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The restoration of a power system after an extended blackout starts around units with enhanced technical

capabilities, referred to as black start units (BSUs). We examine the planning problem of optimally allo-

cating these units on the grid subject to a budget constraint. We present a mixed integer programming

model based on current literature in power systems. Binary variables are associated with the allocation of

BSUs and with the energization state of buses, branches, and generators of the power system over a time

horizon. We extract a substructure of the feasible region which imposes the requirement that each island

that appears during the restoration process must contain at least one operational generator. We discuss

reformulations for this requirement and introduce a family of exponentially many, polynomially separable,

valid inequalities to strengthen the formulation. Under simplifying assumptions, we show that some of the

constraints we introduced are facet defining. We perform experiments to examine the difference in strength

between formulations and the computational times to solve the problem to near optimality for multiple

synthetic power system instances with up to 2000 buses. We illustrate a use case of the model. We conclude

by suggesting extensions of the current work for future research.

Subject classifications : Energy, Integer Programming Applications

Area of review : Environment, Energy, and Sustainability

1. Introduction

Electricity supply is such a ubiquitous commodity that the extent of the consequences from a

sustained electricity outage are often not fully comprehensible. These vary from the interruption

of house and public lighting, refrigeration, and the internet, to the shutdown of banking and ATM

systems, water supply, raw sewage dumping, cell phone communications, and farming operations.
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All of the above occurred during the Northeast blackout of August 2003 (see Minkel 2008), which

affected tens of millions of people for weeks. Such concerns are amplified due to a rapid transforma-

tion in the power grid: The generation mixture shifts away from the easily controllable, traditional

paradigm because of the introduction of renewables, distributed generation, electric vehicles, micro-

grids, and storage. The power system infrastructure, built to a large extent about half a century

ago, is aging. The climate is changing and extreme events (wildfires, hurricanes) are becoming

more frequent. Cyber-security threats are becoming an important concern for a power system that

relies increasingly more on the information infrastructure and automation. All of these factors have

increased the probability of large scale outages and led to a widespread interest to enhance power

system resilience.

Resilience refers to “the ability of the system to withstand and reduce the magnitude or duration

of disruptive events” (National Infrastructure Advisory Council 2009, Phillips et al. 2016, Wang

et al. 2015), such as natural disasters. A typical example is the ability of the system to restart after

an extended blackout (black start). Most of the system generators are not able to start without

connecting to an energized grid, since they are unable to setup and support the system frequency

by themselves or they require external power to restart their auxiliary equipment. As a result, the

system operator relies on a few units with the ability to start autonomously, called black start

units (BSUs), to restore the power system. Allocating and maintaining these units is costly and

the resulting allocation can severely impact the restoration security and time.

The black start allocation (BSA) problem is a planning problem solved in advance to allocate

BSUs and prepare for a possible outage. In most systems, BSUs are sparsely located across the

grid, and the allocation relies mainly on the start-up characteristics of the units - for example,

hydro power is almost always a preferred choice. As a result, it is often the case that the BSUs are

very few and not strategically placed on the grid, and restoration plans can take days or weeks to

bring the system back to normal operation, while important grid operations are compromised. As

resilience considerations are becoming increasingly important, it is expected that the budget for
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commissioning black start resources will increase. The California Independent System Operator

(CAISO), for example, has already identified a need for procuring additional black start resources

(see California ISO 2017). In this new era, planning tools that connect the budget availability

with restoration goals and suggest grid enhancements are becoming increasingly attractive and the

scientific interest for these models in the power systems literature is high.

The BSA problem is only the first step in a multi-step planning process for Power System

Restoration (PSR). The final outcome of this process is a complete restoration plan, i.e. a succession

of switching and energization actions for branches, generators, and load pickup to restore the

system to normal operation after an outage (often a complete blackout). The plan has to be tested

for feasibility through ac power flow studies, dynamic stability simulations, island synchronization

feasibility tests, cold load pickup simulations, protection relay simulations, as well as field tests for

the black start units - each of these studies employs different types of software and equipment and

needs specialized expertise to perform. Even after constructing a complete plan, it is unlikely that

this is going to be faithfully reproduced in practice – an actual blackout involves many unplanned

events, including complete failure of system components, loss of power in control centers, inability

for remote control of branches or generators (which will require dispatch of personnel for manual

operation), as well as unobservable state of a large part of the grid. However, since actual blackouts

are rare events, we can only rely on these planning and simulation tools to prepare for them and

to detect and fix potential vulnerabilities of the power system.

With this motivation, our goal in this paper is to present an optimization model for BSA based

on a typical level of simplification employed for this step of restoration planning and discuss

computational techniques that enable the solution of the problem for systems of realistic size. The

model accommodates for major restoration concerns (see PJM 2019, Section 10) such as: selecting

(additional) BSUs with suitable start-up characteristics, well positioned on the underlying graph

of the power system to support the parallel restoration from many starting points, and close to

load centers that could ensure the technical minima of generators are satisfied, while respecting a

predefined allocation budget.
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In order to improve the computational performance of the model, we discuss reformulations of a

subset of the problem constraints and valid inequalities to further strengthen the formulation. The

reformulations we suggest are relatively easy to implement and yield significant computational ben-

efits in terms of speed and accuracy of the optimization model. We also include a theoretical study

to motivate the use of our reformulations (validity of constraints, formulation strength, efficient

constraint separation, polyhedral analysis). Additionally, we draw a connection of a substructure

of the BSA problem, as well as other problems that employ grid reconfiguration in power systems,

with the maximum weight connected subgraph problem. We perform comparative computations

for instances of the IEEE-39, IEEE-118, Illinois-200, WECC-225, IEEE-300, South Carolina-500,

and Texas-2000 synthetic power systems. We describe a use case for our model for implementing

power system resilience upgrades subject to a budget.

This paper also aspires to serve as a reference to introduce a problem from power systems to

the Operations Research community and initiate further research on the topic. Our model can

be extended in multiple ways to accommodate for more general assumptions and there are many

computational challenges to be tackled. For this purpose, we devote a significant part of the paper

discussing the relevant literature in power systems as well as providing suggestions for future

research, including possible modifications to our formulation at the end of this paper.

2. Literature Review

2.1. Black Start Allocation and Power System Restoration

There is a rich literature that attempts to model different aspects of the PSR problem. As mentioned

in the introduction, creating restoration plans is a multi-step process with many considerations (see

Jiang et al. 2017, Yutian et al. 2016, and Liu et al. 2012). These steps are not always distinct but

they often include, according to a literature review by Yutian et al. 2016: selection of the BSUs (BSA

problem), sectionalization (dividing the power system into sections corresponding to each BSU for

parallel system restoration), unit start-up sequence optimization (determining the generator start-

up order for each section), restoration path optimization (discovering the energization sequence
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of all system components - buses, branches, generators), and synchronization (connecting islands

of the system that are restored in parallel). Further considerations include load pickup (cold load

simulations), damaged component repairs, field testing, and protection and dynamics for black

starts. In this review, we mainly cover publications relevant to the BSA problem. We also refer

to publications on unit start-up and restoration path optimization that formulate an optimization

problem over candidate power system restoration sequences. Specifically, these publications use

binary variables to model the energization state (energized or de-energized) of different system

components (generators, branches, buses) over a time horizon and impose power systems constraints

to model feasible transitions of the power system from a blackout (where all components are de-

energized) to normal operation (where the grid is energized) over time.

For the BSA problem, a number of heuristic guidelines is commonly used to select suitable black

start units in the literature (see Saraf et al. 2009, Sun et al. 2011a, Kafka 2008), as well as in

restoration manuals (e.g., PJM 2017). These heuristics mainly select units with favorable start-

up profiles (small start-up times and start-up power requirements). A smaller body of research

attempts to allocate these units through an optimization problem. The motivation behind this

research is that an optimal black start allocation needs to take into consideration the performance of

the resulting restoration. However, even by including a moderate amount of detail, the optimization

models become very large even for small systems and their discontinuous nature makes them often

intractable. As a result, major simplifications are usually employed in this phase and the models

are refined in subsequent planning steps to yield feasible restoration sequences.

Specifically, in Qiu et al. (2016) and Qiu and Li (2017) an optimal BSA problem is formulated by

considering simplified active power considerations of the restoration sequence. In Jiang et al. (2017)

an aggregate reactive power constraint is also utilized, but the grid flows are not. In Patsakis et al.

(2018), we formulate a black start allocation problem with further considerations for thermal line

limits and reactive power compensation. Finally, in Patsakis et al. (2019b), a reformulation of part

of the problem constraints is employed for a simplified version of the black start allocation problem
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with aggregate constraints. In all of the cases, the resulting restoration sequences generated do not

necessarily correspond to feasible restoration plans. These are obtained in subsequent steps of the

process. In case this proves impossible or if the resulting restoration plan is not satisfactory, the

initial optimization problem can be modified accordingly, for instance by removing the previously

found allocation from the feasible set via integer cuts, and resolved to obtain new allocations.

We now turn to literature on the restoration problem after a total blackout, where the BSUs

are known and models that optimize restoration sequences over the time horizon are used. In Sun

et al. (2011b) an optimization problem that includes the generator active power capabilities is

considered, without active and reactive flows. A different modeling approach that includes reactive

power considerations is adopted in Castillo (2013), aiming to motivate the use of microgrids for

the BSA procedure, which is applied to a 6-bus system. A mixed-integer nonlinear program is

formulated in Chou et al. (2013) for which the authors find feasible solutions using Ant Colony

Optimization. Aravena et al. (2019) use a mixed integer programming approximation of the ac

power flows, together with a decomposition scheme to obtain ac feasible restoration plans for

utility-scale systems.

