
Geometric Analysis of Matrix Sensing over Graphs

Haixiang Zhang
Department of Mathematics

University of California, Berkeley
Berkeley, CA 94720

haixiang_zhang@berkeley.edu

Ying Chen
Department of IEOR

University of California, Berkeley
Berkeley, CA 94720

ying-chen@berkeley.edu

Javad Lavaei
Department of IEOR

University of California, Berkeley
Berkeley, CA 94720

lavaei@berkeley.edu

Abstract

In this work, we consider the problem of matrix sensing over graphs (MSoG).
As a general case of matrix completion and matrix sensing problems, the MSoG
problem has not been analyzed in the literature and the existing results cannot be
directly applied to the MSoG problem. This work provides the first theoretical
results on the optimization landscape of the MSoG problem. More specifically,
we propose a new condition, named the Ω-RIP condition, to characterize the
optimization complexity of the problem. In addition, with an improved regularizer
of the incoherence, we prove that the strict saddle property holds for the MSoG
problem with high probability under the incoherence condition and the Ω-RIP
condition, which guarantees the polynomial-time global convergence of saddle-
avoiding methods. Compared with state-of-the-art results, the bounds in this work
are tight up to a constant. Besides the theoretical guarantees, we numerically
illustrate the close relation between the Ω-RIP condition and the optimization
complexity.

1 Introduction

In a wide range of problems in the fields of machine learning, signal processing and power systems,
an unknown low-rank matrix parameter should be estimated from a few measurements of the matrix.
To be more specific, given some measurements of the unknown symmetric and positive semi-definite
(PSD) matrix M∗ ∈ Rn×n of rank r ≪ n, the low-rank matrix optimization problem can be
formulated as

min
M∈Rn×n

f(M ;M∗) s. t. M ⪰ 0, rank(M) ≤ r,(1)

where f(·;M∗) is a loss function that penalizes the mismatch between M and M∗. The goal is to
recover the matrix M∗ via finding a global minimizer of problem (1). Applications of this problem
include matrix sensing [31, 40, 38], matrix completion [10, 11, 17], phase retrieval [8, 33, 14], and
power systems [39, 24]; see the review papers [13, 15] for more applications. Early attempts to
deal with the nonconvex rank constraint of the problem focused on solving a convex relaxation
of (1); see [10, 31, 11, 7]. However, the convex relaxation approach usually updates the matrix
variable via the Singular Value Decomposition (SVD) in each iteration. This will lead to an O(n3)
computational complexity in each iteration and an O(n2) space complexity, which are prohibitively
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high for large-scale problems; see the numerical comparison in [41]. Similar issues are observed
for algorithms based on the Singular Value Projection [20] and Riemannian optimization algorithms
[35, 36, 19, 1, 27].

To improve the computation and memory efficiency, the Burer-Monteiro factorization approach
was proposed in [6], which is based on the fact that the mapping U 7→ UUT is surjective onto the
manifold of PSD matrices of rank at most r, where U ∈ Rn×r. More concretely, problem (1) is
equivalent to

min
U∈Rn×r

f(UUT ;M∗).(2)

Due to the non-convexity of the mapping U 7→ UUT , problem (2) is an unconstrained non-convex
problem and may have spurious second-order critical points (i.e., second-order critical points that do
not correspond to the ground truth matrix M∗). In general, saddle-avoiding local search methods
are only able to find ϵ-approximate second-order critical points1. As a result, local search methods
with a random initialization will likely be stuck at spurious second-order critical points and unable
to converge to the ground truth solution. However, in a variety of real-world applications, simple
algorithms such as perturbed gradient descent methods and alternating minimization methods have
achieved empirical success on problem (2). Recently, substantial progress has been made on the
theoretical explanation of the benign behavior of these algorithms. For example, the alternating
minimization algorithm was studied in [21, 28, 29]. The (stochastic) gradient descent algorithm,
which is in general easier to implement than the alternating minimization algorithm, was analyzed
in [8, 34, 37, 14, 13]. Moreover, the gradient descent algorithm is proved to have the implicit
regularization phenomenon in the over-parameterization case [26, 16, 32].

