Nonlinear and Discrete Optimization-Homework 2

1. Find a second-order approximation of the function $f(x)=e^{x_{1}+5 x_{2}}+\cos \left(x_{1}-x_{2}\right)+10 \sin \left(x_{1}\right) \cos \left(x_{2}\right)$ around the point $(0,0)$.
2. Find all local minima, local maxima and saddle points of the function $f\left(x_{1}, x_{2}\right)=x_{1}^{4}-x_{1} x_{2}+x_{2}^{4}$.
3. Find all local minima, local maxima and saddle points of the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}-$ $x_{1}^{3}-x_{2}^{3}-x_{3}^{3}$.
4. A company has n factories. Factory i (for $i=1,2, \ldots, n)$ is located at point $\left(x_{i}, y_{i}\right)$ in the two-dimensional plane \mathbb{R}^{2}. The company wants to locate a warehouse at a point (x, y) that minimizes

$$
\sum_{i=1}^{n}(\text { distance from factory } i \text { to the warehouse })^{2}
$$

Where should the warehouse be located?
5. Consider the five points $(0,0),(0,7),(7,0),(2,2),(-4,-4)$ in \mathbb{R}^{2} and name them $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, 5$. The objective is to find two coefficients $a, b \in \mathbb{R}$ such that the boundary of the ellipse $a x^{2}+b y^{2}=1$ is as closely to the above 5 points as possible. To this end, we define the error function:

$$
f(a, b)=\sum_{i=1}^{5}\left(a x_{i}^{2}+b y_{i}^{2}-1\right)^{2}
$$

Calculate the optimal values of (a, b) by finding the local minima of the error function $f(a, b)$.

