Nonlinear and Discrete Optimization-Homework 8

1. Consider the discrete optimization problem

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & x^{T} Q x \\
\text { s.t. } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

where Q is an $n \times n$ symmetric matrix. To study this problem, we take two approaches:

- Brute-force search: We compute the objective function for all of the 2^{n} possible feasible points and denote the smallest objective value as p_{*}.
- Dual optimization: We solve the convex dual problem and denote the optimal objective value as d_{*}.

The goal of this example is to study the duality gap and to analyze the computational complexities of the above methods.
i) Consider $n=15$. Generate 150 random symmetric matrices Q such that each diagonal entry is equal to 25 and each off-diagonal entry is uniformly chosen from the interval $[0,1]$. Write a code in CVX that finds the duality gap (in percentage) based on the formula $\frac{p_{*}-d_{*}}{\left|p_{*}\right|} \times 100$ for each random initialization of Q, and report the average of this gap over the 150 trials.
ii) For $n=1,2, \ldots, 28$, generate a random $n \times n$ matrix Q (based on the procedure stated in Part (i)) and then find the corresponding numbers p_{*} and d_{*}. Let $t_{p}(n)$ and $t_{d}(n)$ denote the runtimes of your codes for finding p_{*} and d_{*}, respectively. Draw $t_{p}(n)$ and $t_{d}(n)$ as a function of n, and based on these curves discuss the benefits of using the dual optimization over the brute-force search.
2. Use the branch-and-bound method to solve the mixed-integer program:

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{2}} & -3 x_{1}-x_{2} \\
\text { s.t. } & 2 x_{1}-x_{2} \leq 6 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}: \text { integer }
\end{array}
$$

(note: you can use CVX to solve the convex problems needed to form the tree).
3. Use the branch-and-bound method to solve the discrete optimization problem:

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{3}} & -4 x_{1}-3 x_{2}-x_{3} \\
\text { s.t. } & 3 x_{1}+2 x_{2}+x_{3} \leq 7 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 11 \\
& x_{1}, x_{2}, x_{3} \geq 0 \\
& x_{1}, x_{2}, x_{3}: \text { integer }
\end{array}
$$

(note: you can use CVX to solve the convex problems needed to form the tree).

