Math Programming II - Homework 5

Problem 1

Consider the problem

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } x \in X, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, r,
\end{aligned}
$$

where f is continuously differentiable, and $X \subset \mathcal{R}^{n}$ is a closed convex set. Let x^{*} be a local minimum.
a) Assume that the functions g_{j} are convex over X, and that there exists a vector $\bar{x} \in X$ such that $g_{j}(\bar{x})<0$ for all $j=1, \ldots, r$. Show that there exists a vector $\mu^{*} \geq 0$ such that

$$
x^{*} \in \arg \min _{x \in X}\left\{\nabla f\left(x^{*}\right)^{\prime} x+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\}, \quad \mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r
$$

b) Assume that the functions g_{j} are continuously differentiable, and that there exists a feasible direction d of X at x^{*} such that

$$
\nabla g_{j}\left(x^{*}\right)^{\prime} d<0, \quad \forall j \in A\left(x^{*}\right) .
$$

Show that there exists a vector $\mu^{*} \geq 0$ such that

$$
x^{*} \in \arg \min _{x \in X} \nabla L_{x}\left(x^{*}, \mu^{*}\right)^{\prime} x, \quad \mu_{j}^{*} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r .
$$

Problem 2

Consider the quadratic penalty method $\left(c^{k} \rightarrow \infty\right)$ for the equality constrained problem of minimizing $f(x)$ subject to $h(x)=0$, and assume that the generated sequence converges to a local minimun x^{*} that is also a regular point. Show that the condition number of the Hessian $\nabla_{x x}^{2} L_{c^{k}}\left(x^{k}, \lambda^{k}\right)$ tends to ∞.

Problem 3

Let H be a positive definite symmetric matrix. Show that the pair $\left(x^{*}, \mu^{*}\right)$ satisfies the first-order necessary conditions for the problem

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } g_{j}(x) \leq 0, \quad j=1, \ldots, r,
\end{aligned}
$$

if and only if $\left(0, \mu^{*}\right)$ is a global minimum-Lagrange multiplier pair of the quadratic program

$$
\begin{aligned}
& \operatorname{minimize} \nabla f\left(x^{*}\right)^{\prime} d+\frac{1}{2} d^{\prime} H d \\
& \text { subject to } g_{j}\left(x^{*}\right)+\nabla g_{j}\left(x^{*}\right)^{\prime} d \leq 0, \quad j=1, \ldots, r .
\end{aligned}
$$

