Math Programming II - Homework 3

Problem 1

Consider an $n \times n$ symmetric matrix Q that is sign indefinite (meaning that it is neither positive semidefinite nor negative semidefinite). Let $x^{T} Q x$ be minimized using the gradient algorithm with the initial point x^{0} and a sufficiently small constant step size t. Find all values x^{0} that make the algorithm converge to a saddle point of the function $x^{T} Q x$.

Problem 2

Let $f: R^{n} \mapsto R$ be a twice continuously differentiable function that satisfies

$$
\begin{equation*}
m\|y\|^{2} \leq y^{\prime} \nabla^{2} f(x) y \leq M\|y\|^{2}, \quad \forall x, y \in R^{n} \tag{1}
\end{equation*}
$$

where m and M are some positive scalars. Let also X be a closed convex set. Show that f has a unique global minimum x^{*} over X, which satisfies

$$
\begin{equation*}
\theta_{M}(x) \leq f(x)-f\left(x^{*}\right) \leq \theta_{m}(x), \quad \forall x \in R^{n} \tag{2}
\end{equation*}
$$

where for all $\delta>0$, we denote

$$
\begin{equation*}
\theta_{\delta}(x)=-\inf _{y \in X}\left\{\nabla f(x)^{\prime}(y-x)+\frac{\delta}{2}\|y-x\|^{2}\right\} \tag{3}
\end{equation*}
$$

Problem 3

Consider the conditional gradient method, and assume that the gradient of f satisfies

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \forall x, y \in X \tag{4}
\end{equation*}
$$

where L is a positive constant. Show that if the stepsize α^{k} is given by

$$
\begin{equation*}
\alpha^{k}=\min \left\{1, \frac{\nabla f\left(x^{k}\right)^{\prime}\left(x^{k}-\bar{x}^{k}\right)}{L\left\|x^{k}-\bar{x}^{k}\right\|^{2}}\right\}, \tag{5}
\end{equation*}
$$

then every limit point of $\left\{x^{k}\right\}$ is a stationary point.

