Math Programming II - Homework 1

Problem 1

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $g: \mathbb{R}^{n} \mapsto \mathbb{R}$ be twice continuously differentiable functions, and let x^{*} be a local minimum of f satisfying the second-order sufficient condition. Show that there exist an $\bar{\epsilon}>0$ and a $\delta>0$ such that for all $\epsilon \in[0, \bar{\epsilon})$ the function

$$
\begin{equation*}
f(x)+\epsilon g(x) \tag{1}
\end{equation*}
$$

has a unique local minimum x_{e} within the sphere $\left\{x \mid\left\|x-x^{*}\right\|<\delta\right\}$, and we have

$$
\begin{equation*}
x_{e}=x^{*}-\epsilon\left(\nabla^{2} f\left(x^{*}\right)\right)^{-1} \nabla g\left(x^{*}\right)+o(\epsilon) \tag{2}
\end{equation*}
$$

Hint: Use the implicit function theorem.

Problem 2

Suppose that f is quadratic and of the form $f(x)=\frac{1}{2} x^{\prime} Q x-b^{\prime} x$, where Q is positive definite and symmetric.
(a) Show that the Lipschitz condition $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$ is satisfied with L equal to the maximal eigenvalue of Q.
(b) Consider the gradient method $x^{k+1}=x^{k}-s D \nabla f\left(x^{k}\right)$, where D is positive definite and symmetric. Show that the method converges to $x^{*}=Q^{-1} b$ for every starting point x^{0} if and only if $s \in(0,2 / \bar{L})$, where \bar{L} is the max eigenvalue of $D^{1 / 2} Q D^{1 / 2}$.

Problem 3

Consider the gradient method $x^{k+1}=x^{k}+\alpha^{k} d^{k}$, where α^{k} is chosen by the Armijo rule or the line minimization rule and

$$
d^{k}=-\left[\begin{array}{lllllll}
0 & \cdots & 0 & \frac{\partial f\left(x^{k}\right)}{\partial x_{i}} & 0 & \cdots & 0 \tag{3}
\end{array}\right]^{T}
$$

where i is the index for which $\left|\partial f\left(x^{k}\right) / \partial x_{j}\right|$ is maximized over $j=1, \ldots, n$. Show that every limit point of $\left\{x^{k}\right\}$ is stationary.

