγ −−=Φ      (22) 

where, 
1TY  is log forward price at T1. Using the definition of 

1Tf  from (17), we have: 
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The forward price transform at T1 can now be written as: 
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 One can now proceed as before and price the call option using the methodology in 

Proposition 4. For the compound put option in the double-call, we need to work with a joint 
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transform of the forward price at T1 and T2. To see this, we write the put option as the expected 

value of the discounted payoff under the risk-neutral measure3: 
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now, kffkCk TTTT lnln)(
11211 ≤≡≥ (see Figure 2). 

Using the law of iterated expectations we can write this as: 
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To evaluate these expectations we define the joint transform of the uncertainty at T1 and T2:  
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where 
1TY = ln

1Tf and 
2TY = ln

2Tf =
2TX , as the forward price will converge to the spot price at 

delivery. We conjecture the same form as in the single timepoint case (this holds for the first two 

models where this distribution is a bivariate normal):  

]),,(),,(exp[),,,,,( 2221 tt XvutvutXTTtvu βα +=Φ′    (28) 

Again, as this can be seen as the discounted payoff of a random variable, t
rte Φ′−  will be a 

martingale under the risk-neutral measure. Applying Ito’s lemma (see Protter (1990) for the 

complex version) we see that, as before, α and β have to follow (14) and (15). To determine 

boundary conditions consider
1TΦ : 
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One can recognize the second term as the transform of the forward price for the one time 

point case and substitute from (24). Thus one can write 
1TΦ′ as: 
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One can now solve for tΦ′  by solving (14) and (15) for the boundary conditions: 

                                                        
3 In what follows we use following notation for the indicator function: ..0,if1 woyxyx =≥=⇑ ≥  
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Rather than extending the inversion formula used for the simple call option, we use an 

alternative approach to evaluate the expectations in (26). The compound call can be expressed as: 
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where, 

k1 is the strike price for the compound call, Pco; Gt,T1 is as defined in section 4.2; Π1 and Π2 are 

defned as: 
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It can be easily confirmed that Π1 and Π2 ∈ [0, 1] and thus they can be determined after 

calculating their characteristic functions and inverting according to the method developed in 

Shepard (1991) (see Bakshi and Madan (1998) for an application to option pricing). To evaluate 

Π1 and Π2 observe that if we treat these as distribution functions, we can express their 

characteristic functions as: 
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This leads to Proposition 5. Figure 11 shows plots of the double call option under an affine jump-

diffusion. 

 

Proposition 5  The discount in the "callable forward with early notification" is equal to 2rte times 

the price of the double-call option at the time t: 
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where, Ψ is as defined in (13); Φ as defined in (24) and Θ1 and Θ2 as defined in (34). 

Proof: see Appendix. 

 

Figure 11.  Value of the Double Call option under an affine jump-diffusion. 
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 As seen in the mean reverting case the double-call option does not have much time-value 

for long periods before expiration i.e., its value approaches a steady state with respect to time to 

expiration. 

5 Concluding Remarks and Further Research 
 

In a competitive electricity market, financial instruments and derivatives based on 

underlying commodity contracts will play an important role as means for risk management. Such 

instruments can also emulate traditional contracts between customers, utilities and independent 

power producers aimed at improving the efficiency of resource utilization.  

This paper studies the pricing problem of three efficiency motivated instruments in the 

electric power industry. Using increasingly complex price processes, the instruments were priced 

using forward contracts and option-like derivatives. The contract prices were first calculated 

under the canonical geometric brownian motion model. This was then extended to a mean-

reverting spot price diffusion process by showing that option prices have the same form under 

this model with a different variance term. Further extension to include jump behavior was done 

with the use of transform analysis and almost closed form formulae were obtained under this 

model. 

It was observed that mean-reversion causes option prices to reach a steady state value 

with respect to time to expiration, unlike the GBM case for which option prices approach a 

constant growth rate. This convergence is due to the fact that under the mean reversion 

assumption the distribution of the underlying at time of expiration converges to a steady state 

distribution. It was also observed that volatility from jump behavior can contribute significantly 

to forward and option prices. 

Further research is needed to extend the present model to include another factor, such as 

regime switching behavior or a factor that models stochastic volatility in spot prices. An 

immediate problem in extending the transform analysis technique to these models is that option 

prices depend on two random variables. While this does not pose a problem for the "callable 

forward" and the "putable forward" (see Deng (1999) for models with multifactor specifications), 

pricing the "callable forward with early notification" becomes analytically intractable. In this 

case, determining the optimal exercise policy will require that both electricity price and the 

volatility level (or the regime) will need to be observed at time T1. This implies that there will not 

be a unique electricity price at which the later call option price is equal to the payoff from killing 

it at T1. There will instead be a family {(forward price, volatility)} or {(forward price, regime)}as 

there will be one such price for each level of volatility or regime. The problem of pricing the 

double-call option before time T1 cannot be broken into a simple call option and a compound put 
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option as before (see Figure 12). One would need to directly evaluate the expectation using 

Monte Carlo simulation or numerically solve the partial differential equation associated with the 

double-call option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Option payoff under an affine jump-diffusion with stochastic volatility. 
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APPENDIX 

Table 1.  Parameter values for examples in the paper (from Deng (1999)). 

 

 Parameter Value 

 κ 1.70 

 θ 3.40 

 σ 0.74 

 λ1 6.08 

 µ1 0.19 

 λ2 7.00 

 µ2 -0.11 

 

 We use t3 = T2 - T1 = 0.5 years in all our examples. 