The use of BSUs is mainly relevant for large scale outages - smaller outages can be addressed

using the surviving energized system. A relevant line of work is that of Van Hentenryck and Coffrin

(2015) and Coffrin and Van Hentenryck (2015), where the authors consider models for outages of

smaller scale but extend them to accommodate for component repairs and employ a decomposition

scheme to tackle the complexity of the problem. An affiliated model appears in Arab et al. (2016),

where Benders decomposition is utilized to enable scalability. There is also ample research on

prevention of a complete blackout using integer programming models for network planning (e.g.,

Bienstock and Mattia 2007) or islanded operation (e.g. by utilizing microgrids, as in Gholami

and Sun (2018)). Along the lines of enhancing resiliency, Byeon et al. (2020) propose a mixed

integer programming model for employing distributed generation and remotely controlled switches

in distribution systems. A model that employs generator and line switching to address resiliency

concerns due to geomagnetic disturbances appears in Lu et al. (2019).
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2.2. Island Energization Constraints

One requirement imposed during the restoration process is that each electrical island (an energized

connected component of the power grid) that appears during the restoration needs to contain

at least one operational generator. We refer to this requirement as the Island Energization (IE)

constraint and properly define it in section 4. We have already studied reformulations of this

constraint in Patsakis et al. (2019b), but in this paper we further expand on these results (i) by

employing a new family of valid inequalities, (ii) by including a polyhedral analysis of the feasible

region in a simplified case, (iii) by performing bound computations to compare the strength of

the different formulations and (iv) by experimenting with test systems of a larger scale. In the

appendix of this paper, we also describe how the feasible region defined by the IE constraints can be

transformed into the feasible region of the Rooted Maximum Weight Connected Subgraph Problem

(RMWCS), with weights on edges and nodes. This problem appears in Lee and Dooly (1998), where

a decomposition algorithm is devised to solve it. The statement of the problem is as follows: consider

an undirected graph with node set N̂ , edge set Ê, and a given node r ∈ N̂ . Weights are associated

with nodes and edges of the graph. We seek to find a maximum weight connected subgraph that

contains r. This problem is a modification of the maximum weight connected subgraph problem.

Integer programming formulations for the RMWCS have been studied in Dilkina and Gomes

(2010) for the directed graph version of the problem. In this version, each node in the subgraph

must be reachable from the root via a directed path. The authors present a single-commodity and

a multi-commodity flow formulation, similar to the ones in our work. They also present a cut-set

formulation, but with the further restriction that the subgraph forms an arborescence: for every

node there exists a unique directed path from the root node.

For the case of only node weights, Dittrich et al. (2008) transform the undirected, unrooted,

connected subgraph problem to the Steiner tree problem, using the fact that the subgraph can,

without loss of generality, be chosen to be a tree. Using this transformation, they employ algorithms

for the Steiner tree problem to solve instances in protein–protein interaction networks. In Biha
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et al. (2015) the feasible region for the unrooted, undirected version of the problem is formulated

in the space of only edges. A convex hull description is given for cycles and trees.

Álvarez-Miranda et al. (2013b) formulate the RMWCS for the directed and undirected case in

the space of only nodes and present a polyhedral analysis as well as a comparison of the strength

of the formulation with the edge-based formulation. The formulation in the space of nodes can be

strengthened by lifting the node separator inequalities and the in-degree inequalities (see Álvarez-

Miranda et al. 2013a, Wang et al. 2017). In Carvajal et al. (2013) the model appears in a forestry

planning application.

In most of the aforementioned literature, the problem is formulated either exclusively in the space

of edges or in the space of nodes to reduce the number of variables. In our application, however, we

need both nodes and edges, since both types of variables appear in constraints other than the ones

regarding connectivity. For example, the node energization variable is necessary to also indicate if

a bus can support load or not. Edges appear in the switching models of the power flow equations,

to regulate when branches are open/closed. Edges also appear in the reactive power equations,

since they are associated with the reactive power generation from long transmission lines. Finally,

generator variables appear in the generator start-up curves. Also, the RMWCS formulation differs

from the formulations that impose the requirement for a spanning tree of the subgraph to ensure

connectivity, such as in the vast literature on the prize collecting Steiner tree, in that the edge

variables are allowed to form cycles in our case. Of course, the feasible region projected in the

space of node variables is going to be the same since connectivity of the subgraph is equivalent to

the existence of a spanning tree.

3. Notation

Let (N,E) be the undirected graph derived from the physical graph of the power system, where

buses correspond to nodes (set N) and branches to undirected edges (set E). Let A be a directed

edge set corresponding to E, with the direction of each edge defined by arbitrarily picking a “From

Bus” and “To Bus” for every system branch, as is common in the power systems literature. Note
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that A and E have the same cardinality, i.e. |A|= |E|. Let G be the set of all generators, G(i) the

set of generators that are connected to bus i ∈ N , and G(S) the set of generators connected to

some bus in S, where S ⊆N . For the case where a single generator is connected to i, we denote

this generator by g(i), i.e. G(i) = {g(i)}. If S is a subset of the nodes S ⊆N , the undirected cut-set

δ(S) is defined as the set that contains all the edges in E with one node in S and one node in

N \S. We denote d= |N |+ |E|+ |G|.

Let t ∈ T denote an integer time instance (T being a set of consecutive integer time instances

starting at 0), g denote a generator in set G, i a bus (node) in set N , and (ij) a branch (edge) in set

A (or in set E by a slight abuse of notation, since there is a bijective correspondence between E and

A). We use the binary variable uBSg to indicate, when it is set to 1, the allocation of generator g ∈G

as a black start unit. The binary variables utg, u
t
i, u

t
ij denote the energization status of generator

g/bus i/branch (ij) at time t (1 indicates energized, 0 de-energized, for each element). Generator

g is also associated with the binary cranking variable utCRg
, which is 1 while the generator is

cranking, and with auxiliary variables wtg corresponding to utg(1−uBSg). We use auxiliary variables

f , corresponding to energization network flows (not power flows), in the definition of the single-

and multi-commodity flow formulations. The variable ptg is the active generation of generator g, ptij

is the active power flow on branch (ij), and ptSHi
is the load shed at bus i. Finally, the parameters

of the problem are the cost CBSg of allocating generator g to be a BSU, the total allocation budget

B, the number of allowable branch energizations per unit time Kcrew, the generator active power

maximum Pmax
g , active power minimum Pmin

g (we assume Pmax
g ≥ Pmin

g ≥ 0), cranking time TCRg

(assumed to be a positive integer), cranking power PCRg , minimum reactive power capability Q
g
,

the bus load PDi
≥ 0, angle φDi

, shunt reactance QSHi
, the branch shunt susceptance BSHij

, and

branch power limit S̄ij.

4. Black Start Allocation Model

In this section, we present a version of the BSA problem that retains the basic structure of the

problem, while permitting good computational performance for large-scale systems. The model
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is largely based on previous work by Patsakis et al. (2018), Aravena et al. (2019), Jiang et al.

(2017), Sun et al. (2011b), Qiu and Li (2017), Qiu et al. (2016). Some deviations from the previous

literature are subsequently discussed. The full model is presented below.

maximize
∑

(ij)∈A,t∈T

utij +
∑

i∈N,t∈T

uti +λG
∑
t∈T

h(ut)

subject to∑
g∈G

CBSguBSg ≤B (1a)

u0
i = 0, i∈N, utg = 0, g ∈G, t∈ {−TCRg , . . . ,−1} (1b)

utg ≥ ut−1
g , g ∈G, t∈ T \ {0} (1c)

utCRg
= utg −u

t−TCRg
g , g ∈G, t∈ T (1d)

utij ≤ ut−1
i +ut−1

j , (ij)∈A, t∈ T \ {0} (1e)∑
(ij)∈A

(utij −ut−1
ij )+ ≤Kcrew, t∈ T \ {0} (1f)

utCRg
≤ uti +uBSg , g ∈G(i), i∈N, t∈ T (1g)

utg −utCRg
≤ uti , i∈N, g ∈G(i), t∈ T (1h)

utij ≤ uti, utij ≤ utj , (ij)∈A, t∈ T (1i)

0≤ f tg ≤ utg −utCRg
, g ∈G, t∈ T, (1j)

−utij ≤ f tij ≤ utij, (ij)∈A, t∈ T, (1k)∑
j:(ji)∈A

f tji−
∑

j:(ij)∈A

f tij +
∑
g∈G(i)

f tg =
1

|N |
uti, i∈N, t∈ T (1l)

wtg +uBSg ≥ utg, g ∈G, t∈ T (1m)

wtg ≤ utg, g ∈G, t∈ T (1n)

wtg +uBSg ≤ 1, g ∈G, t∈ T (1o)

ptg ≥−PCRgw
t
g + (PCRg +Pmin

g )w
t−TCRg
g , g ∈G, t∈ T (1p)
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ptg ≤ Pmax
g (utg −utCRg

)−PCRg(wtg −w
t−TCRg
g ), g ∈G, t∈ T (1q)

−utijS̄ij ≤ ptij ≤ S̄ijutij, (ij)∈A, t∈ T (1r)∑
j:(ji)∈A

ptji−
∑

j:(ij)∈A

ptij +
∑
g∈G(i)

ptg = PDi
− ptSHi

, i∈N, t∈ T (1s)

(1−uti)PDi
≤ ptSHi

≤ PDi
, i∈N, t∈ T (1t)∑

i∈N

∑
g∈G(i)

Q
g
u

max{0,t−TCRg−1}
g +

∑
(ij)∈A

BSHij
utij+

∑
i∈N

QSHiu
t
i−

∑
i∈N

PDi
tan(φDi

)uti ≤ 0, t∈ T (1u)

The objective is a measure of the energization state of the system at different time instances.