Besides the algorithmic analysis, a large amount of literature [17, 33, 42, 38] focused on the geometric
analysis of the landscape of problem (2), which usually depends on the strict-saddle property [33].
Intuitively, the strict-saddle property states that at any feasible point of problem (2), at least one of
the three properties will hold: (i) the point is close to a global solution; (ii) the norm of the gradient
is large; (iii) the Hessian matrix has a negative eigenvalue. In the later two cases, saddle-escaping
algorithms [12, 23, 2] are able to find a descent direction and thus, these algorithms will converge
globally in polynomial time. The formal definition of the strict-saddle property is provided in Section
3.1. In the following, we review the state-of-the-art conditions for two special classes of problem (2)
that guarantee the strict-saddle property; see the survey [15] for other problem classes.

1.1 Matrix sensing and the Restricted Isometry Property (RIP) condition

In the matrix sensing problem, the information of the ground truth matrix M∗ is gathered via the
measurement operator A. The loss function f is usually chosen to be the negative log-likelihood
function. For example, in the classic linear matrix sensing problem, the operator A is a linear operator
defined as

A(M) := [⟨A1,M⟩, . . . , ⟨Am,M⟩] , ∀M ∈ Rn×n,(3)

where m is the number of measurements and Ai ∈ Rn×n contains independently identically dis-
tributed (i.i.d) Gaussian random entries and Ai’s are independent of each other. If the measurement
noise is Gaussian, the maximum likelihood estimation is equivalent to the following minimization
problem

min
U∈Rn×r

∥A(UUT )−A(M∗)∥2F .(4)

More examples of the (non-linear) matrix sensing problem are discussed in [42]. One of the most
important conditions that guarantee the benign landscapes is the RIP condition:
Definition 1 (RIP Condition[31, 42]). Given natural numbers r and s, the function f(·;M∗) is said
to satisfy the Restricted Isometry Property (RIP) of rank (2r, 2s) for a constant δ ∈ [0, 1), denoted
as δ-RIP2r,2s, if

(1− δ)∥K∥2F ≤
[
∇2f(M ;M∗)

]
(K,K) ≤ (1 + δ)∥K∥2F(5)

holds for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r and rank(K) ≤ 2s, where[
∇2f(M ;M∗)

]
(K,K) is the curvature of the Hessian at point M along direction K.

1A point x0 is called an ϵ-approximate second-order critical point to the optimization problem minx F (x) if
∥∇F (x0)∥F ≤ ϵ and λmin[∇2F (x0)] ≥ −ϵ.
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For the linear matrix sensing problem (4), it is proved in [9] that the δ-RIP2r,2s condition holds with
high probability if m = Θ(nrδ−2). The RIP condition is also established in many other applications
of the matrix sensing problem [42, 4] and is of independent research interest. The constant δ plays a
critical role in characterizing the optimization landscape of problem (2). More specifically, in [5], the
authors showed that the strict-saddle property holds for problem (2) if the δ-RIP2r,2r condition holds
with δ < 1/2. Counterexamples have been constructed in [40, 38] to illustrate that the strict-saddle
property may fail under the δ-RIP2r,2r condition with δ ≥ 1/2.

1.2 Matrix completion and the incoherence condition

In spite of the strong theoretical results under the RIP condition, there exist a large number of
applications that do not satisfy the RIP condition. A well-studied class of problems that does not
satisfy the RIP condition is the matrix completion problem. For the matrix completion problem, a
subset Ω ⊂ [n]× [n] of entries of M∗ are observed and the goal is to recover the low-rank ground
truth matrix from the observed entries. For every matrix M ∈ Rn×n, we denote the projection of M
onto Ω as MΩ, namely,

(MΩ)ij =

{
Mij if (i, j) ∈ Ω,

0 otherwise.
Using the ℓ2-loss function, the matrix completion problem is defined as

min
U∈Rn×r

∥MΩ −M∗
Ω∥2F .(6)

