Nonlinear and Discrete Optimization-Homework 4

1. (2 points) Consider the optimization problem

$$
\min _{x_{1}, x_{2}, x_{3}} e^{x_{1}-1}+e^{-x_{1}+1}+e^{x_{2}-2}+e^{-x_{2}+2}+e^{x_{3}-3}+e^{-x_{3}+3}+\left(x_{1}-7 x_{2}+3 x_{3}\right)^{6}
$$

Write a code in CVX to find the global minimum x^{*}. Then, write a code that implements the Gradient method with your choice of the backtracking parameters. Draw $\left|f\left(x^{(k)}\right)-f\left(x^{*}\right)\right|$ verses k for $k=0,1,2, \ldots, 50$ on a log-linear plot. Show the trajectory of the points $x^{(0)}, x^{(1)}, \ldots, x^{(50)}$ in the 3-dimensional $\left(x_{1}, x_{2}, x_{3}\right)$ plane.
2. (2 point) Redo the previous problem with Newton's method.
3. (6 points) Consider the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} \quad-\sum_{i=1}^{n} \log \left(4-x_{i}^{2}\right)-\sum_{i=1}^{n} \log \left(2+a_{i}^{T} x\right)
$$

where $n=1250$ and $a_{i} \in \mathbb{R}^{n}$ are randomly generated vectors. Write a code in CVX to find the global minimum x^{*}. Then, write a code that implements the Newton's method with the backtracking line search. Draw $\left|f\left(x^{(k)}\right)-f\left(x^{*}\right)\right|$ versus k for $k=0,1, \ldots, 100$ on a log-linear plot.

