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Abstract—Intentional Controlled Islanding (ICI) is an online
measure employed to prevent cascaded system outage after a
disturbance in the power system. By switching off select lines,
the system operator can create smaller, easier to control islands.
An algorithm for ICI should be fast to implement in real
time, as well as capable of integrating islanding requirements
such as coherency of the generators in an island and minimum
disruption of the power balance caused by the switching of lines.
In this work, we approximate the solution to a common ICI
formulation by employing a combinatorial approximation scheme
of the normalized cut. This approach is easily implementable and
numerically robust, exhibits high computational efficiency and
allows for a natural integration of islanding requirements (such
as generator minimum load and inflexible lines) into the problem
solution. Experimental results on systems with up to 3000 buses
verify the effectiveness of our approach.

Index Terms—Controlled Islanding, Power Systems Resilience,
Graph Partitioning, Topology Optimization, Minimum Cut, Max-
imum Flow, Combinatorial Optimization

I. INTRODUCTION

Mitigating the impacts of an extended outage is among the

main characteristics of a resilient grid. Intentional Controlled

Islanding (ICI) is a well studied technique employed to prevent

widespread blackout after a large scale grid disturbance. The

idea is that, by disconnecting branches of the power system,

the operator can create small islands that are stable or easily

controllable. That way, a cascaded outage can be avoided.

Since time is of the essence after a power disturbance, any

algorithm employed for intentional islanding needs to be

robust and executable in real time, while also resulting in an

effective islanding scheme.

A common objective for the islanding is to split the power

grid into islands that only contain coherent generators. Co-

herent generators are generators whose phase angle difference

does not change much after a disturbance, i.e. generators that

swing together. The goal is to eliminate interarea oscillations,

which are a common cause of blackouts. More specifically,

interarea oscillations occur when two incoherent generators

(or groups of generators) swing against each other after a

disturbance, at frequencies of 1Hz or less, leading to large

power variations in the tie-line [1]. If the system also suffers

from insufficient oscillation damping, this power variation can

lead to an extended blackout. Hence, by disconnecting these

two groups of generators from each other, the operator may

prevent a cascaded outage.

The idea that generator coherency with respect to the

slowest modes (which are the ones responsible for interarea

oscillations) can be used for determining an islanding scheme

appeared in some of the seminal works in the field [2], [3].

Generator coherency with respect to the slowest modes has

been associated with weak coupling between the state variables

of the generators belonging to incoherent sets [4], [5]. This

gives rise to a generator islanding scheme based on minimizing

the coupling between generators in different islands. In [6],

bipartitioning of the generators into two coherent groups is

formulated as a normalized cut problem [7] and approximated

through solving a generalized eigenvector problem and a

clustering problem based on the second eigenvector. Similar

approaches are used in [8]–[10].

Following the generator grouping, the specific set of lines

to switch off in order to create islands that contain the

corresponding generator groups needs to be defined. To that

end, the set of lines is commonly chosen to minimize the

total power imbalance (i.e absolute value of algebraic sum

of power flows of the switched lines) or the power flow

disruption (i.e. sum of absolute values of the power flows of

the switched lines). This can be achieved through variations

of constrained spectral clustering [6], [8], through mixed

integer programing [11], or through graph cuts [2]. Often,

grid simplification and aggregation steps are required to ensure

computational efficiency [12].

While the aforementioned schemes are the most dominant

in literature, there are also many approaches that utilize

different techniques and include further islanding consider-

ations. Among them, a submodular optimization problem is

formulated in [13], an efficient multilevel graph partitioning

algorithm is used in [14], and multiple mixed integer pro-

gramming models have been proposed [15]–[18].

In this work, a normalized cut problem that combines

generator coherency and minimum power flow disruption is

formulated. The formulation can allow for the integration of

further islanding constraints, such as inflexible lines, minimum

generator limits, or forcing components of the system to

belong to the same island. An adaptation of the approximation

algorithm proposed in [19], [20] is employed. The resulting

scheme runs at the complexity of a minimum cut, which is

generally faster and more numerically robust than eigenvector

computations. The efficiency of the approach allows it to

run fast even for large scale systems, obviating the need
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Fig. 1: Classical transient generator model. The internal generator node, of
voltage eg , is connected to the terminal (power system) node i ∈ N , of

voltage vi, through a transient reactance X
′

g . The transient internal voltage eg
is calculated based on the steady state operation using the transient reactance.
Following that, the magnitude |eg| is assumed constant and the angle δg is

initialized based on the steady state value δ̂g and then follows the dynamics
of the differential equations (5).

for grid simplification. The performance in terms of the two

objectives of the islanding problem (coherency and power flow

disruption) is better or comparable to the spectral clustering

approach performance.

