Nonlinear and Discrete Optimization-Homework 5

1. Prove that the following set is convex:

$$
\left\{x \in \mathbb{R}^{3} \mid-2 x_{1}+6 x_{3} \leq 5 x_{2}+4 \leq 3 x_{3}+2 x_{1}+10\right\}
$$

2. Prove that the following set is convex:

$$
\left\{x \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{cc}
6 x_{1}-5 x_{2}+2 & -x_{1}+x_{2} \\
-x_{1}+x_{2} & 4 x_{2}+5
\end{array}\right] \succeq 0\right.\right\}
$$

3. Find all constant coefficients $a_{0}, a_{1}, a_{2}, a_{3}$ for which the univariate function $f(x)=\frac{1}{12} x^{4}+a_{3} x^{3}+a_{2} x^{2}+$ $a_{1} x+a_{0}$ is convex.
4. Prove that the following function is convex over the set of positive vectors:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=-\sqrt{x_{1} x_{2}}+2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

5. Prove that every local solution of the following problem is a global solution as well:

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{3}} & e^{x_{1}-x_{2}}+\left(x_{1}+5 x_{2}-x_{3}\right)^{6}+\left(6 x_{1}-x_{2}+x_{3}\right)^{8} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3}=5 \\
& x_{1}^{4}+x_{2}^{4}+e^{-10 x_{3}} \leq 10 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0 \\
& x_{3} \geq 0
\end{array}
$$

