Math Programming II - Homework 2

Problem 1

Consider the steepest descent method

$$
\begin{equation*}
x^{k+1}=x^{k}-\alpha\left(\nabla f\left(x^{k}\right)+e^{k}\right), \tag{1}
\end{equation*}
$$

where α is a constant stepsize, e^{k} is an error satisfying $\left\|e^{k}\right\| \leq \delta$ for all k, and $f(x)$ is a positive definite quadratic function:

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(x-x^{*}\right)^{\prime} Q\left(x-x^{*}\right) . \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
q=\max \{|1-\alpha m|,|1-\alpha M|\}, \tag{3}
\end{equation*}
$$

where m and M are the smallest and largest eigenvalue of Q. Assuming $q<1$, show that the following holds for all values of k :

$$
\begin{equation*}
\left\|x^{k}-x^{*}\right\| \leq \frac{\alpha \delta}{1-q}+q^{k}\left\|x^{0}-x^{*}\right\| \tag{4}
\end{equation*}
$$

Problem 2

Consider the following variant of the steepest descent method:

$$
\begin{equation*}
x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)+\beta\left(x^{k}-x^{k-1}\right), \quad k=1,2, \ldots \tag{5}
\end{equation*}
$$

where α is a constant positive step size and $\beta \in(0,1)$. Consider the quadratic function $f(x)=(1 / 2) x^{\prime} Q x+$ $c^{\prime} x$, where Q is positive definite and symmetric, and m and M denote the minimum and maximum eigenvalues of Q. Show that the method converges linearly to the unique solution if $0<\alpha<2(1+\beta) / M$. Prove that with optimal choices of α and β, the ratio of linear convergence for the sequence $\left\|x^{k}-x^{*}\right\|$ is

$$
\begin{equation*}
\frac{\sqrt{M}-\sqrt{m}}{\sqrt{M}+\sqrt{m}} \tag{6}
\end{equation*}
$$

Hint: Write the iterations as

$$
\binom{x^{k+1}}{x^{k}}=\left(\begin{array}{cc}
(1+\beta) I-\alpha Q & -\beta I \tag{7}\\
I & 0
\end{array}\right)\binom{x^{k}}{x^{k-1}}
$$