The first two objective terms encourage energization of grid branches and buses. The third term

encourages the energization of generators. We define h(ut) = min(αL
∑

i∈N PDi
,
∑

g∈G u
t
gP

max
g ). This

definition is motivated by the fact that we prioritize the energization of larger generating units to

support the power system (larger units usually have larger inertia constants, making the system

more stable), but since real power systems operate with large excess generation capacity, we do not

want to encourage unit energization after the total capacity of energized units exceeds a multiple

αL(≥ 1) of the total load. The parameter λG is a trade-off coefficient. Variations of this objective

have been used in Patsakis et al. (2019b), Aravena et al. (2019), and Sun et al. (2011b), but for

a real-world application the objective chosen should additionally reflect any specific restoration

priorities of that system.

Constraint (1a) imposes the black start allocation budget on the selection of black start units.

The restoration of the system starts around these units. One simplified way to visualize the under-

lying optimization is as follows: We have a given budget to pick a few generators on the system

(corresponding to particular nodes). We can then expand the system energization around these

nodes in the power system graph over time. The objective metric corresponds roughly to how

much of the system we were able to energize, measured at given time instances after the start

of the process. Of course, the energization process needs to obey certain rules, such as operator
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switching limits, start-up curves for the generators, power constraints for every island. We include

these constraints in the optimization problem.

Constraint (1b) initializes the node and generator variables to zero (total blackout). The model

could be generalized in a straightforward way to accommodate for partial blackouts as well (see

Patsakis et al. 2019a). Constraint (1c) stipulates that a generator will only be energized and not shut

down. This simplifying assumption is common in the literature (e.g., Jiang et al. 2017, Sun et al.

2011b) - after the restoration has concluded costly units that were only energized for restoration

purposes will be turned off again based on optimal dispatch models. (1d) defines the cranking

variable (a generator is cranking if and only if it is currently energized but was not energized TCRg

time units in the past).

(1e) and (1f) impose a limit on the rate of the energization. (1e) imposes that we can only

energize a branch, if at least one of its nodes was energized at the previous time step (see Jiang

et al. 2017). (1f) is a physical constraint that comes from the fact that the operator has finite

resources (people) to restore the system. We assume that each branch energization takes some

time to happen (time that has to do with ensuring the feasibility of the energization as well as

performing the necessary operations to implement the switching). Kcrew indicates the number of

branch energizations per time step. De-energizations of branches are usually faster, thus we do not

limit the number of de-energizations per time step. Note that (x)+ = max{0, x}.

Constraint (1g) stipulates that nodes corresponding to generators that are cranking must be

energized (except if the generator is a black start). Constraints (1h) -(1l) impose what we refer to as

the IE requirement. In particular, (1h) imposes that a generator that has finished cranking energizes

the node it connects to. (1i) imposes that an energized branch must have both its endpoints

energized. Constraints (1j)-(1l) impose the following requirement: Any energized bus must be

connected to an energized generator that has completed cranking through a path of energized edges.

This constraint comes from the fact that to support the voltage and frequency of every electric

island we need at least one operational generator (often a black start unit, but not necessarily) on
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(a) Start-up curve for a non black-start unit (uBSg = 0)

in the simplified model. After the unit starts at time ts, it

needs to crank by absorbing active power PCRg from the

system for time TCRg . Following that, it can move at any

point between the minimum and maximum generation,

Pmin
g and Pmax

g respectively.

(b) Start-up curve for a black-start unit (uBSg = 1) in the

simplified model. After the unit starts at time ts, it needs

to crank for time TCRg . However, the cranking power does

not need to be provided by the system. Following that,

generation can move at any non negative point below the

maximum generation Pmax
g .

Figure 1 Generator active power curve for a black-start and a non black-start unit over time. The curves are

jointly described by equations (1m)-(1q). For both figures, assuming a generator starts at time ts ∈ T ,

the binary variable ut
g (indicating the start-up of a generator) would be 0 for t < ts and 1 for t ≥ ts.

The binary variable ut
CRg

(indicating a generator is cranking, i.e. in preparation to become operational)

would be 1 for ts ≤ t < ts +TCRg , and 0 otherwise.

the island. This single-commodity flow formulation is adapted in many power systems publications

to impose a connectivity requirement (e.g. Demetriou et al. 2018, Teymouri et al. 2017, Ding et al.

2015, Ding et al. 2017, Golari et al. 2014, Fan et al. 2012, Qiu et al. 2016). We discuss reformulations

of the IE requirement in the next section.

Constraints (1m)-(1q) define the generator model, as described in Figure 1. Constraints (1m)-

(1o) define the variable wtg, which is equal to utg(1−uBSg), using the McCormick relaxation. This

start-up curve is slightly simplified compared to the start-up curve often found in the literature

(e.g., Sun et al. 2011b, Patsakis et al. 2018) in that the ramping constraints are omitted. This

change comes from the fact that for large-scale systems we are using a coarse time resolution in

our optimization problem. As a result, most of the generating units that are considered for the

first steps of restoration are capable to ramp up or down quickly enough to render the ramping

constraints redundant, which in turn allows us to use a simpler model based on step functions. We

directly model the start-up curves for black start and non black-start units using binary variables.
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Constraints (1p)-(1t) define a transportation model for the active power flow. This is in fact

a major simplification made for the sake of computational tractability, since the ac transmission

switching model that is instead imposed by physics in this problem is omitted. As a result, Kirch-

hoff’s voltage law might not be respected by the solution. However, the set of constraints used

ensures, at least, that every island that appears during the restoration process satisfies active

power balance (i.e. the total island generation equals the island demand). This incorporates two

important restoration considerations: first, for every generator that gets cranked, there is sufficient

active power generation in the island to support its cranking power; second, every generator that

has finished cranking and needs to keep its generation above the minimum generation point Pmin
g

can find enough load in the island to do that. Finally, (1u) imposes an aggregate reactive power

constraint (the reactive power absorption capability of shunt reactances, reactive load, and gener-

ators after they crank is enough to overcome the reactive power generation induced by the branch

shunt susceptances of large transmission lines).

As a justification to the power flow constraint simplifications, we should note that we do not

expect the BSA solution to generate an ac-feasible restoration sequence that captures all the

necessary switching operations. Rather, the goal is to identify good locations for black start units in

the graph, while picking black start units with suitable start-up characteristics. For that purpose,

a simplified model that captures the main problem characteristics can be sufficient for a planning

tool, while retaining tractability. Indeed, in most of the literature for BSA the active power flow

constraints in the optimization models are initially either completely omitted and aggregate power

models are used (e.g., Sun et al. 2011b, Jiang et al. 2017, Patsakis et al. 2019b), or simplified network

flow models are used to ensure consistent partitioning of the graph in sections corresponding to

black start units (e.g., Qiu et al. 2016). Generating the actual detailed restoration sequences that

respect ac power flow constraints is part of a refinement process in subsequent steps (e.g., Qiu and

Li 2017).
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5. Reformulating the Island Energization Constraints

5.1. Reformulations

This section studies reformulations and valid inequalities for the IE constraints (1h) -(1l), which

were discussed in section 4. Note that due to constraint (1d), the difference utg − utCRg
equals

u
t−TCRg
g . Therefore, we can replace the expression utg − utCRg

with u
t−TCRg
g in (1h) and (1j) . The

analysis of this section studies the set of constraints for a given t∈ T . The binary variables involved

in these constraints are {uti}i∈N , {u
t−TCRg
g }g∈G, and {utij}(ij)∈E. For convenience, we drop all indices

referring to time. We refer to the vector of these variables with u.

We denote the feasible region of the points satisfying the IE constraint by H. Constraints (1h)

and (1i) are included in all the formulations and are rewritten based on the discussion in the

previous paragraph as:

ug ≤ ui, g ∈G(i), i∈N (2a)

uij ≤ ui, uij ≤ uj, (ij)∈E (2b)

The first formulation (F1) is given by:

F1 ={u∈ [0,1]d : ∃{fg}g∈G,{fij}(ij)∈A : (2a), (2b), (4a)-(4c)} (3)

where the constraints (1j) -(1l) are used, rewritten as:

0≤ fg ≤ ug, g ∈G (4a)

−uij ≤ fij ≤ uij, (ij)∈A (4b)∑
j:(ji)∈A

fji−
∑

j:(ij)∈A

fij +
∑
g∈G(i)

fg =
1

|N |
ui, i∈N (4c)

Given the definition of F1 above, we define the feasible region of the IE problem to be H = F1∩Bd.

In the definition of F1, a set of auxiliary network flow variables fg, g ∈ G and fij, (ij) ∈ A, are

employed and projected out. An energized node (i.e. ui = 1) acts as a sink of 1
|N | amount of network

flow, captured in the right hand side of (4c). Network flow can only be generated from energized
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generators, due to (4a). It can only flow through energized branches due to (4b). This ensures

that there is a path from any energized node to an energized generator that uses only energized

branches (this is a path that the network flow follows to move from the energized generator to

the energized node). The normalization constant 1
|N | allows one generator to energize all nodes.

Adaptations of the single-commodity flow formulation are the ones most commonly used in power

systems applications (e.g. Demetriou et al. 2018, Teymouri et al. 2017, Ding et al. 2015, Ding et al.