The matrix completion problem (6) is a special case of the linear matrix sensing problem (4), where
the sample size m is equal to |Ω| and each measurement matrix Ai contains exactly one nonzero
entry. We note that the δ-RIP2r,2r condition does not hold for problem (6) unless we observe all
entries of M∗, i.e., when Ω = [n]× [n]. As an alternative to the RIP condition, the incoherence of
M∗ is useful in characterizing the complexity of problem (6).
Definition 2 (Incoherence Condition [10]). Given µ ∈ [1, n], the ground truth matrix M∗ is said to
be µ-incoherent if

∥eTi V ∗∥F ≤
√
µr/n, ∀i ∈ [n],(7)

where V ∗Λ∗(V ∗)T is the truncated SVD of M∗ and ei is the i-th standard basis of Rn.

Intuitively, the incoherence of M∗ measures the sparsity of the low-rank ground truth matrix. If the
incoherence is large, the matrix M∗ is highly sparse and it is necessary to measure considerably
many entries of M∗ to observe nonzero entries. On the other hand, a relatively small incoherence
of M∗ is able to avoid the extreme case. Except the limited literature on the deterministic matrix
completion problem [3, 25, 30], the majority of the matrix completion literature considered the
following Bernoulli sampling model:
Definition 3 (Bernoulli Sampling Model). Given a sampling rate p ∈ (0, 1], each index (i, j) ∈
[n]× [n] belongs to the set Ω independently with probability p.

Under the Bernoulli sampling model, the objective function of problem (6) is well-behaved over the
set of matrices with a small incoherence. Therefore, a regularizer that penalizes the incoherence of
UUT is included and we instead solve the following regularized matrix completion problem:

min
U∈Rn×r

1

p

∥∥(UUT )Ω −M∗
Ω

∥∥2
F
+ λ

∑
i∈[n]

(
∥eTi U∥F − α

)4
+
,(8)

where (x)+ := max{x, 0} for all x ∈ R and α, λ > 0 are constants. Intuitively, the coefficient 1/p
is used to “normalize” the ℓ2-norm. We note that there exists an algorithm that can solve problem (6)
without the incoherence regularizer [13]. However, the algorithm relies on the spectral initialization,
which requires more computational effort than the factorization approach (2). It is proved in [18, 17]
that if the sampling rate satisfies

np ≥ Θ[µ4r6(κ∗)6 log n],(9)

the problem (8) satisfies the strict-saddle property with high probability. On the other hand, it is
proved in [11] that the information-theoretical lower bound np ≥ Θ(µr log n) is necessary for the
exact completion with high probability.
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Figure 1: Example of the problem of matrix sensing over graphs. The vertex set is V = [6] and the
edge set is E = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 4), (3, 5), (4, 6), (5, 6), (6, 6)}.

1.3 Motivating example: Matrix sensing over graphs

Although the matrix sensing problem and the matrix completion problem are well-studied in literature,
we show that there exist important applications of (2) that belong to a much broader class of problems
than the special classes previously studied by the existing works. Hence, the current theoretical results
cannot be directly applied to these applications and it remains unknown whether saddle-avoiding
algorithms can find the ground truth matrix M∗ in polynomial time.

Consider an undirected graph G = (V, E), where V and E are the set of vertices and the set of edges,
respectively. For the notational simplicity, we assume that V = [n]. Then, the edge set E is a subset
of [n]× [n]. The goal of this problem is to recover the ground truth matrix M∗ via measurements of
its entries {M∗

ij | (i, j) ∈ E}. Instead of directly observing each entry M∗
ij , for each node i ∈ V , we

observe a “mixture” (i.e., the output of a function) of the entries in the set

Ei := {(i, j) | j is incident to i} .
Denote the loss function for node i as fi

(
MEi ;M

∗
Ei

)
. The total loss function is the sum of the loss

function for all nodes; namely, we consider the problem

min
U∈Rn×r

∑
i∈[n]

fi
[
(UUT )Ei ;M

∗
Ei

]
.(10)