The rest of this paper is organized as follows: section II

presents the background to setup the problem, section III

presents the problem formulation and the algorithm employed,

section IV shows experimental results, and section V draws

conclusions and defines directions of future work.

II. CONTROLLED ISLANDING OBJECTIVES

In this section we review the necessary background for

the problem formulation, i.e. the logic behind the two main

objectives considered in this work (generator coherency and

minimal power flow disruption).

A. Generator Coherency

We briefly describe a typical model for small signal system

analysis to motivate the discussion on coherent generator sets.

The analysis examines two instances of the system: the pre-

disturbance system and the post-disturbance system. The pre-

disturbance system is assumed in steady state. Its state is

calculated through the power flow equations and is used for

initializing the transient phenomena. After the disturbance,

the transient dynamics are captured through the second order

differential equations of the generators (swing equations), as

well as the power flow equations.

The generators are represented using a classical model, as

shown in Fig 1. Each generator g in the set of generators G
is modeled through an internal node with complex transient

voltage eg, that is connected to the power system bus (ter-

minal generator node) through a transient reactance X
′

g. The

magnitudes |eg| of internal voltages eg are constant throughout

the transient phenomenon, based on the assumption of constant

flux linkage in the machine. The phase angles δg of the internal

voltages, on the contrary, are the state variables of our system.

The coupling between the phase angle responses from different

generators will eventually be the criterion used for grouping

generators in coherent sets.

A number of approaches can be used for load modeling [21],

but a typical one for stability studies is to represent the load as

a constant impedance. For a given node, if the pre-disturbance

load active and reactive power PD, QD and the load bus

voltage VD are known, the impedance is calculated by:

YD =
PD − jQD

|VD|2
(1)

and is assumed constant in the post-disturbance system.

We can now form a generalized (|G|+ |N |)× (|G|+ |N |)
admittance matrix Y , that considers the buses (set N ) as well

as the internal generator nodes (therefore takes into account

the load impedances, the generator transient reactances, and

the rest of the system). The following equality holds:[
iG
iN

]
= Y

[
eG
vN

]
=

[
YGG YGN

YNG YNN

] [
eG
vN

]
(2)

where eG, iG are the |G|-dimensional complex vectors of

voltage and current injections in the internal generator nodes

and vN , iN the |N |-dimensional vectors of voltage and

current injections in the buses of the power system. Note

that, due to the fact that loads are modeled through constant

impedances (included in the matrix Y ) and generators are

modeled through additional nodes connected to the buses

through constant reactances, the current injections for all the

buses of the power system are zero iN = 0. Following that,

by using Kron reduction [22], we eliminate the variables

vN and obtain the |G| × |G| effective admittance matrix

Y
′

= YGG−YGNY +
NNYNG (where Y +

NN the Moore-Penrose

inverse), which satisfies iG = Y
′

eG. The imaginary part of

this matrix is usually dominating the real part in terms of

order of magnitude, so a common assumption is to neglect

it and consider: Y
′

≈ −jB
′

, where the effective transient

susceptance matrix B
′

is assumed real symmetric with its off

diagonal entries non negative.