2017, Golari et al. 2014, Fan et al. 2012, Qiu et al. 2016).

An alternative formulation approach, following the same logic, would be to consider a different

type of flow corresponding to the energization of each node. This would lead to the following

multi-commodity flow formulation:

F2 ={u∈ [0,1]d : ∃{fkg }k∈N,g∈G, {fkij}k∈N,(ij)∈A : (2a), (2b), (6a)-(6d)} (5)

where:

0≤ fkg ≤ ug, k ∈N,g ∈G (6a)

−uij ≤ fkij ≤ uij, k ∈N, (ij)∈A (6b)∑
j:(ji)∈A

fkji−
∑

j:(ij)∈A

fkij +
∑
g∈G(i)

fkg = ui, k ∈N, i∈N : i= k (6c)

∑
j:(ji)∈A

fkji−
∑

j:(ij)∈A

fkij +
∑
g∈G(i)

fkg = 0, k ∈N, i∈N : i 6= k (6d)

The idea behind this formulation is that each node is treated separately and is associated with

its own type of network flow and constraints. If node k ∈ N is energized, then one or more of

the energized generators needs to generate the type k network flow, which has to pass through

energized branches. The only sink for that type of network flow is node k, which means that the

network flow of type k is preserved at every other node i 6= k. In this case, the normalization of 1
|N |

is not necessary in (6c), since a single energized generator can generate all |N | types of network

flows to energize all the nodes. This formulation is rarely used in power systems due to its size.
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A third formulation is a cut-set formulation that only employs the binary variables. Specifically,

F3 = {u∈ [0,1]d : (2a), (2b), (8)} (7)

where: ∑
(ij)∈δ(S)

uij +
∑

g∈G(S)

ug ≥ un, n∈ S,S ⊆N (8)

We refer to the family of inequalities (8) as Type I constraints. The idea behind this formulation

is that, given any subset S of the nodes, if any node in that subset is energized (i.e. if un in the

right hand side of (8) is equal to 1 for some n∈ S), then an energized generator must be providing

the energizing flow. Therefore, either one generator within the set S should be energized (i.e.∑
g∈G(S) ug ≥ 1 in the left hand side of (8)), so that the energizing flow comes from that generator,

or at least one edge in the cut-set should be energized (i.e.
∑

(ij)∈δ(S) uij ≥ 1 in the left hand side

of (8)), so that the energizing flow comes from a generator outside the set S. Formulation F3

employs an exponential number of cuts, but can be separated in polynomial time (see, for example,

Patsakis et al. (2019b)).

The three formulations restricted to Bd represent the same region, i.e. H = F1 ∩Bd = F2 ∩Bd =

F3 ∩Bd (see Patsakis et al. (2019b)). When comparing two MILP formulations Fi and Fj, we say

that Fi is (strictly) stronger than Fj if Fi is a (strict) subset of Fj. A stronger formulation yields

better bounds in the execution of branch and bound (B&B). We have the following result for the

relative strength of the three formulations (see Patsakis et al. (2019b)):

Proposition 1. F2 is strictly stronger than F1 and F2 is as strong as F3, i.e. F2 = F3 ⊂ F1.

5.2. NP-hardness

One important question after defining the feasible region of the IE constraints H is whether we

can efficiently optimize over that region. The following proposition illustrates that this is hard to

know. The proof in appendix EC.1 also draws the connection to RMWCS.

Proposition 2. The following optimization problem (c∈Qd) is NP-hard:

maximize
u

cTu

subject to u∈H
(9)
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5.3. A New Family of Valid Inequalities

After examining convex hull formulations generated by optimization software for power systems

with a few buses, we devised the set of valid inequalities of this section to strengthen our formula-

tion. All the statements of this section are shown in appendix EC.2. Define the following function

of the binary vector u and of the subset S ⊆N :

fS(u) =
∑

(ij)∈E:i,j∈S

uij +
∑

(ij)∈δ(S)

uij +
∑

g∈G(S)

ug −
∑
i∈S

ui (10)

Now, we define the inequalities, which we refer to as Type II inequalities, as

fS(u)≥ 0, S ⊆N (11)

Proposition 3. Constraints (11) are valid for the feasible region H.

We also show the following remark:

Remark 1. The continuous relaxation region defined by the family of Type II cuts (11) is neither

stronger nor weaker than that of the family of Type I cuts (8).

Constraints (11) are exponentially many, but fortunately we can efficiently separate them exploit-

ing submodularity, as the following results suggest.

Proposition 4. For a given, possibly fractional, u ∈ [0,1]d, fS(u) is a submodular function of

S ⊆N .

Corollary 1. Constraints (11) can be separated in polynomial time.

5.4. Polyhedral Analysis

For the analysis in this subsection we assume for simplicity:

Assumption 1. The underlying (undirected) graph of the power system (N,E) is complete and

each node has a single generator.
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This assumption is not realistic for actual power systems, but it allows for an easier analysis, with

the aim of getting some insights on the strength of the inequalities introduced in the last two

sections. We use these insights in the computations of section 7. The proofs of statements of this

section are provided in appendix EC.3.

Proposition 5. Let assumption 1 hold. The convex hull of the feasible region H, conv(H), is a

full-dimensional polyhedron.

Proposition 6. Let assumption 1 hold. Constraints (8) with |S|= 1, i.e.:

∑
j∈N\{n}

unj +ug(n) ≥ un, n∈N (12)

are facet defining for conv(H).

Proposition 7. Let assumption 1 hold. Constraints (8) with S =N , i.e.:

∑
i∈N

ug(i) ≥ un, n∈N (13)

are facet defining for conv(H).

Proposition 8. Let assumption 1 hold. Constraints (11) with S =N , i.e.:

∑
g∈G

ug +
∑

(ij)∈E

uij ≥
∑
i∈N

ui (14)

are facet defining for conv(H).

6. Reformulating the Active Power Constraints

We next use a reformulation of constraints (1p)-(1t) to project the variables ptg, p
t
ij, p

t
SHi

out of

the formulation and hence reduce the number of variables in the optimization. The resulting for-

mulation is equally strong, but in our implementations resulted in a slightly better computational

performance for the instances considered. It employs the following set of constraints. For all t∈ T ,

S ⊆N :

∑
i∈S

PDi
uti +

∑
g∈G(S)

(PCRgw
t
g − (PCRg +Pmin

g )w
t−TCRg
g ) +

∑
(ij)∈δ(S)

S̄iju
t
ij ≥ 0 (15a)

∑
g∈G(S)

(Pmax
g (utg −utCRg

)−PCRg(wtg −w
t−TCRg
g )) +

∑
(ij)∈δ(S)

S̄iju
t
ij ≥ 0 (15b)
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The following proposition ensures the equivalence of the reformulation. The proposition follows

from Hoffman’s circulation theorem. We present a proof based on the minimum cut - maximum

flow theorem in the Appendix instead, in order to also illustrate the process we employ to separate

constraints (15) in our experimental results.

Proposition 9. For a given t ∈ T , assume (1d) and (1n) hold and that the variables

{utg}g∈G,{utCRg
}g∈G,{wtg}g∈G,{w

t−TCRg
g }g∈G, {uti}i∈N ,{utij}(ij)∈E are in [0,1]. Then, the system

(1p)-(1t) has a solution with respect to {ptg}g∈G , {ptij}(ij)∈A, {ptSHi
}i∈N if and only if (15) hold for

all S ⊆N .

7. Experimental Results

All optimization problems in this section were formulated using Python 3 and solved using Gurobi

as MILP engine. Each simulation was executed at a single node of the Lawrence Livermore National

Laboratory quartz server (2 × Intel Xeon E5-2695, 36 cores, 128 GB RAM), running Linux Red Hat

Enterprise 7.8. All the data used in these simulations are available as an online dataset at Patsakis

et al. (2020). We experiment with the impact that reformulating the constraints of the problem,

as described in the previous two sections, has on multiple instances. We perform two types of

simulations. First, we want to evaluate the bound quality due to the difference in the strength of

the formulations. Second, we want to compare how the difference in the formulation of the problem

impacts the solution times.

7.1. Formulation Strength

As far as the quality of bound is concerned, we compare four possible implementations and solve

the continuous relaxation in each case. Since the reformulation of section 6 leads to the same linear

relaxation, these experiments compare only the different ways to impose the IE constraint. These

implementations are the following:

(i) Formulation F1.

(ii) Formulation F3 (Type I cuts), which is equivalent to formulation F2.
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BSA F1 F3 F1 & F3 & Best

Root (Type I) Type II Type II Bound

[%] [%] [%] [%]

IEEE-39 21.75 15.59 15.35 15.35 2199.15

IEEE-118 6.57 1.89 1.41 1.23 5051.41

Illinois-200 8.45 3.37 2.43 2.43 6480.59

WECC-225 4.13∗∗ 1.48 1.47 1.47 16598.51

IEEE-300 16.19 6.47 4.85 4.81 12684.21

South Carolina-500 16.99 4.19 1.07 0.95 13778.61

Table 1 Optimal BSA root node relaxations for synthetic test systems, employing the different formulations.

The last column corresponds to the best bound found by the B&B tree in the results of Table 2. Columns 2-5 are

percentages above the best upper bound found from B&B (column 6). (∗∗ indicates suboptimal termination due to

numerical errors in Gurobi.)

(iii) Formulation F1 with Type II cuts.

(iv) Formulation F3 (Type I cuts) with Type II cuts.

