Nonlinear and Discrete Optimization-Homework 7

1. Consider the optimization problem:

$$
\begin{array}{ll}
\max _{x \in \mathbb{R}^{2}} & -8 x_{1}^{2}-10 x_{2}^{2}+12 x_{1} x_{2}-50 x_{1}+80 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 1 \\
& 8 x_{1}^{2}+x_{2}^{2} \leq 2 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

- Verify that Slaters condition holds.
- Obtain the KKT conditions for this problem.
- Prove that $(0,1)$ is a global solution of this problem.
- Assume that the above problem is perturbed as

$$
\begin{array}{ll}
\max _{x \in \mathbb{R}^{2}} & -8 x_{1}^{2}-10 x_{2}^{2}+12 x_{1} x_{2}-50 x_{1}+80 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 1-\varepsilon \\
& 8 x_{1}^{2}+x_{2}^{2} \leq 2+2 \varepsilon \\
& x_{1} \geq 2 \varepsilon \\
& x_{2} \geq-5 \varepsilon
\end{array}
$$

for an infinitesimal number ε. This makes the solution $(0,1)$ perturb a bit. How much will the corresponding optimal objective value change?
2. Find the dual of the optimization problem

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{3}} & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{3}+x_{1} x_{2} \\
\text { s.t. } & x_{1}^{2}-x_{2}^{2}+x_{1} x_{2}+x_{3}^{2}+2 x_{2} x_{3} \leq 6 \\
& x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1
\end{array}
$$

3. Find the dual of the optimization problem

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{3}} & x_{1}^{2}+x_{2}^{2}+e^{x_{3}} \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{3} \geq 2
\end{array}
$$

4. Consider the problem

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & e^{-x_{1}}+e^{-x_{2}}+\cdots+e^{-x_{n}} \\
\text { s.t. } & -1 \leq x_{1}+x_{2}+\cdots+x_{n} \leq 1
\end{array}
$$

- Is this problem convex?
- Calculate its dual.