Restricting ourselves to the reduced network that only

contains the internal generator nodes, notice that for g, g′ ∈ G,

the nodes g and g′ are connected through a branch of reactance

1/B
′

gg′ , therefore the active power transfer from g to g′ is:

Pgg′ = |eg||eg′ |B
′

gg′ sin (δg − δg′) (3)

and the total active power that a generator g sends to the

grid is equal to

P e
g =

∑
g′∈G,g′ �=g

Pgg′ (4)

If for a generator g this power is not equal to the mechanical

input of the generator, Pm
g , the imbalance will cause a change

in the internal voltage phase angle according to the swing

equation for that generator (with inertia constant Hg, angular

frequency ω0, damping neglected):

2Hg

ω0
δ̈g = Pm

g − P e
g (5)

Substituting (3) and (4) into (5), we get a set of |G| second

order equations for the |G| dimensional vector of internal
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generator angles δ (state variables). By linearizing the system

around the pre-disturbance operating point δ̂ we obtain:

Mδ̈ = Kδ (6)

where the g, g′ entry of the |G| × |G| matrix K for g �= g′

equals:

Kgg′ = −
∂Pgg′

∂δg′

∣∣∣ δg=δ̂g

δg′=δ̂g′

= |eg||eg′ |B
′

gg′ cos
(
δ̂g − δ̂g′

)
(7)

and for g = g′ equals Kgg = −
∑

g′′∈G,g′′ �=g Kgg′′ . The

|G| × |G| matrix M is diagonal with Mgg =
2Hg

ω0
for all

g ∈ G. Note for the linearization that the internal voltage

magnitudes |eg| are constants (equal to their pre-disturbance

value) and so is the mechanical input of each generator Pm
g

(equal to the electrical output of the generator before the

disturbance, where the system was at steady state).

Two generators are characterized as “coherent” if their

internal voltage angle difference (which is a function of time)

does not change much after a disturbance. Therefore, coherent

generators swing together and can be aggregated in transient

system simulations. While there are many formal definitions of

coherency, one that has particularly nice structural properties

characterizes two generators as coherent with respect to a

subset of the modes of the system of differential equations

(6), if none of these modes are observable from the voltage

angle difference. In [5], coherency with respect to the slowest

modes is related to small values of a scalar quantity ζ that

depends on the off-diagonal entries of the matrix K . More

specifically, for the case of partitioning the generator set G
into two sets of coherent generators VG and V̄G = G\VG, we

have:

ζ(VG) =

∑
(gg′)∈δ(VG) Kgg′∑

g∈VG
Mgg

+

∑
(gg′)∈δ(VG) Kgg′∑

g∈V̄G
Mgg

(8)

where δ(·) is the undirected cutset of a set and its comple-

ment, i.e. δ(VG) contains all pairs (g, g′) with one generator

in VG and one in V̄G.

It has been verified that splitting the post-disturbance grid

based on groups of coherent generators leads to stable islands

and prevents fault propagation [23], [24]. Furthermore, an

objective similar to (8) has been recognized as a normalized

graph cut [7] for the bipartition of the generator set in [6].

Since solving the minimum normalized graph cut problem is

NP-hard, a spectral clustering approximation algorithm based

on a generalized eigenvalue problem was obtained in [6].

Partitioning of the grid into more than two islands can be

accomplished, if necessary, by repeating the same procedure

for the resulting islands.

B. Minimal power flow disruption

A common objective when identifying a set of lines to

switch off in order to isolate coherent generator groups is

that of minimal power imbalance. If the set of buses N is

partitioned into the sets S and S̄ = N\S, the power imbalance

is calculated by: ∑
(i,j)∈δ(S)

|Pij | (9)

where Pij the active power on the transmission lines between

buses i and j (algebraic sum for the case of multiple lines or

flow directions). The idea behind this penalty is that we seek

to remove lines in a way that causes minimum change from

the pre-disturbance power flows within the resulting islands.

The advantages and disadvantages of using this objective have

been extensively examined in literature [6].

III. A COMBINATORIAL ALGORITHM FOR OPTIMAL

ISLANDING

A. Problem Formulation

We formulate an optimal islanding problem that incorpo-

rates both generator coherency and power imbalance with a

trade-off, i.e. the problem of interest is:

minimize
S⊆N

∑
(ij)∈δ(S) Wij∑

i∈S Qii

+

∑
(ij)∈δ(S) Wij∑

i∈S̄ Qii

(10)

In the equation above, the weights are defined for nodes

i, j ∈ N , i �= j:

Wij =
∑

(g,g′)∈(G(i)×G(j))

Kgg′ + λ |Pij | IE{(ij)} (11)

where G(i) denotes the set of generators connected to

node i, λ a trade-off coefficient (which is the only tuning

parameter of the optimization problem), and IE is the indicator

function of the set of undirected branches E. Note that the

weight Wij can be nonzero only if both buses i and j have a

connected generator or if there is a branch in the power system

connecting i and j. The balancing weights for a node i ∈ N
are given below (zero if G(i) = ∅).