For the separation of the Type I constraints we use an implementation of the push-relabel algorithm

for the maximum flow in the python-igraph package (Csardi et al. 2006). For the separation of the

Type II constraints, we implement a cutting plane algorithm for submodular minimization based on

minimizing the Lovasz extension (see Atamturk and Narayanan 2019), using linear programming.

An accuracy of 0.001 to identify violated constraints and a time limit of 20000s was used - hence,

the values presented should be treated as upper bounds of the actual relaxation values.

The results are presented on Table 1. Our first observation is that there is a significant improve-

ment in the quality of the lower bound between using the single-commodity flow formulation F1

and the formulation with all Type I and II cuts (column F3 & Type II). A second observation is

that the best bound obtained from B&B (last column) in most cases is actually fairly close to the

bound obtained by including all Type I and Type II cuts in the continuous relaxation. Finally,

the Type II cuts seem to only make a noticeable difference in the strength of the lower bound in
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Gap [%] UB LB Time [s]

IEEE-39

(A) Optimal 2221.04 2199.15 2.6

(B) Optimal 2210.59 2199.15 10

(C) Optimal 2199.15 2199.15 3.9

(D) Optimal 2199.15 2199.15 3.2

(E) Optimal 2206.75 2199.15 1.7

IEEE-118

(A) Optimal 5066.87 5018.69 50

(B) 24.9 5101.76 4084.56 2000

(C) Optimal 5062.64 5018.16 47

(D) Optimal 5051.41 5019.56 55

(E) Optimal 5053.76 5018.56 120

Illinois-200

(A) Optimal 6480.59 6460.99 147

(B) − 6517.80 0 2000

(C) Optimal 6494.89 6460.99 53

(D) Optimal 6510.60 6446.90 42

(E) Optimal 6494.54 6460.79 44

Gap [%] UB LB Time [s]

WECC-225

(A) Optimal 16598.51 16574.62 96

(B)∗ − 16696.60 0 2000

(C) Optimal 16604.51 16444.93 58

(D) Optimal 16610.33 16516.27 71

(E) Optimal 16610.56 16510.42 53

IEEE-300

(A) 8.69 12916.52 11883.79 2000

(B)∗ − 16989.79 0 2000

(C) 3.98 12807.97 12317.66 2000

(D) 2.02 12773.35 12520.20 2000

(E) 1.18 12684.21 12536.08 2000

South Carolina-500

(A) 156.47 13987.39 5453.70 2000

(B)∗ − 19009.15 0 2000

(C) 8.55 14262.80 13138.36 2000

(D) 4.35 13778.61 13203.37 2000

(E) 5.22 13782.59 13098.70 2000

Table 2 Optimal BSA results for synthetic test systems. Depicting the gap at termination, upper bound (UB),

lower bound (LB), and total time.

the larger test systems (IEEE-300 and South Carolina-500), compared to simply using just Type

I cuts.

7.2. Solving to Near Optimality

For the second part of simulations, we solve for points over the same feasible region in Zb, imple-

mented using the following alternatives for imposing the problem constraints:

(A) Formulation F1 ((1j)-(1l)) imposes the IE constraint and (1p)-(1t) impose the active power

constraints.

(B) Formulation F2 imposes the IE constraint and (1p)-(1t) impose the active power constraints.
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(C) Type I constraints (8) are used to impose the IE constraint. Specifically, Type I constraints

for |S| ∈ {1, |N |} are added a priori and the remaining constraints are imposed through an integer

callback (i.e. whenever an integer point is found by the solver). Since the points examined are

integer, separation of Type I cuts can be done simply through a graph traversal (we can find islands

that violate the IE constraints in linear time). (1p)-(1t) impose the active power constraints.

(D) Type I constraints (8) and Type II constraints (11) are used to impose the IE requirement.

Type I and II constraints for |S| ∈ {1, |N |} are added a priori. We use integer callbacks to lazily add

the remaining Type I constraints, only if they are violated at a candidate integer feasible point.

For the islands that are identified to violate a constraint, we also add the Type II cuts.

(E) Type I and II constraints are used as in (D) to impose the IE requirement. The system (15) is

used to impose the active power constraints. The constraints (15a) and (15b) for |S| ∈ {1, |N |} are

added a priori, and the remaining constraints are imposed through an integer callback if violated.

Note that for the implementations where Type I and II cuts are used, we always include the

constraints for |S| ∈ {1, |N |} a priori in the formulation. This is justified, since (at least for the

simplified case considered in the polyhedral analysis of section 5.4), these constraints are facet

defining.

A 2000s time limit was set to the solver and a 1% optimality gap termination was considered

(i.e. a solution guaranteed to be within 1% of the optimal is denoted as optimal) for all simulations.

Presolve was enabled in all simulations. Some instances caused the B&B tree to run out of memory

due to the size of the problem. For these instances (indicated with ∗), we present results using

settings that limit the solver’s memory use by restricting the number of threads to 2 and using the

file system as temporary storage. The results are shown on Table 2.

A first observation is that implementation (B), which uses formulation F2, is unable to compete

with the other implementations due to its size. In fact, for the larger systems (IEEE-300 and South

Carolina-500), not even the root node relaxation can be solved within the 2000s time limit. All the

other implementations are able to solve the four smaller power systems fairly easily. Additionally,
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UB after Time after UB at LB at Gap at

root root [s] time limit time limit time limit

(A) 178217 3519 178217 164112 8.59%

(C) 175326 2429 173725 164112 5.85%

(D) 171850 5667 171479 164112 4.49%

(E) 171805 669 170775 164112 4.06%

Table 3 Simulations in Gurobi for the different implementations for the Texas system BSA. The second column

corresponds to the best upper bound found by Gurobi after solving the root node relaxation. Note that presolve is

on. The third column corresponds to the time for solving the root node relaxation. The last three columns give the

final upper bound, lower bound, and gap at the time limit of 20000s.

we observe that formulation F1 is outperformed by the cut-based formulations for imposing the

IE constraint - it is slightly slower in the Illinois-200 system, and significantly outperformed in the

IEEE-300 and South Carolina-500 systems. Type II cuts, employed in (D) and (E), seem to help

for the largest two systems in obtaining a better bound within the time limit. Finally, for the same

systems, the use of (15) seems to help further close the gap by approximately 1%.

7.3. The Texas System Test Case

The synthetic Texas system consists of 2000 buses, 3206 branches, 544 generators. We used a

time horizon of 40 time steps, with one time step corresponding to an hour. This instance is

the largest one considered in this paper, and in order to solve it we use additional techniques

to the ones described in the previous subsections. The system data (buses, branches, generators)

and the power flow characteristics were obtained from the data sets of Texas A&M University

(Birchfield et al. 2016). The remaining data used are available at Patsakis et al. (2020). The

resulting optimization problem (A) has 1830671 constraints, 779178 variables, of which 505 114

are continuous and 274 064 are binary, and a total of 4977963 nonzero elements in the constraint

matrix.
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(a) Time step t = 3. (b) Time step t = 7.

(c) Time step t = 15. (d) Time step t = 20.

Figure 2 Visualization of four snapshots from the Texas system restoration in the 4.06% optimal solution found.

The energized part of the system is indicated with red and the de-energized with black. A system

aggregation is used before plotting for better visualization. A total of 9 black starts were assigned.

Using an adaptation of the heuristic strategy described in Patsakis et al. (2018), we were able

to obtain a feasible solution with objective 164113, which was fed as a MIP start in Gurobi. For

all simulations the “Method” parameter in Gurobi was set to 3. The “Heuristics” parameter was

increased to 0.3 Due to an observed better computational performance, we also set the number of

threads to 8 and we introduced constraint (1f) as a lazy constraint, by simultaneously adding a

priori the weaker constraint
∑

(ij)∈A(utij −ut−1
ij )≤Kcrew for each time step t.

Simulation results are shown on Table 3. The implementation that achieves the best optimality

guarantee within the time limit is (E). We should note that, in the case of the formulations with

exponentially many constraints, these constraints are added through integer callbacks (and not

at fractional points), so the linear programming relaxation values provided do not reflect the full

strength of the formulation. Finally, a visualization of the solution (for which a 4.06% optimality

guarantee was obtained by the best performing (E) implementation) is shown in Figure 2.
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Figure 3 Plot of an example metric as a function of the budget allocated to enhance the black start capability of

the simplified WECC system.

7.4. Black Start Capability Upgrade Example

In this section, we provide one potential use of the model we presented for black start planning.

We use the WECC-225 system as an example. We assume there is already one black start unit in

the system, namely generator 81. The system operator considers potential upgrades to the black

start capability of the system. The operator may be interested in different metrics. In our example,

we assume one of them is the average of the buses restored over the first 10 time steps, namely∑9

t=0

∑
i∈N u

t
i. Following that, we can construct a plot of the metric as a function of the allocated

budget for black start upgrades - i.e. the optimization model is solved for different values of the

parameter B (the unit already allocated is excluded from the budget constraint and set to a black

start). The outcome is shown in Figure 3.

Based on that plot, we can see that by investing 2.74% of the total investment cost to convert all

units to BSUs (
∑

g∈GCBSg), we can get a 157% estimated improvement on the metric of interest.

This corresponds to allocating a total of 4 new black start units. Also, based on the plot we

notice that, for this particular metric, there seems to be not much additional improvement above

investing approximately 4% of
∑

g∈GCBSg . We should of course notice that the realization of this

improvement needs to be verified with more detailed models and simulations of the restoration

process. However, this test case illustrates how the model can serve as the first step of a planning

tool to enhance the restoration capability of the power system.
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8. Conclusions and Future Research

In this paper we examined the problem of optimal BSA and studied a particular substructure that

arises, namely the IE constraints. The allocation of black start generators is the first step in power

system restoration planning for large scale outages. It involves evaluating suitable candidates for

black starts based on the location and characteristics of the units on the grid, as well as an available

budget for the allocation. We presented a model for this problem based on current literature. We

then discussed reformulations and valid inequalities for the feasible region of the IE constraints.