Since E = ∪i∈[n]Ei, the above problem is a special case of the general problem

min
U∈Rn×r

f
[
(UUT )E ;M

∗
E
]
,(11)

where we define f
[
(UUT )E ;M

∗
E
]
:=

∑
i∈[n] fi

[
(UUT )Ei ;M

∗
Ei

]
. We name the problem (11) as the

matrix sensing over graphs (MSoG) problem. The MSoG problem has a number of applications,
including the state estimation problem in power systems [39, 24]. We note that in those applications,
the loss function fi is a quadratic function of entries of MEi

and M∗
Ei

; see, for example, the graph-
structured quadratic sensing problem [24].

To better understand (10) as a special type of MSoG, we consider a toy example where the undirected
graph G has n = 6 vertices and is plotted in Figure 1. In this example, the objective function of the
MSoG problem is

f(ME ;M
∗
E ) = f1(M11,M12,M13;M

∗
11,M

∗
12,M

∗
13) + f2(M21,M22;M

∗
21,M

∗
22)

+ f3(M31,M34,M35;M
∗
31,M

∗
34,M

∗
35) + f4(M41,M43,M46;M

∗
41,M

∗
43,M

∗
46)

+ f5(M53,M56;M
∗
53,M

∗
56) + f6(M64,M65,M66;M

∗
64,M

∗
65,M

∗
66),

where we recall that we factorize M into UUT in the Burer-Monteiro factorization approach. Hence,
only 13 entries of the matrix M∗ with n2 = 36 entries appear in the measurements. For example,
the entry M∗

16 does not appear in any measurements. If we directly observe these 13 entries, we can
define the loss function f1 by the ℓ2-loss function:

f1(M11,M12,M13;M
∗
11,M

∗
12,M

∗
13) = (M11 −M∗

11)
2 + (M12 −M∗

12)
2 + (M13 −M∗

13)
2.

We can define other loss functions f2, . . . , f6 in a similar way. Then, the MSoG problem reduces to
the matrix completion problem with Ω = E , namely, the objective function becomes

f(ME ;M
∗
E ) = ∥ME −M∗

E∥2F .
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Therefore, the matrix completion problem (6) is a special case of the MSoG problem (11) and
the existing results for the matrix completion problem cannot be directly applied to problem (11).
Similarly, if Ω is a complete graph, the matrix sensing problem (10) becomes a special case of the
MSOG problem. Moreover, since some entries of M∗ do not appear in any of the measurements in
general, it is easy to verify that the RIP condition (5) does not hold for problem (11). In summary,
the existing results based on the RIP condition and the incoherence condition, as well as the results
for other applications of the low-rank matrix optimization problem, cannot be directly applied to the
MSoG problem.

1.4 Problem formulation and contributions

In this work, we propose the first sufficient condition that guarantees the benign landscape of the
MSoG problem. More specifically, we consider the case when the graph G is a random graph obeying
the Erdös–Rényi model. Namely, each pair (i, j) ∈ V × V belongs to the edge set independently
with probability p. Under this random graph model and the assumption that the vertex set V is [n],
each entry M∗

ij is indirectly observed (i.e., is involved in some measurements) independently with
probability p. For comparison with the existing results of the matrix completion problem (6), we
denote the edge set, which is equivalent to the set of indices of observed entries, as Ω ⊂ [n]× [n].
Then, the set Ω follows the Bernoulli sampling model (Definition 3). Similar to the matrix completion
problem, we aim at recovering the ground truth matrix M∗ by solving the following problem with an
improved regularizer:

min
U∈Rn×r

1

p
f
[(
UUT

)
Ω
;M∗

Ω

]
+

∑
i∈[n]

r
(
∥eTi U∥F

)
,(12)

where we define the regularizer

r(x) := λ

∫ 1

−1

[
(x+ αy − 10α)+ + 9α

]4
(1− |y|) dy, ∀x ∈ R.