Qii =
∑

g∈G(i)

Mgg (12)

The output of the optimization problem (10) is an optimal

partitioning of the nodes S. All the lines in the cutset δ(S)
will be switched off to create (at least) two islands. If further

partitioning of the grid is required, the optimization can be

formulated for each of the remaining islands. Note that lines

that are inflexible (cannot be remotely switched off) can be

assigned a large weight Wij , which will ensure that they will

not belong to the cutset.

Another critical concern for stable islands is that a generator

operates in a more stable fashion if its generation exceeds a

minimum, which means that one or more load nodes should

belong to the same island as this generator. We can easily
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force the generator to belong to the same island as a load

node by assigning large weights to the edges in one or more

paths between them. These paths and load nodes can be

efficiently found by graph search algorithms (such as Breadth

First Search) around the generators.

The alternative, two step approach to formulate the problem,

common in literature, would be to pick the partition of the

generators in the first step and in the second step the optimal

set of lines to switch off to minimize power flow disruption

in a way that respects the generator grouping. The techniques

described in what follows can be used in this two-step setting

as well. However, the same result can be simulated using

the single step optimization problem (10) by picking a small

trade-off coefficient for the power flow disruption: The optimal

generator grouping will be selected based only on generator

coherency (dominant terms), and then (since there can be

multiple ways to select lines to switch off and achieve the same

generator grouping), the solution among them that minimizes

power imbalance will be chosen.

B. Theoretical Justification for the Algorithm

The problem in (10) can be recognized as a normalized cut

problem on a graph with |N | nodes and at most |G| + |E|
edges. Since the problem is NP-hard in general, we use an

algorithm from [20] to solve a relaxation of the problem. This

algorithm has been used, among others, in neuroscience [25]

and nuclear material identification [26]. In this section, we

adapt some results from [20] to our problem and illustrate the

main idea behind the algorithm. First, define the problem:

minimize
S⊆N,b∈R+

(1 + b)2
∑

(ij)∈δ(S) Wij∑
i∈S Qii + b2

∑
i∈S̄ Qii

(13a)

subject to G(S) �= ∅, G(S̄) �= ∅ (13b)

b =

∑
i∈S Qii∑
i∈S̄ Qii

(13c)

where G(S), G(S̄) the set of generators connected to nodes

of S and to the complement of S respectively. The problem

(13) is equivalent to (10). To see that, first note that in (10)

neither of G(S), G(S̄) can be empty for a finite objective

value. The equivalence of the objectives can be seen by

substituting b =
∑

i∈S Qii∑
i∈S̄

Qii
into the objective of (13). The

algorithm developed in [20] solves (13) with constraint (13c)

relaxed. For the different values of the parameter β, define the

following problem:

P (β) = minimize
S⊆N :G(S),G(S̄) �=∅

∑
(ij)∈δ(S)

Wij + β
∑
i∈S

Qii (14)

Claim 1: Any optimal solution (partition S, S̄) of problem

(13) with constraint (13c) relaxed is an optimal solution to

problem P (β), for some value of the parameter β. The proof

of the claim is provided in the Appendix.

Based on the previous claim, instead of solving the re-

laxation of (13), we will solve problem (14) for all values

Fig. 2: Directed graphs to solve P gg′(β) for the different values of β,
following the construction in [20]. The graph has all the nodes in N, plus
two dummy (source and sink) nodes s,t. The partition is S, T = S̄. The
weights Wij ,Qii refer to the objective of (14). M is a large number. For
every pair i, j with non zero weight Wij , two directed edges are added. For
every generator node i (i.e. G(i) �= ∅), one directed edge of weight βQii is
added.

of the parameter β. To that end, first note that (14) only

allows partitions in which both sets S and S̄ must contain

at least one generator. For two generators g, g′ ∈ G, with

g �= g′, let P gg′

(β) denote the optimization problem P (β)
with the additional constraint that n(g) ∈ S, n(g′) ∈ S̄, where

n(g) ∈ N denotes the node to which generator g is connected.