We provided theoretical results regarding the strength of some of the cuts we introduced, under

simplifying assumptions.

We proceeded to perform computations for the optimal BSA using our reformulations on multi-

ple power system instances. We compared the strength of the root node relaxations of the problem

under different formulations. We performed computations to solve the systems to near optimality.

We observed that the best computational performance comes from a priori including in the for-

mulation selected constraints (which in our simplified polyhedral analysis were shown to be faced

defining) and lazily generating the remaining constraints through integer callbacks. Finally, we

discussed a use case for the model in planning black start capability upgrades given a budget.

The IE constraints we examined in this paper are implied by a detailed ac model of the power

flows (since shunt elements would force node voltages to zero if no generation exists in an electrical

island). As a result, they are valid in other power systems applications and can be used to potentially

strengthen the formulation and speed up computations, especially if the objective of the problem

is similar to the one in our application. Additionally, these constraints are favorable to use in a

branch and cut framework - they are easy to separate (linear time for integral points) and have

small integral coefficients. For example, we have used these constraints as part of a constraint

generation algorithm for the power system restoration problem described in Aravena et al. (2019),

employing a detailed approximation of the ac power flows.

There are multiple extensions to our model that would constitute interesting subsequent research

directions. One extension would be to upgrade the modeling of the power flow equations to the ac
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transmission switching model, or a suitable approximation. In particular, reactive power compen-

sation is one of the most important considerations during the actual restoration process, mainly

because of the Ferranti rise effect caused by reactive power injections from large transmission lines

in combination with low load conditions. There are two important points when modeling reactive

power in restoration problems. First, reactive power is mainly local, since reactive power losses

are very high due to large line reactances. Therefore, a lossless reactive power model would not

be a suitable choice. On the other hand, real power systems are actually equipped with reactive

power compensation devices placed strategically on the grid exactly to alleviate local overvolt-

ages where they are expected to occur. Second, convex relaxations of the power flow equations

are often not suitable for modeling reactive power under extreme operational conditions. This is

because they lead to fictitious reactive power compensation, as observed in Aravena et al. (2018).

Dedicated models that more accurately capture the non-linear nature of reactive power (such as

the one discussed in Aravena et al. 2018) are more suitable. Ideas from Aravena et al. (2019) are

likely to successfully extend to the framework of this paper. Another model extension would be to

relax some of the generator model assumptions. For example, we neglected the generator ramping

constraints and assumed generators will not shutdown after their start-up. It is expected that new

techniques will be necessary to handle these model refinements while maintaining scalability.
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Proofs of Statements

The appendix provides the proofs of propositions, corollaries, and remarks in the paper. To avoid

confusion, the statements are repeated for the reader’s convenience.

EC.1. Proof of Proposition 2.

Proposition 2. The following optimization problem (c∈Qd) is NP-hard:

maximize
u

cTu

subject to u∈H
(9)

Proof of Proposition 2. The Rooted Maximum Weight Connected Subgraph Problem

(RMWCS), with weights on edges and nodes, known to be NP-hard (see Ideker et al. 2002), can

be reduced to (9). The statement of RMWCS is as follows: consider an undirected graph Ĝ with

node set N̂ , edge set Ê, and a given node r ∈ N̂ . Weights are associated with nodes and edges of

the graph. We seek to find a maximum weight connected subgraph that contains r.

We partition the set of edges Ê into two sets, the set of neighboring edges to r, Ê(r), and

Ê \ Ê(r). Now consider a power system with generator set Ê(r), bus set N̂ \ {r}, and branch set

Ê \ Ê(r). The generator objective weights are set equal to the weights of edges Ê(r), the branch

weights equal to the weights of the set Ê \ Ê(r), and the bus weights equal to the weights of N̂ \{r}

accordingly. We establish a 1-1 mapping between rooted connected subgraphs of Ĝ and feasible

points of (9), with the same objective value. Due to (2a)-(2b), the solution of (9) corresponds

to a subgraph of the original graph Ĝ (if we select an edge, we select both its endpoints). The

all-zero point in (9) corresponds to the case where the subgraph of Ĝ chosen is the singleton {r}.

In any nonzero feasible solution to (9), there exists a path from every energized node to at least

one generator in Ê(r), which means that the subgraph induced in the original graph is connected

and contains the root. Conversely, every connected subgraph of the original graph corresponds to

a subgraph of (N̂ \ {r}, Ê \ Ê(r)), which consists of connected components each one of which has

to be connected to r through one of its neighbors Ê(r) - this means that each induced island has

at least one energized generator. This completes the reduction. �
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EC.2. Proofs of Statements of Section 5.3.

EC.2.1. Proof of Proposition 3.

Proposition 3. Constraints (11) are valid for the feasible region H.

Proof of Proposition 3. Let u be an feasible point for H (binary vector). We show that for all

S ⊆N , constraints (11) are satisfied at u. The proof is by induction on the cardinality of the set

S. For |S|= 1, the constraints reduce to the Type I constraints (8) with |S|= 1, which are valid.

Now assume that all constraints for sets with |S|= k are valid. Take an arbitrary set of cardinality

k+ 1 and assume it has the form Ŝ ∪ {i0}, where i0 /∈ Ŝ is an arbitrary node in that set. By the

induction hypothesis we have for the set Ŝ: fŜ(u)≥ 0. It suffices to show that fŜ∪{i0}(u)≥ 0.

We consider two cases. First, assume that fŜ(u)≥ 1. Using definition (10), we have:

fŜ∪{i0}(u)− fŜ(u) =
∑

j∈N\(Ŝ∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug −ui0 (EC.1)

Due to the binary nature of the variables in the right hand side of equation EC.1 we have

fŜ∪{i0}(u)− fŜ(u)≥−1. Since fŜ(u)≥ 1, we obtain fŜ∪{i0}(u)≥ 0.

Now consider the case that fŜ(u) = 0. If ui0 = 0, from the right hand side of (EC.1), we obtain

fŜ∪{i0}(u)− fŜ(u) ≥ 0, which yields fŜ∪{i0}(u) ≥ 0. If ui0 = 1, define
∑

i∈Ŝ ui = k̄. Consequently,

the following equality holds using (10) and fŜ(u) = 0:

∑
(ij)∈E:i,j∈Ŝ

uij +
∑

(ij)∈δ(Ŝ)

uij +
∑

g∈G(Ŝ)

ug = k̄ (EC.2)

Denote S̄ the subset of Ŝ corresponding to energized nodes: S̄ = {i ∈ Ŝ : ui = 1}, with |S̄| = k̄.

Define the auxiliary undirected graph Ḡ = (VḠ,EḠ). The node set is VḠ = S̄ ∪ {i0} ∪ {s}, where

s is a dummy super-node which corresponds to an aggregation of all generators and of all nodes

N \ (Ŝ ∪ {i0}). To get the edge set EḠ: We add an edge between i ∈ S̄ ∪ {i0} and j ∈ S̄ ∪ {i0} if

uij = 1. Between i∈ S̄∪{i0} and s we add
∑

j∈N\(Ŝ∪{i}):(ij)∈E uij +
∑

g∈G({i}) ug edges. Now observe

that the value of the left hand side of equation (EC.2) is exactly the number of edges of Ḡ that

have at least one endpoint in the set S̄ (note that even though Ḡ contains no edges associated with
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generator variables or edge variables connected to nodes in Ŝ \ S̄, these variables are all zero due

to inequalities (2a) and (2b) because the nodes in Ŝ \ S̄ are de-energized).

Since the vector u is feasible for H, from every energized node i (i.e., node with ui = 1) on graph

(N,E), there is a path of energized edges in E leading to a node with an energized generator in G.

In the context of graph Ḡ, that means there exists a path from every node in S̄ ∪ {i0} to node s.

That implies that graph Ḡ is connected. The graph has k̄+ 2 nodes, so it must have at least k̄+ 1

edges. Exactly k̄ edges have at least one endpoint in S̄, due to (EC.2). Therefore, there is at least

one edge with no endpoints in S̄, i.e. there is an edge between i0 and the dummy node s. By the

construction of the edge set of the graph Ḡ, this implies
∑

j∈N\(Ŝ∪{i0}):(i0j)∈E ui0j+
∑

g∈G({i0}) ug ≥ 1,

which together with (EC.1) and fŜ(u) = 0 leads to fŜ∪{i0}(u) ≥ 0. This concludes the proof by

induction. �

EC.2.2. Proof of Remark 1.

Remark 1. The continuous relaxation region defined by the family of Type II cuts (11) is neither

stronger nor weaker than that of the family of Type I cuts (8).

Proof of Remark 1. The family of Type II cuts is neither stronger nor weaker than the family

of Type I cuts we introduced before. To see that, first consider a graph with two nodes N = {1,2},

one branch E = {(1,2)}, and two generators, g(1) connected to node 1 and g(2) connected to node

2. Consider the point (u1, u2, u12, ug(1), ug(2)) = (1,1,1/2,1/2,1/2). This point satisfies all the Type

I constraints. However, it violates the Type II constraint for S = {1,2}, i.e. ug(1) + ug(2) + u12 ≥

u1 +u2.

