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1 Optimal Distributed Control Solver

This solver aims to solve a convex relaxation for three types of the Optimal
Distributed Control (ODC) problem: finite-horizon deterministic ODC, infinite-
horizon deterministic ODC, and stochastic ODC. The finite-horizon determin-
istic ODC is defined as follows:

Minimize
p∑
τ=0

(x[τ ]TQx[τ ] + u[τ ]TRu[τ ]) + α trace{KKT } (1)

subject to: {
x[τ + 1] = Ax[τ ] +Bu[τ ]

y[τ ] = Cx[τ ]
τ = 0, 1, ..., p

K ∈ K
trace{KKT } ≤ β

(2)

where x[τ ], y[τ ] and u[τ ] show the state, output and input of the system at
time τ , respectively. In this formulation , (·)T represents the transpose operator
(please refer to [1,2] for more details ). This problem aims to find a static con-
troller K such that u[τ ] = Ky[τ ] for given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n,
x[0] ∈ Rn, and terminal time p. The control structure is imposed by the sub-
space K which can be specified by a zero-one matrix L in the solver.

The above problem is called infinite-horizon deterministic ODC if p = ∞.
The stochastic ODC is defined as below:

Minimize

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α trace{KKT } (3)
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subject to: {
x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ]

y[τ ] = Cx[τ ] + Fv[τ ]
τ = 0, 1, 2, ...

K ∈ K
trace{KKT } ≤ β

(4)

where d[τ ] and v[τ ] denote the input disturbance and measurement noise, which
are assumed to be zero-mean white-noise random processes. The solver requires
two input matrices defined as follows:

Σdisturbance = E{Ed[0]d[0]TET }, Σnoise = E{Fv[0]v[0]TFT } (5)

where E{·} denotes the expectation operator.

Given one of the above ODC problems, our solver designs a semidefinite
programming (SDP) relaxation for the problem, from which a lower bound on
the globally optimal cost of the ODC problem is found. The solution of the
SDP relaxation, denoted as W , needs to have the lowest rank possible in order
for the relaxation to be exact. To compensate for the rank of this matrix, the
objective of the SDP relaxation can be penalized as ε trace{W}, where the value
of ε is controlled by the user.

Our solver also attempts to design a near-global solution from the SDP solu-
tion. This will be achieved using two possible techniques named Direct Method
and Indirect Method. Direct Method recovers the matrix K immediately from
the SDP solution, while Indirect Method solves a second convex optimization
based on the SDP solution from which a near-optimal controller is retreived.
For more details, please refer to the papers [1, 2].

To use the ODC solver, you need to install CVX (http://cvxr.com/cvx/),
load your data in a file named ‘System Description’, and then run the file
‘Solver ODC’. You will be asked to provide a 1 × 4 matrix M whose entries
can be interpreted as follows:

• M(1) specifies the type of the ODC problem to be solved. Please set
M(1) to 0 for finite-horizon ODC, 1 for infinite-horizon ODC and 2 for
stochastic ODC.

• M(2) specifies the recovery method. Please set M(2) to 0 for Direct
Method and 1 for Indirect Method.

• M(3) specifies the type of the SDP solver. Please set M(3) to 0 for
MOSEK, 1 for SDP3 and 2 for SeDuMi. For a large-scale system, it is
recommend to use MOSEK (this needs a CVX professional).

• M(4) specifies the coefficient ε for the penalization of the trace of the SDP
solution.

Please open the files ‘Example MassSpring’ and ‘Example PowerSystem’ to test
out our solver on two physical systems.
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2 Four Other Convex Relaxations

Four different relaxations are presented in [3] for a finite-horizon ODC, which
are associated with four different quadratic formulations of this problem. Note
that the relaxations explained in the previous part are computationally cheap,
while the four relaxations given in [3] may be computationally intense. If you
would like to try these 4 different relaxations, you can use the code ‘QCQP four
Relaxations’ and specify the required values.
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