# Math Programming II - Homework 4 

## Problem 1

Let $f: R^{n} \mapsto R$ be a continuously differentiable function, let $X$ be a closed convex set, and let $c$ be a positive scalar. Show that the proximal algorithm

$$
\begin{equation*}
x^{k+1}=\underset{x \in X}{\operatorname{argmin}}\left\{f(x)+\frac{1}{2 c}\left\|x-x^{k}\right\|^{2}\right\} \tag{1}
\end{equation*}
$$

is a special case of the block coordinate descent method applied to the problem

$$
\begin{align*}
& \operatorname{minimize} f(x)+\frac{1}{2 c}\|x-y\|^{2}  \tag{2}\\
& \text { subject to } \quad x \in X, y \in R^{n}, \tag{3}
\end{align*}
$$

which is equivalent to the problem of minimizing $f$ over $X$.

## Problem 2

This exercise shows that for each problem for which there are nonzero Lagrange multipliers, there are infinitely many corresponding problems with no Lagrange multipliers. Consider the problem $\min _{h(x)=0} f(x)$, and suppose that $x^{*}$ is a local minimum such that $\nabla f\left(x^{*}\right) \neq 0$. Show that $x^{*}$ is a local minimum of the equality constrained problem

$$
\min _{\|h(x)\|^{\rho}=0} f(x)
$$

where $\rho>1$, and that for this problem there are no Lagrange multipliers.

## Problem 3

Let $x^{*}$ be a feasible point that is regular and together with some $\lambda^{*}$ satisfies the first- and second-order necessary conditions for the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i=1, \ldots, m \tag{5}
\end{array}
$$

Show that $x^{*}$ and $\lambda^{*}$ satisfy the second-order sufficient conditions if and only if the matrix

$$
\left[\begin{array}{cc}
\nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) & \nabla h\left(x^{*}\right) \\
\nabla h\left(x^{*}\right)^{T} & 0
\end{array}\right]
$$

is nonsingular.

## Problem 4

Given three numbers $n, m, r$ and a constant matrix $Z \in \mathbb{R}^{n \times m}$, consider the optimization problem

$$
\begin{array}{cl}
\underset{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{r \times m}}{\operatorname{minimize}} & \|Z-X Y\|_{F}^{2}  \tag{6}\\
\text { subject to } & X \geq 0, \quad Y \geq 0
\end{array}
$$

(note that the sign " $\geq$ " means that all elements of the corresponding matrix are nonnegative, and that $\|\cdot\|_{F}$ denotes the Frobenius norm).

- Write the first-order optimality conditions for (6).
- Describe how to solve (6) using the gradient projection method with the step size along the feasible direction chosen to be 1 and the step size along the projection arc to be designed using the Armijo rule. Derive the iterative equations and simplify them as much as possible.
- Describe how to solve (6) using the block coordinate descent method where we solve for $X$ and $Y$ alternatively. Discuss (without having to write the equations in details) how to find a global solution (up to a given precision) of each of the optimization sub-problems that needs to solved in the iterations of the block coordinate descent.