Conversely, consider the graph with N = {1,2,3}, edges E = {(1,2), (1,3), (2,3)}

and one generator g(1) connected to node 1. The point: (u1, u2, u3, u12, u13, u23, ug(1)) =

(1/2,1/2,1/2,1/2,1/2,1/2,0) satisfies all constraints of Type II, but violates ug(1) ≥ u1, the Type

I constraint for S =N for node 1∈ S. �



ec4e-companion to Patsakis, Aravena, Rajan, and Oren: Formulations and Valid Inequalities for Optimal Black Start Allocation

EC.2.3. Proof of Proposition 4.

Proposition 4. For a given, possibly fractional, u ∈ [0,1]d, fS(u) is a submodular function of

S ⊆N .

Proof of Proposition 4. Consider two sets A,B ⊆ N with A ⊆ B and i0 /∈ B. We show that

fA∪{i0}(u)− fA(u)≥ fB∪{i0}(u)− fB(u). Using (EC.1), the above inequality reduces to:∑
j∈N\(A∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug −ui0 ≥
∑

j∈N\(B∪{i0}):(i0j)∈E

ui0j +
∑

g∈G({i0})

ug −ui0 (EC.3)

which is satisfied, since A⊆B =⇒ N \ (A∪ {i0})⊇N \ (B ∪ {i0}) and the variables uij are non

negative. �

EC.2.4. Proof of Corollary 1.

Corollary 1. Constraints (11) can be separated in polynomial time.

Proof of Corollary 1. Given a fractional point u, minimizing fS(u) over S ⊆N can be achieved

in polynomial time due to submodularity (see Atamturk and Narayanan 2019). If the optimal

objective is negative, the minimizer S∗ yields a violated constraint from (11). If the minimizer is

non-negative, (11) is satisfied for all S ⊆N . �

EC.3. Proof of Propositions of Section 5.4.

For the results of this section, we assume that the graph (N,E) is complete and there is one

generator on every bus (assumption 1). For notational convenience, we assume an arbitrary ordering

of the nodes {1, . . . , |N |} (where the corresponding generators are {g(1), . . . , g(|N |)}).

EC.3.1. Proof of Proposition 5.

Proposition 5. Let assumption 1 hold. The convex hull of the feasible region H, conv(H), is a

full-dimensional polyhedron.

Proof of Proposition 5. The convex hull is a polyhedron since the set of feasible points is finite.

We show that its dimension is d= |N |+ |E|+ |G|= 2|N |+ |E| by identifying d+ 1 affinely inde-

pendent points. Since the point u = 0 is feasible, it suffices to find d linearly independent feasible

points. Consider the following points:
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1. uai , i∈N : Only node i and the corresponding generator g(i) are energized. (|N | points)

2. ubij , (ij) ∈ E: Only two nodes i, j, the corresponding generators, and the edge connecting

them are energized. (|E| points)

3. uc1j , j ∈N \ {1}: Only node 1 with generator g(1), node j, and edge (1j) ∈E are energized.

(|N | − 1 points)

4. ud: Only node 1, node 2 with its generator, and edge (12) are energized. (1 point)

We show that the standard basis for Rd can be generated using linear combinations of the points

above. Hence, the points span Rd, and since there are d of them, they are linearly independent. To

generate a vector u with only nonzero coordinate ug = 1, for g ∈G(i), i ∈N : For i= 1, we simply

need to subtract ud from ub12 . For i 6= 1, we need to subtract uc1i from ub1i . To generate a vector

u with only nonzero coordinate ui = 1 for i∈N , we can simply subtract the standard basis vector

with only ug = 1, g ∈G(i), generated previously, from uai . Finally, to generate a vector with only

nonzero coordinate uij = 1, (ij)∈E, we form ubij −uai −uaj . This completes the proof. �

EC.3.2. Proof of Proposition 6.

Proposition 6. Let assumption 1 hold. Constraints (8) with |S|= 1, i.e.:

∑
j∈N\{n}

unj +ug(n) ≥ un, n∈N (12)

are facet defining for conv(H).

Proof of Proposition 6. Since the convex hull ofH is full-dimensional, it suffices to find d affinely

independent points in H that satisfy (12) with equality. One of them is the zero vector, so it suffices

to find d− 1 linearly independent points in H that satisfy (12) with equality. These are:

1. We first consider points that have un = 0, ug(n) = 0, and unj = 0, j ∈N . Since these are the

only variables in (12), the constraint is satisfied with equality. The variables corresponding to nodes

N \{n}, their generators, and the edges with both their endpoints between them (we refer to these

variables collectively by uR) can be chosen freely in a way that satisfies the IE constraints of a

graph with (|N | − 1) nodes and generators and (|E| − |N |+ 1) edges. Using the argument in the
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proof of proposition 5, we can find 2(|N | − 1) + (|E| − |N |+ 1) = |N |+ |E| − 1 feasible linearly

independent points in this reduced space, which correspond to linearly independent points in the

full space (where we have set the remaining variables equal to zero).

For the remaining points, the variables uR are set equal to 1. We then choose:

2. For j ∈N \{n}, set un = 1, ug(n) = 0, unj = 1, unk = 0, k ∈N \{n, j}. This yields |N |−1 points

that are linearly independent from each other and from all previous points since each one has a

nonzero value at a position all previous ones did not have (i.e., unj).

3. Set un = 1, ug(n) = 1, unj = 0, j ∈N \ {n}. This yields 1 point linearly independent from the

previous ones, since it is the only one that has ug(n) = 1.

Therefore, we generated (|N |+ |E|−1)+(|N |−1)+1 = 2|N |+ |E|−1 = d−1 linearly independent

points in H, which concludes the proof. �

EC.3.3. Proof of Proposition 7.

Proposition 7. Let assumption 1 hold. Constraints (8) with S =N , i.e.:

∑
i∈N

ug(i) ≥ un, n∈N (13)

are facet defining for conv(H).

Proof of Proposition 7. We prove the statement with n = 1, for notational convenience. The

zero vector satisfies (13) with equality, so we only need to find d− 1 linearly independent points

in H that satisfy (13) with equality. We generate d points (that are linearly dependent) and we

show they span a d− 1 dimensional subspace - hence there exists a subset of d− 1 points that are

linearly independent. These points are:

1. uei , i∈N : Generator g(1) , nodes 1,2, . . . , i, and edges (1,2), (2,3), . . . , (i−1, i) are energized.

The rest of the system is de-energized. Note that ue1 refers to the case where only ue1g(1) = 1,ue11 = 1,

and the rest of the network is de-energized. (|N | points)

2. ufi , i∈N : All nodes and edges are energized. Only the generator g(i) (of node i) is energized

and the others are not. (|N | points)
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3. uhij , (ij)∈E: All nodes are energized. All edges are energized, except edge (ij). Only generator

g(1) is energized and the rest are not. (|E| points)

We show the points above span a d − 1 dimensional space by generating the columns of the

following d× (d− 1) full rank matrix:



|G| |N | − 1 |E|

uG I|G| 0 0

u1 11×|G| 0 0

uN\{1} 0 I|N |−1 0

uE 0 0 I|E|


,

where I denotes the identity matrix and 1 the matrix of all ones. More specifically: to generate a

vector with only nonzero coordinate uij = 1, for (ij)∈E, we form uf1 −uhij . To generate a vector

with only nonzero coordinate ui = 1, i ∈N \ {1}, we form the vector uei − uei−1 + uhi−1,i − uf1 .

Finally, we can generate a vector with only nonzero entries ug(i) = 1, u1 = 1, for some i ∈ N , by

forming: ue1 +ufi −uf1 . This completes the proof. �

EC.3.4. Proof of Proposition 8.

Proposition 8. Let assumption 1 hold. Constraints (11) with S =N , i.e.:

∑
g∈G

ug +
∑

(ij)∈E

uij ≥
∑
i∈N

ui (14)

are facet defining for conv(H).

Proof of Proposition 8. We assume without loss of generality that when we refer to an edge

(ij) ∈E, we have i < j. The zero vector satisfies (14) with equality, so we only need to find d− 1

linearly independent points in H that satisfy (14) with equality. These are:

1. uai , i∈N : Only node i and the corresponding generator g(i) are energized. (|N | points)

2. ukij , (ij)∈E: Only nodes i, j, edge (ij) and generator g(i) are energized. (|E| points)

3. uli , i∈N \ {1}: Only nodes 1, i, edge (1i) and generator g(i) are energized. (|N | − 1 points)
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We show these points span a d−1 dimensional subspace by showing we can use them to generate

all columns of the full rank d× (d− 1) matrix:



|G| |N | − 1 |E|

uG I|G| 0 0

u1 11×|G| −11×|N |−1 11×|E|

uN\{1} 0 I|N |−1 0

uE 0 0 I|E|


.

To generate a column with ug(i) = 1, u1 = 1, for some i ∈ N , we form: uli − uk1i + ua1 for i 6= 1

and ua1 for i = 1. To generate a column with u1 = −1, ui = 1, for i ∈ N \ {1}, we form uai −

ua1 − uli + uk1i . Finally, to generate a column with u1 = 1, uij = 1, for some (ij) ∈ E, we form

ukij −uai −uaj +ua1 +ulj −uk1j . This concludes the proof. �

EC.4. Proof of Proposition 9.

Proposition 9. For a given t ∈ T , assume (1d) and (1n) hold and that the variables

{utg}g∈G,{utCRg
}g∈G,{wtg}g∈G,{w

t−TCRg
g }g∈G, {uti}i∈N ,{utij}(ij)∈E are in [0,1]. Then, the system

(1p)-(1t) has a solution with respect to {ptg}g∈G , {ptij}(ij)∈A, {ptSHi
}i∈N if and only if (15) hold for

all S ⊆N .