Note that in problem (12), we use a novel incoherence regularizer that is different from those in
the prior literature. The regularizer is the convolution between

[
(x+ αy − 10α)+ + 9α

]4
and the

probability density function 1−|y| on [−1, 1], which is twice continuously differentiable in x (the set
of discontinuous points of the derivatives is a zero measure set). Hence, the regularizer r

(
∥eTi U∥F

)
is twice continuously differentiable in U . In addition, we can exchange the convolution and the
differentiation with respect to x. Since the integrand is a quartic polynomial,tThe objective value
and the derivatives of the regularizer can be exactly evaluated by numerical integration schemes with
O(1) computations. Besides the randomness model of Ω, we make the following three assumptions
about problem (12).
Assumption 1. The loss function f is twice continuously differentiable.
Assumption 2. The ground truth matrix M∗ is PSD and rank-r.
Assumption 3. The ground truth matrix M∗ is a global minimizer of f [(·)Ω;M∗

Ω].

We note that these assumptions are standard in the low-rank optimization literature. The first
assumption is a mild regularity assumption on the loss function and is satisfied by a wide range of
loss functions, including the ℓ2-loss and the negative log-likelihood function of various probability
distributions. The second assumption is based on the prior knowledge about the specific application.
The third assumption is necessary for the exact recovery of the ground truth M∗.

We give an informal statement of the main result in the following theorem. Here, we consider
the (δ,Ω)-RIP2r,2r condition, which is an extension of the classic δ-RIP2r,2r condition. Intuitively,
the constant δ ∈ [0, 1) measures the similarity between f and the ℓ2-loss function. The rigorous
definition is provided in Definition 4.
Theorem 1 (Informal). Suppose that the loss function f satisfies the (1/16,Ω)-RIP2r,2r condition
with a high probability over Ω and the sampling rate p satisfies

np ≥ Θ[µ2r3(κ∗)2 log n],

where κ∗ is the condition number of M∗. Then, with a suitable choice of the parameters α and
λ, problem (12) satisfies the strict saddle property with high probability. Furthermore, there exist
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algorithms that can find a solution U0 such that ∥U0U
T
0 −M∗∥F ≤ ϵ in polynomial time with the

same probability.

The above theorem provides the first theoretical result for the MSoG problem. Basically, Theorem
1 says that a combination of the incoherence condition and the Ω-RIP condition is sufficient to
guarantee that problem (12) can be solved in polynomial time with high probability. In addition, the
lower bound on the sampling rate is better than the bound in [17] (i.e., the bound in (9)). This is a
result of our improved regularizer. Finally, the upper bound on the Ω-RIP constant is an absolute
constant (namely, 1/16).

Remark 1. We note that since the result of Theorem 1 only holds with high probability, it is not
necessary for the Ω-RIP condition to hold for all subsets Ω. Instead, we only require the Ω-RIP
condition to hold for a set of Ω that correspond to a high probability over the distribution of Ω. In
the special case when Ω is a deterministic subset that satisfies similar “benign” properties as in the
random graph case, we only need the Ω-RIP condition for this deterministic subset Ω.

The next informal theorem shows that our upper bound is optimal up to a constant.

Theorem 2 (Informal). There exists a loss function f such that: (i) f satisfies the (1/2,Ω)-RIP2r,2r

condition for all Ω ⊂ [n] × [n], (ii) for all p ∈ [0, 1], problem (12) has a spurious second-order
critical point2 with probability at least (3−

√
5)/2 ≈ 0.38.

Intuitively, Theorem 2 provides a negative result saying that the tightest upper bound on the RIP
constant cannot be better than 1/2 if the problem (12) has a benign landscape with high probability.
This is also the first negative result on the problem (12).