Then, the problem P (β) can be solved as:

P (β) = minimize
g,g′∈G,g �=g′

P gg′

(β) (15)

Therefore, by solving at most O(|G|2) problems of the type

P gg′

(β), we can solve P (β). However, in order to reduce the

real time computational burden, we will instead heuristically

pick two generators g, g′ and force them to belong to different

sets. The generators g and g′ can be picked based on a heuris-

tic, such as weakest coupling Kgg′ , or empirical knowledge of

the particular power system. Even though this approach yields

a worse objective, it is reasonable for cases in which we may

want to force separation between two generators.

Finally, for a given pair g, g′, the problem P gg′

(β) can be

solved efficiently using the graphs of Fig 2. To see that, note

first that the capacity of an s − t cut in the graph for β ≥ 0
is exactly the objective from (14). The big-M capacity arcs

from s to n(g) and from n(g′) to t ensure that n(g) ∈ S
and n(g′) ∈ T . Therefore, the minimum-cut problem on the

graph solves P gg′

(β). For β < 0, the capacity of the cut

is
∑

(ij)∈δ(S) Wij + (−β)
∑

i∈T Qii =
∑

(ij)∈δ(S) Wij +

β
∑

i∈T Qii−β
∑

i∈N Qii, which again solves P gg′

(β) since

the last term in the summation is a constant. In both problems,

the parameter |β| appears on strictly increasing functions of

capacities only from the source/only to the sink. This ensures

we can solve for all values of β efficiently at the complexity

of a maximum flow problem (parametric cut) [27]. By the

same theory, we know there will be at most |N | different

partitions generated from the parametric cut solution, for all

the parameters β. Therefore, we can efficiently calculate the

objective of interest for all of them and pick the best.
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C. The algorithm

Based on the analysis and theoretical justification presented

in the previous sections, the proposed algorithm for optimal

islanding following an extended grid disturbance is presented

a step-wise fashion below.

Step 1: Identify the surviving power system, the opera-

tional generators, buses and edges. Based on the last known

pre-disturbance measurements and the analysis presented in

subsection II-A, calculate the matrices Kgg′ , Mgg for the

surviving generators. Note that if these calculations are pe-

riodically performed online for the power system in steady

state, the matrices for the surviving system can be updated

more efficiently (but we will not focus on that aspect in this

work). Calculate the weights Wij and Qii based on equations

(11) and (12) and any other requirements that we want to

impose on the system (such as inflexible lines or minimum

load requirements, as described in subsection III-A).

Step 2: Formulate the graphs from Fig 2 and solve the

parametric minimum cut problem on both of them. The output

of the algorithm for each graph will be at most |N | different

partitions of N , each one corresponding to a value of β [27].

Calculate the objective value of (10) for each one of them

and pick the partition with the best objective. On a technical

note, the calculation of the objective for each partition can be

done in O(|N |) by using the optimal parametric cut objective

that yielded this partition. Note that if an implementation of

the parametric cut is not available, one can simply pick some

values of β instead and solve the problem only for them, as a

heuristic.

Step 3: Repeat the process from Step 2 for each of the

partition sets to further split the grid into smaller islands.

IV. SIMULATION RESULTS

We simulated the algorithm on the IEEE-9, IEEE-39, IEEE-

300 and Polish test systems. Based on [21], we assumed

that the transient reactance of the generators is X
′

g =

max{0.1, 92.8(Pmax
g )−1.3}, where X

′

g is expressed in p.u. with

respect to the system basis Sbase = 100MVA and Pmax
g is the

nominal power of generator g is MW. We also assumed that

Hg = 0.04Pmax
g , where Hg is in p.u. with respect to the system

basis. Matpower [28] was used to calculate the pre-disturbance

ac power flow.

The algorithm from [6], which is conceptually close to our

approach and uses a well established partitioning technique

based on spectral clustering, was also simulated. We imple-

mented the two algorithms in Matlab. For our implementation,

since the Matlab graph environment does not support para-

metric maximum flow, we simply solved problem (14) for 20
values of β evenly spaced between −1 to 1 and the solution

with the best objective was chosen. The trade-off was set to

λ = 1, however the optimal solution in the instances solved

was often not sensitive to changes in the value of λ, which

is an indication that both objectives are solved to optimality.

