Math Programming II - Homework 6

Problem 1

Consider the problems

minimize $\sum_{i=1}^{p} \|F_i x + g_i\|$ subject to $x \in \mathbb{R}^n$,

and

minimize
$$\max_{i=1,\dots,p} ||F_i x + g_i|$$

subject to $x \in \mathbb{R}^n$,

where F_i and g_i are given matrices and vectors, respectively. Convert these problems to second-order cone programs and derive the corresponding dual problems.

Problem 2

Given $n \times n$ symmetric matrices $M_0, ..., M_r$ and $a_1, ..., a_r \in \mathbb{R}$, consider the problems

$$\min_{X \succeq 0} \quad \text{trace}\{M_0 X\}$$
s.t.
$$\operatorname{trace}\{M_i X\} = a_i, \qquad i = 1, ..., r$$

$$(1)$$

and

$$\min_{X \succeq 0} \quad \text{trace}\{M_0 X\} + \mu \sum_{i=1}^{r} |\text{trace}\{M_i X\} - a_i|$$
(2)

where μ is a positive constant.

- a) By introducing slack variables, reformulate (2) as an SDP.
- b) Compute the dual of the SDP obtained in Part (a).
- c) Assume that Slater's condition holds for (1) and let $(X^*, \mu_1^*, ..., \mu_r^*)$ denote a primal-dual solution for this problem. By comparing the dual of (1) with the dual obtained in Part (b), show that if $\mu > \max\{|\mu_1^*|, ..., |\mu_r^*|\}$, then X^* is a solution of (2).

Problem 3

Given $n \times n$ symmetric matrices $A_1, ..., A_m$, consider the problem

$$\min_{x \in \mathbb{R}^n} \lambda_{\max} \{ (A_1 x_1 + A_2 x_2 + \dots + A_m x_m) + I \times (1 + (x_1 + x_2 + \dots + x_n)^2) \}$$
(3)

where $\lambda_{\max}(\cdot)$ denotes the maximum eigenvalue and I is the $n \times n$ identity matrix. Formulate the above problem as a linear conic.

Problem 4

Given $n \times n$ symmetric matrices $M_0, ..., M_p$ and $a_1, ..., a_p \in \mathbb{R}$, consider the problem

$$\begin{array}{ll}
\min_{X \in \mathbb{S}^n} & \operatorname{trace}\{M_0 X\} \\
\text{s.t.} & \operatorname{trace}\{M_i X\} = a_i, & i = 1, ..., p \\
& \left[\begin{array}{cc} X_{i,i} & X_{i,i+1} \\ X_{i+1,i} & X_{i+1,i+1} \end{array}\right] \succeq 0 & i = 1, ..., n-1
\end{array}$$
(4)

where $X_{i,j}$ denotes the $(i,j)^{\text{th}}$ entry of X and \mathbb{S}^n denotes the set of $n \times n$ symmetric matrices.

- a) By working through the cone of 2×2 positive semidefinite matrices and treating (4) as a conic optimization problem, find the dual of (4).
- b) Obtain necessary and sufficient optimality conditions for (4) under Slater's condition.
- c) Develop conditions under which both (4) and its conic dual attain their solutions.

Problem 5

Given $n \ge 3$, define \mathcal{D} as the set of tridiagonal positive semidefinite matrices in \mathbb{S}^n , where \mathbb{S}^n denotes the set of $n \times n$ symmetric matrices (a matrix is called tridiagonal if all entries not belonging to the main diagonal, the sub-diagonal below it and the sub-diagonal above it are zero).

- a) Prove that \mathcal{D} is a convex cone.
- b) Prove that \mathcal{D} is not self-dual.