1.5 Notation

For every natural number n, we denote [n] := {1, . . . , n}. The operator 2-norm and the Frobenius
norm of a matrix M are denoted as ∥M∥2 and ∥M∥F , respectively. The trace of matrix M is denoted
as tr(M). The inner product between two matrices is defined as ⟨M,N⟩ := tr(MTN). For any
matrix M ∈ Rn×n, we denote its singular values by σ1(M) ≥ · · · ≥ σk(M). Let σ∗

i be the singular
value σi(M

∗). The condition number of M∗ is κ∗ = σ∗
1/σ

∗
r . The minimum eigenvalue of matrix

M is denoted as λmin(M). For any two matrices A,B ∈ Rn×m, we use A ⊗ B to denote the
fourth-order tensor whose (i, j, k, ℓ) element is Ai,jBk,ℓ. The identity tensor is denoted as I. The
notation M ⪰ 0 means that the matrix M is PSD. The sub-matrix Ri:j,k:ℓ consists of the i-th to the
j-th rows and the k-th to the ℓ-th columns of matrix R. The action of the Hessian ∇2f(M) on any two
matrices K and L is given by [∇2f(M)](K,L) :=

∑
i,j,k,ℓ[∇2f(M)]i,j,k,ℓKijLk,ℓ. The notation

f = O(g) means that there exists an absolute constant C > 0 such that f ≤ C · g. The notation
f = Θ(g) means that there exist absolute constants C1, C2, > 0 such that C1 · g ≤ f ≤ C2 · g.

2 Ω-RIP Condition and Numerical Illustration

Since the objective function f(MΩ;M
∗
Ω) does not satisfy the classic RIP condition unless all elements

of M∗ are observed (i.e., when Ω = [n]× [n]), it is necessary to consider a generalization of the RIP
condition to the partial observation case.

Definition 4 (Ω-RIP Condition). Given a subset Ω ⊂ [n]× [n] and natural numbers r, s, the function
f(·;M∗) is said to satisfy the Ω-Restricted Isometry Property (Ω-RIP) of rank (2r, 2s) for a constant
δ ∈ [0, 1), denoted as (δ,Ω)-RIP2r,2s, if

(1− δ)∥KΩ∥2F ≤
[
∇2f [MΩ; (M

∗)Ω]
]
(KΩ,KΩ) ≤ (1 + δ)∥KΩ∥2F(13)

holds for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r, rank(K) ≤ 2s.

Note that the matrix completion problem satisfies the (0,Ω)-RIP2r,2s condition. In the following, we
demonstrate another example for which the Ω-RIP condition holds with a non-zero constant δ.

2A point U0 is called a spurious second-order critical point of problem (12) if U0 satisfies the first-order and
the second-order necessary optimality conditions but U0U

T
0 ̸= M∗.
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Example 1 (Linear matrix sensing over graphs). In the linear matrix sensing over graphs problem,
the loss function is defined as

f(MΩ;M
∗
Ω) := ∥A(MΩ)−A(M∗

Ω)∥2F ,
where the linear operator A : Rn×n 7→ Rm (defined in (3)) is generated by Gaussian measurements
and m is the number of measurements. For all subsets Ω ⊂ [n] × [n], a similar proof to that
of Theorem 2.3 of [9] implies that the (δ,Ω)-RIP2r,2r condition holds with high probability when
m ≥ cnr/δ2 for some constant c > 0. The intuition behind the proof is that the constructed
ϵ-net for the linear matrix sensing problem is also an ϵ-net for the linear MSoG problem since
∥MΩ −M ′

Ω∥F ≤ ∥M −M ′∥F for all M,M ′ ∈ Rn×n.
Remark 2. In the above example and other examples in practice, the Ω-RIP condition holds with
high probability for a fixed subset Ω. Therefore, we can focus on the event when the Ω-RIP condition
holds since otherwise the results will only differ by a sufficiently small probability.