Proof of Proposition 1: We need to evaluate the expression: 
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where EQ denotes the expectation under the risk-neutral measure. This can be evaluated as: 
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using the expression for the forward price in (5). This can be simplified to Black's formula. The put option 

price can be easily calculated using put-call parity: 
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2 tTt fkP  = )(

2 tTt fkC  + 2rte
2Tk - 2rte tf      (A3) 
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Proof of Proposition 2: We need to show that the option price formulae for the simpler derivatives are as 

shown. We have: 
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where, 

The first term is the value of a special call option expiring at time T1 with strike price k ; 

The second term is the discounted sure value of the later call option at forward price k ; 

The third term is the price of a compound put option that allows the holder to sell a call option for time T2 

at strike price 3rte − ( k -
1Tk ). The payoff of this put at time T1 is +− −− )]()([ 0,

3
TTtT

rt fkCkke . 

 

At t = T1, the option payoff is: 
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Therefore the option will be excercised when the two terms are equal. As the option price is increasing in 

forward prices, one can determine a unique effective strike price, k , for the call option at T1 . k solves the 

implicit equation: 
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The first term can be written as: 
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One can factor out 3rte − and that leaves us with the price of a simple call option which is given in 

Proposition 1. The second term is also a simple call option price from Proposition 1. 

 

The third term can be written as: 
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where k1 = )(
1

3
T

rt kke −− and we have used the definition of the call option price from Proposition 1. It 

can be noted that kffkCk TTTT lnln)(
11211 ≤≡≥ . Also, since given ft the log futures price at time T1 

is a ),(ln 1
2

1
2

2
1 ttfN t σσ− random variable, all the expectations in the above formula can be expressed 

in terms of normal or bivariate normal distributions. 
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Consider the 2nd term: 
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where we have used the fact that the log futures price is normally distributed at T1. 

Making a change of variables: 
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substituting for ln fT2, we have: 
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Therefore the 2nd term: 
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where N2(a, b; ρ) is the bivariate Normal distribution with correlation ρ. One can do similar substitutions 
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where a1 and b1 are as above and  
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112 taa σ−=  and 212 tbb σ−= .      (A14) 

 

Proof of Proposition 3: We begin by specifying the price process for the log spot price under the risk-

neutral measure. 

Q
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where XT = ln St.  

Lemma 1: Given Xt, XT will be Gaussian and its mean and variance are given by: 
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Proof: We integrate the stochastic differential equation for X using seκ as an integrating factor (see 

Oksendal (1995)): 
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We can eliminate the terms containing X by applying Itô's lemma to Ys = eκs Xs. The remaining terms can 

be easily integrated to arrive at the the spot price at T: 
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As the Itô integral is a Gaussian random variable, XT will be Gaussian with mean (the Itô integral has zero 

mean):  
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Also, using Itô isometry (see Oksendal (1995)): 
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which can be integrated to give. 
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As before, the log forward price will be normal under the risk-neutral measure (spot price will be log-

normal).  
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To arrive at an explicit formula, define the (discounted) characteristic of XT as follows: 
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One can use the familiar exponential affine for the characteristic function of XT  ~ N(µ,υ2) to get: 



 26

}])(exp{),,,( 22
2
1 TT

T uutTrXTtu ϑµ ++−−=Φ     (A23) 

The forward price is given by er(T-t) Φ(1,t,T,XT): 
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The above implies that forward term structure does not converge to the long-term mean of the spot price 

but instead to a larger quantity depending on the volatility and rate of mean-reversion.  

We can use Itô's lemma to arrive at the process followed by f (this will have zero drift). 
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Forward prices will also be lognormal under this model with different variance than in the GBM case. 

Therefore, the same formulae will apply with a different variance term. 

 

Proof of Proposition 4: Define the characteristic of Ga,b (y) as: 
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One can now use inversion methods to determine the call formula explicitly using (see Duffie et al 

(1998) for an explicit derivation): 
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The call price can now be expressed as: 
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To get the call price in terms of the forward price at t, observe that  
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Substituting these terms in the option pricing formula one can arrive at (19a). We can similarly write the 
put price as : 
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One can now proceed and substitute for terms in this equation to get (19b). 
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: Again, we need to show that the option price formulae for the simpler derivatives 
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As before, we can calculate a unique value of the forward price, k , at which the double call option will be 

exercised k solves the implicit equation:
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Now, the first two terms are a straightforward application of proposition 4 using the appropriate 

transform inversion. The third term can also be expressed as (32):
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 The first term can be evaluated using an application of proposition 4. To evaluate Π1 and Π2 we 

use the characteristic functions in (34). Now, for a bivariate distribution, F(a , b), of two random variables S 

and P, we can express F(S ≤ a, P ≥ b) as: 

F(S ≤ a, P ≥ b) = F(S ≤ a) - F(S ≤ a, P ≤ b)    (A35) 

If the characteristic function, Θ(φ, ϕ; S, P), of F is known we can use the method in Shepard (1991) (see 

Bakshi and Madan (1998) for an application to option pricing) to invert Θ(φ, ϕ; S, P) to get the desired 

probabilities given by: 

 ∫
∞ −Θ

−=≤
0

1 ]
);0,(

Re[
2

1
)( φ

φ
φ φ

π d
i

eS
aSF

ai

     (A36) 

∫ ∫
∞ ∞ +−−−








 −Θ
−







Θ
−

≤+≤+−=≤≤

0 0
2

)}
),(

Re
),;,(

{Re
2

1
(

)(
2

1
)(

2

1

4

1
),(

ϕφ
φϕ
ϕφ

φϕ
ϕφ

π

ϕφϕφ

dd
eePS

bPFaSFbPaSF

biaibiai
  (A37) 

The compound option formula can be derived by applying the above results to Π1 and Π2. 
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