We focus on bipartitions in the results. Multiple applications

of the algorithm can break the system into smaller islands if

necessary.

Node Generator Power
Alg. Partition Partition Disruption ζ Time

(|S|, |S̄|) (|VG|, |V̄G|) MW [s]

IEEE-9
ICI1 (2,7) (1,2) 71.7 68.44 0.055

ICI2 (1,8) (1,2) 163.0 67.82 0.081

IEEE-39
ICI1 (3,36) (1,9) 85.4 57.97 0.068

ICI2 (8,31) (5,5) 4611.8 31.94 0.462

IEEE-300
ICI1 (4,296) (1,68) 140.1 2.33 0.067

ICI2 (83,217) (1,68) 33434.5 2.33 2.030

3375-bus Polish system

ICI1 (52,3322) (1,440) 554.5 582.13 0.960

ICI2 (478,2896) (1,440) 81495.5 9918.4 277

TABLE I: Optimal bipartition based on the algorithm of this paper (ICI1) and
the algorithm from [6] (ICI2) for IEEE test cases and the Polish system. The
metrics compared are the quantity ζ from (8), the power flow disruption, and
the algorithm execution time.

Fig. 3: The optimal bipartition for the IEEE-39 bus system is shown with red
dashed line. The purple solid line indicates the partitioning when the generator
in bus 36 is required to be connected to load in node 16. This is imposed by
using large weights for the path leading to the bus, in this case for branches
(36, 23), (23, 24), (24, 16).

Table I shows the main computational results. Note that,

both the power disruption values and the normalized generator

cut ζ values are comparable or lower for our approach. The

time of execution is also significantly better using the proposed

approach. Compared to the spectral clustering approximation,

our approach tends to lead to smaller islands, but it turns out

that these solutions still have better objectives. If the problem

changes, by introducing further islanding constraints, larger

islands can be obtained. An example of introducing islanding

constraints is shown in Figure 3.

V. CONCLUSIONS AND FUTURE WORK

In this work, we examined an efficient approach for con-

trolled islanding based on a combinatorial approximation of

the normalized cut. The algorithm allows integration of further

requirements through the use of large arc weights, a practice

that will not influence the computational efficiency due to the

strongly polynomial nature of the algorithms for minimum
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cut. Experimental results showed that the computations are

fast even for large systems, hence no grid simplification

is required. Future research directions include an efficient

implementation of the parametric minimum cut procedure, an

algorithmic description and implementation of the generator-

load mapping for every island, possible generalizations to

multicut partitioning, and additional simulations to verify the

effectiveness of the approach.

APPENDIX A

PROOF OF CLAIM 1

The proof is based on ideas in [19]. Let S∗, b∗ be an optimal

solution to (13) with constraint (13c) relaxed and let the value

of the objective be z∗, i.e.:

z∗ =
(1 + b∗)2

∑
(ij)∈δ(S∗) Wij∑

i∈S∗ Qii + (b∗)2
∑

i∈S̄∗ Qii

(16)

We will show that S∗ is an optimal solution to the optimization

problem P (β̂), as defined in (14), with β̂ = z∗ b∗−1
b∗+1 . By

the optimality of S∗, b∗, we have that for any S ⊆ N :
G(S), G(S̄) �= ∅:

(1 + b∗)2
∑

(ij)∈δ(S) Wij∑
i∈S Qii + (b∗)2

∑
i∈S̄ Qii

≥ z∗ (17)

which can be equivalently written, after a few algebraic

manipulations and substituting
∑

i∈S̄ Qii =
∑

i∈N Qii −∑
i∈S Qii, as follows:

∑
(ij)∈δ(S)

Wij + z∗
b∗ − 1

b∗ + 1

∑
i∈S

Qii ≥ z∗b∗
∑
i∈N

Qii,

∀ S ⊆ N : G(S), G(S̄) �= ∅
(18)

Note that the left hand side is the objective of P (β̂), the

right hand side is a constant, and the inequality holds for all

feasible S in P (β̂). Now, for the particular choice S = S∗,

we can see from (16) that (18) holds with equality. Therefore,

S∗ is an optimal solution for P (β̂) and the proof is complete.
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