Proof of Proposition 9. We will take take an indirect approach in showing the result in order

to illustrate the separation algorithm we used in our implementation, which is based on minimum

cut. The theorem can alternatively be derived from Hoffman’s circulation theorem.

We equivalently transform the network to one with non-negative flows. For that, we define for a

given t∈ T :

P̂ t,max
g = Pmax

g (utg −utCRg
)−Pmin

g w
t−TCRg
g , g ∈G (EC.4a)

p̂tg = ptg +PCRgw
t
g − (PCRg +Pmin

g )w
t−TCRg
g , g ∈G (EC.4b)

P̂ t,max
SHi

= PDi
uti, i∈N (EC.4c)
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p̂tSHi
= ptSHi

− (1−uti)PDi
, i∈N (EC.4d)

P̂ t
Di

= PDi
uti +

∑
g∈G(i)

(PCRgw
t
g − (PCRg +Pmin

g )w
t−TCRg
g ), i∈N (EC.4e)

Since (1d) and (1n) hold, and 0≤ Pmin
g ≤ Pmax

g , it directly follows that P̂ t,max
g ≥ 0. Now, recall that

the edge set A is a set of directed edges that correspond to the branches of the power system by

arbitrarily picking a “from” and “to” direction for each branch. We also define a (directed) edge

set Ã based on the edge set A which contains both the arcs (ji) and (ij) for every arc (ij) ∈ A.

That way, every flow ptij satisfying (1r) in A can be decomposed into two non negative flows in Ã

with p̂tij = max(0, ptij) and p̂tji = max(0,−ptij) (and conversely we can obtain a flow for A by setting

ptij = p̂tij − p̂tji). Using the above definitions, equations (1p)-(1t) are equivalently expressed:

0≤ p̂tg ≤ P̂ t,max
g , g ∈G (EC.5a)

0≤ p̂tij ≤ S̄ijutij, 0≤ p̂tji ≤ S̄ijutij, (ij)∈ Ã (EC.5b)

0≤ p̂tSHi
≤ P̂ t,max

SHi
, i∈N (EC.5c)∑

j:(ji)∈Ã

p̂tji−
∑

j:(ij)∈Ã

p̂tij +
∑
g∈G(i)

p̂tg + p̂tSHi
= P̂ t

Di
, i∈N (EC.5d)

Note the variables ptg, p
t
ij, p

t
SHi

are uniquely defined by the variables p̂tg, p̂
t
ij, p̂

t
SHi

and vice versa via

the transformations given above. If we apply the same definitions (EC.4) to (15), we equivalently

obtain the following system of equations: For all S ⊆N ,

∑
i∈S

P̂ t
Di

+
∑

(ij)∈δ(S)

S̄iju
t
ij ≥ 0 (EC.6a)

∑
i∈S

P̂ t,max
SHi

+
∑

g∈G(S)

P̂ t,max
g +

∑
(ij)∈δ(S)

S̄iju
t
ij ≥

∑
i∈S

P̂ t
Di

(EC.6b)

All that remains to show now is that the system (EC.5) is feasible for p̂tg, p̂
t
ij, p̂

t
SHi

if and only if

(EC.6) holds for all S ⊆N .

Proposition EC.1. Under the assumptions of proposition 9, system (EC.5) has a solution with

respect to {p̂tg}g∈G , {p̂tij}(ij)∈A, {p̂tSHi
}i∈N if and only if system (EC.6) is satisfied.
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Proof of Proposition EC.1. Assume (EC.5) has a solution with respect to {p̂tg}g∈G , {p̂tij}(ij)∈A,

{p̂SHi
}i∈N . Given a set S ⊆N , by summing equations (EC.5d) for i∈ S, we obtain:∑

(ji)∈Ã:j∈N\S,i∈S

p̂tji +
∑

g∈G(S)

p̂tg +
∑
i∈S

p̂tSHi
=
∑
i∈S

P̂ t
Di

+
∑

(ij)∈Ã:i∈S,j∈N\S

p̂tij

Due to (EC.5a)-(EC.5c), the left hand side of the above equation is non negative and the right

hand side is less than or equal to
∑

i∈S P̂
t
Di

+
∑

(ij)∈δ(S) S̄iju
t
ij. This yields equation (EC.6a). Fur-

thermore, again due to (EC.5a)-(EC.5c), the right hand side of the above equation is greater than

or equal to
∑

i∈S P̂
t
Di

and the left hand side is less than or equal to
∑

i∈S P̂
t,max
SHi

+
∑

g∈G(S) P̂
t,max
g +∑

(ij)∈δ(S) S̄iju
t
ij. This yields equation (EC.6b).

In order to show the reverse implication, we construct the graph of Figure EC.1. The node set

consists of the power system nodes N , a source node ns, a sink node nt, and a node corresponding

to generators nG. We define Npos = {i ∈N : P̂ t
Di
> 0} and Nneg = {i ∈N : P̂ t

Di
< 0}. Note that due

to (EC.6a) for S =N , we have that
∑

i∈N P̂
t
Di
≥ 0.

We add the following directed capacitated edges:

1. From ns to nG, with capacity
∑

i∈N P̂
t
Di

.

2. From ns to i∈Nneg, with capacity −P̂ t
Di

.

3. From j ∈Npos to nt, with capacity P̂ t
Dj

.

4. From i∈N to j ∈N if (ij)∈ Ã, with capacity S̄iju
t
ij

5. From nG to i∈N with capacity P t,max
SHi

+
∑

g∈G(i) P̂
t,max
g .

We now show that, if (EC.6) holds, the minimum ns − nt cut in this graph is exactly equal to∑
i∈Npos

P̂ t
Di

. In order to show that, we show that every cut is greater than or equal to
∑

i∈Npos
P̂ t
Di

.

Since the cut S = {ns, nG,N}, T = {nt} has exactly that capacity, it is a minimum cut.

Indeed, we have two cases: If node nG belongs to T , the capacity of the cut is:∑
i∈N

P̂ t
Di

+
∑

(ij)∈δ(S)

S̄iju
t
ij +

∑
i∈Nneg∩T

(−P̂ t
Di

) +
∑

i∈Npos∩S

P̂ t
Di
,

which is greater than or equal to
∑

i∈Npos
P̂ t
Di

due to (EC.6a) applied to set S. If node nG belongs

to S, the capacity of the cut is:∑
i∈T

P t,max
SHi

+
∑

g∈G(T )

P̂ t,max
g +

∑
(ij)∈δ(T )

S̄iju
t
ij +

∑
i∈Nneg∩T

(−P̂ t
Di

) +
∑

i∈Npos∩S

P̂ t
Di
,
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Figure EC.1 Graph used to separate constraints (EC.6).

which is greater than or equal to
∑

i∈Npos
P̂ t
Di

due to (EC.6b) applied to set T .

Since the minimum cut exactly equals
∑

i∈Npos
P̂ t
Di

, there exists a corresponding maximum flow

of the same value on the graph. Since the flows from i ∈Npos to nt are non negative and upper

bounded by P̂ t
Di

, and the total flow into nt has to equal
∑

i∈Npos
P̂ t
Di

, we have that the flow

from any given i ∈Npos to nt exactly equals P̂ t
Di

. Using a similar argument, since
∑

i∈Npos
P̂ t
Di

=∑
i∈N P̂

t
Di

+
∑

i∈Nneg
(−P̂ t

Di
), the flow from ns to i ∈Nneg is equal to (−P̂ t

Di
) and the flow from ns

to nG is equal to
∑

i∈N P̂
t
Di

. The remaining flows on the graph yield feasible values for p̂tg, p̂
t
ij, and

p̂tSHi
in the system (EC.5). Specifically, the flow on (ij) ∈ Ã corresponds to p̂tij and the flow on

the edge from nG to i corresponds to
∑

g∈G(i) p̂
t
g + p̂tSHi

. The flow balance equation for node i∈N

yields (EC.5d). �

The constraint set (EC.6) can be separated efficiently using minimum cut on the graph in Figure

EC.1 (the details of its construction are provided in the proof of proposition EC.1) . This separation

can be used in a Benders-like scheme and is faster in general than solving the linear program

(EC.5). Given a point {P̂ t
Di
}i∈N , {P̂ t,max

SHi
}i∈N , {utij}(ij)∈E, {P̂ t,max

g }g∈G:

1. If
∑

i∈N P̂
t
Di
< 0, add cut (EC.6a) for S =N .

2. If
∑

i∈N P̂
t
Di
≥ 0, create the graph of Figure EC.1:

• If the minimum ns−nt cut is less than
∑

i∈Npos
P̂ t
Di

and nG belongs to the sink set T , add cut

(EC.6a) for the set T .
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• If the minimum ns−nt cut is less than
∑

i∈Npos
P̂ t
Di

and nG belongs to the source set S, add

cut (EC.6b) for the source set S.

• If the minimum ns−nt cut is equal to
∑

i∈Npos
P̂ t
Di

, all the constraints (EC.6) are satisfied.

The other advantage of having an explicit form for the reformulation (as opposed to only a

cut generation scheme) is that we can add some of the constraints a priori, and observe if this

improves the quality of bounds. Finally, note that the variables P̂ t,max
g , P̂ t,max

SHi
, P̂ t

Di
are only present

as parameters in the auxiliary separation problem (EC.6) - the constraints added to the BSA

optimization problem are (15), i.e. in the space of the original variables. �


