Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure

Somayeh Sojoudi

Electrical Engineering and Computer Sciences
University of California, Berkeley

Javad Lavaei

Industrial Engineering and Operations Research
University of California, Berkeley
Polynomial Optimization

Polynomial Optimization:

\[
\text{min } x^T M x \\
\text{s.t. } x_i^2 = 1, \quad i = 1, 2, ..., n
\]

Special case: Combinatorial optimization and integer programming problems

Very hard to solve

Different types of solutions:

- **Point A:** Local solution
- **Point B:** Global solution
- **Point C:** Near-global solution

Focus of our research

Approach: Low-rank optimization, matrix completion, graph theory, convexification
Convexification

\[\min_{x \in \mathbb{C}^n} \quad x^H M_0 x \]
\[\text{s.t.} \quad x^H M_i x \leq a_i, \quad i = 1, 2, \ldots, m \]

\[\text{SDP relaxation} \]

\[\min_{W \in \mathbb{H}^n} \quad \text{trace}\{ M_0 W \} \]
\[\text{s.t.} \quad \text{trace}\{ M_i W \} \leq a_i, \quad i = 1, 2, \ldots, m \]
\[W \succeq 0 \]

\[\text{Penalized SDP} \]

\[\min_{W} \quad \text{trace}\{ M_0 W \} + \lambda g(W) \]
\[\text{s.t.} \quad \text{trace}\{ M_i W \} \leq a_i, \quad i = 1, 2, \ldots, m \]
\[W \succeq 0 \]

- **Transformation**: Replace \(xx^H \) with \(W \).

- \(W \) is positive semidefinite and rank 1

- **Rank-1 SDP**: Recovery of a global solution \(x \)

- **Rank-1 penalized SDP**: Recovery of a near-global solution \(x \)
Research Problems

Arbitrary Real/Complex Polynomial Optimization

How does structure make SDP relaxation exact?

Conversion

Connection between sparsity and rank?

SDP/ Penalized SDP

Complexity analysis based on generalized weighted graph

How to design penalized SDP?

Proof of existence of low-rank solution using OS and treewidth

Design scalable numerical algorithm?

Propose two methods to design penalty

Power optimization problems

Cheap iterations for large-scale problems

Finding near-global solutions using physics of power grids
Structured Optimization

- **Approach:** Map the structure into a *generalized weighted graph.*

![Diagram](image)

\[
\begin{align*}
\min_{x_{1,2}} & \quad x_1^4 + ax_2^2 + bx_1^2 x_2 + cx_1 x_2 \\
\min_{x \in \mathbb{R}^4} & \quad x_3^2 + ax_2^2 + bx_2 x_3 + cx_1 x_2 \\
\text{s.t.} & \quad x_1^2 - x_3 x_4 \leq 1 \\
& \quad x_4^2 - 1 = 0
\end{align*}
\]

Due to structure, SDP is always exact.

Generalized weighted graph:

\[
\begin{align*}
\min_{x_{1,2}} & \quad x_1^4 + a_0 x_2^2 + b_0 x_1^2 x_2 + c_0 x_1 x_2 \\
\text{s.t.} & \quad x_1^4 + a_i x_2^2 + b_i x_1^2 x_2 + c_i x_1 x_2 \leq \alpha_i, \quad i = 1, 2, \ldots, m
\end{align*}
\]
Real-Valued Optimization

```
\begin{align*}
\sigma_{ij} &\neq 0, & \forall (i,j) \in G \\
\prod_{(i,j) \in G} \sigma_{ij} &= (-1)^{|G_r|}, & \forall r \in \{1, \ldots, p\}
\end{align*}
```

- **Special cases:**
 - **Positive optimization:** Bipartite graph
 - **Negative optimization:** Arbitrary graph

Complex-Valued Optimization

- **Real-valued case:** “T” is sign definite if T and $-T$ are separable in \mathbb{R}:
- **Complex-valued case:** “T” is sign definite if T and $-T$ are separable in \mathbb{R}^2:

Theorem: SDP is exact for acyclic graphs with sign definite sets and certain cyclic graphs.

- The proposed conditions include several existing ones ([Kim and Kojima, 2003], [Padberg, 1989], [Bose, Gayme, Chandy, and Low, 2012], etc.).

Complex-Valued Optimization

- **Purely imaginary weights** (lossless power grid):

- **Theorem**

 \[\text{Exact relaxation for weakly cyclic graphs with homogeneous weight sets.} \]

- Consider a real matrix \(M \):

\[
\min_{x \in \mathbb{C}^n} \quad x^* M x \\
\text{s.t.} \quad |x_j| = 1, \quad j = 1, 2, ..., m
\]

- Polynomial-time solvable for weakly-cyclic bipartite graphs.

Example: Physics of power grids reduces computational complexity.

\[g_i + b_{ij} \]

Coefficients of \(x_i x_j \)

Sign definite due to passivity
Power System:

- A large-scale system consisting of generators, loads, lines, etc.
- Used for generating, transporting and distributing electricity.

ISO, RTO, TSO

1. Optimal power flow (OPF)
2. Security-constrained OPF
3. State estimation
4. Network reconfiguration
5. Unit commitment
6. Dynamic energy management

NP-hard
(real-time operation and market)
Optimal Power Flow: Optimally match supply with demand

- **Real-time operation**: OPF is solved every 5-15 minutes.
- **Market**: Security-constrained unit-commitment OPF
- **Complexity**: Strongly NP-complete with long history since 1962.
- **Common practice**: Linearization
- **FERC and NETSS Study**: Annual cost of approximation > $1 billion

A multi-billion critical system depends on optimization.

\[
\min_{x \in \mathbb{C}^n} x^H M_0 x
\]
\[\text{s.t. } x^H M_i x \leq a_i, \quad i = 1, 2, \ldots, m\]

Vector of complex voltages

OPF feasible set

(Ian Hisken et al. 2003)
Exactness of Relaxation

- SDP is exact for IEEE benchmark examples and several real data sets.

Theorem: Exact under positive LMPs with many transformers.

Theorem: Exact under positive LMPs.

Physics of power networks (e.g., passivity) reduces computational complexity for power optimization problems.

Strategy: Penalize reactive loss over problematic lines

- **Modified IEEE 118-bus:**
 - 3 local solutions
 - Costs: 129625, 177984, 195695

<table>
<thead>
<tr>
<th>Case</th>
<th>TW</th>
<th>Cost</th>
<th>Guarantee</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chow’s 9 bus</td>
<td>2</td>
<td>5296.68</td>
<td>100%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 14 bus</td>
<td>2</td>
<td>8081.53</td>
<td>100%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 24 bus</td>
<td>4</td>
<td>63352.20</td>
<td>100%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 30 bus</td>
<td>3</td>
<td>576.89</td>
<td>100%</td>
<td>< 5</td>
</tr>
<tr>
<td>NE 39 bus</td>
<td>3</td>
<td>4186.40</td>
<td>99.994%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 57 bus</td>
<td>5</td>
<td>41737.78</td>
<td>100%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 118 bus</td>
<td>4</td>
<td>129660.81</td>
<td>99.995%</td>
<td>< 5</td>
</tr>
<tr>
<td>IEEE 300 bus</td>
<td>6</td>
<td>719725.10</td>
<td>99.998%</td>
<td>13.9</td>
</tr>
<tr>
<td>Polish 2383wp</td>
<td>23</td>
<td>1874322.65</td>
<td>99.316%</td>
<td>529</td>
</tr>
<tr>
<td>Polish 2736sp</td>
<td>23</td>
<td>1308270.20</td>
<td>99.970%</td>
<td>701</td>
</tr>
<tr>
<td>Polish 2737sp</td>
<td>23</td>
<td>777664.02</td>
<td>99.995%</td>
<td>675</td>
</tr>
<tr>
<td>Polish 2746wp</td>
<td>23</td>
<td>1208453.93</td>
<td>99.985%</td>
<td>801</td>
</tr>
<tr>
<td>Polish 3012wp</td>
<td>24</td>
<td>2608918.45</td>
<td>99.188%</td>
<td>814</td>
</tr>
<tr>
<td>Polish 3120sp</td>
<td>24</td>
<td>2160800.42</td>
<td>99.073%</td>
<td>910</td>
</tr>
</tbody>
</table>

Funding Acknowledgements

- **ONR YIP**: Graph-theoretic and low-rank optimization

- **DARPA YFA**: Near-Global Solutions of Non-convex Problems

- **NSF CAREER**: Control and optimization for power systems

- **NSF EPCN**: Contingency analysis for power systems

- **Google**: Numerical algorithms for nonlinear optimization

- **Siebel**: Computational methods for maximizing efficiency, reliability and resiliency of power systems
Collaborators

Caltech and UT Austin:
- John Doyle
- Richard Murray
- Steven Low
- Ross Baldick

Stanford and Washington:
- Stephen Boyd
- David Tse
- Baosen Zhang

Research Group:
- Ramtin Madani
- Abdulrahman Kalbat
- Salar Fattahi
- Morteza Ashraphijuo