Next, we show how the optimization complexity is related to the Ω-RIP constant δ and the sampling
rate p via a numerical example. Here, the optimization complexity refers to the probability that the
randomly initialized gradient descent algorithm can find the ground truth matrix M∗. In this example,
we choose a random orthogonal matrix V ∈ Rn×n and define the loss function to be

fc[MΩ; (VM∗V T )Ω] :=
1

2
[M − (VM∗V T )]Ω : (c · I +H) : [M − (VM∗V T )]Ω, ∀M ∈ Rn×n,

where c ∈ R is a hyper-parameter and the tensor H and the ground truth M∗ are defined in Section
3.2. In addition, by a similar analysis as in Section 3.2, we can prove that the function fc satisfies the
(1/2,Ω)-RIP2r,2r condition if we choose c = 3/2. We also numerically verify this conclusion by
checking the curvature [∇2f3/2(MΩ;M

∗
Ω)](K,K) along 104 random directions K ∈ Rn×n. Since

f3/2 is a quadratic function, the (1/2,Ω)-RIP2r,2r condition is given by

1

2
∥KΩ∥2F ≤ KΩ :

(
3

2
· I +H

)
: KΩ ≤ 3

2
∥KΩ∥2F , ∀K ∈ Rn×n,

where we define the tensor multiplication K : H′ : K =
∑

i,j,k,ℓ∈[n] H′
ijkℓKijKkℓ for all K ∈ Rn×n

and fourth-order tensor H′ ∈ Rn×n×n×n. In addition, since the identity tensor I satisfies the (0,Ω)-
RIP2r,2r condition, it is straightforward to prove that the function fc satisfies the (δ,Ω)-RIP2r,2r

condition with δ = 1/(2c− 1) for all c ≥ 1.

We choose the problem size to be n = 10 and r = 5. The regularization parameters are α = 10 and
λ = 100. The set of sampling rates and Ω-RIP2r,2r constants are

p ∈ {0.7, 0.75, . . . , 0.95, 1.0}, δ ∈ {0.2, 0.25, . . . , 0.75, 0.8}.
We solve each problem instance by the Burer-Monterio factorization and the perturbed accelerated
gradient descent algorithm [23], where the constant step size is 0.007/c. We generate 100 independent
problem instances and compute the success rate of the gradient descent algorithm with random
initialization. We say that the algorithm successfully solves the instance if the generalization error
∥UUT −M∗∥F is less than 10−3 × c. If this condition fails, it means that the algorithm is stuck at a
spurious local solution.

The results are plotted in Figure 2. We can see from the figure that the optimization complexity grows
when δ becomes smaller and when p becomes larger. This result shows that the Ω-RIP condition
plays an important role in characterizing the optimization complexity of problem (12). To be more
concrete, we expect that an upper bound on the Ω-RIP constant will be able to guarantee the benign
optimization landscape of problem (12). Moreover, the result is consistent with the results for the
matrix sensing problem and the matrix completion problem. Furthermore, we can see that when the
Ω-RIP constant is smaller than 1/2, the success rate has a stronger correlation with p than δ. This
observation is also reflected in Theorem 1, where the lower bound on the sampling rate is on the same
order as those in the existing works [18, 17] if δ is upper bounded. For the cases when p is close to 1
and δ is larger than 0.5, the success rate is better than the case when p = 1. One possible explanation
for this phenomenon is that the loss function fc has multiple global minima when the sampling rate
is smaller than 1. Instead of converging to a spurious local solution, the implicit regularization [26]
makes the perturbed gradient descent algorithm more likely to converge to the global solution with
the “minimal complexity”, which is likely the ground truth VM∗V T . If the sampling rate is much
smaller than 1, the number of spurious local minima will increase and the perturbed gradient descent
algorithm may stuck at spurious local minima and fail to converge to the ground truth.

7



Figure 2: Success rate of the algorithm with different sampling rate p and RIP constant δ.

3 Theoretical Results

In this section, we provide strong theoretical results on the MSoG problem (12). We first develop
a sufficient condition on the benign landscape of problem (12) and then study the tightness of our
developed condition.

3.1 Global landscape: Strict saddle property

First, we develop conditions under which problem (12) does not have any spurious second-order
critical points and therefore saddle-escaping methods (e.g., [22, 23]) can find an approximate global
minimum in polynomial time. To guarantee the global convergence, the strict saddle property is
commonly considered in the literature:

Definition 5 (Strict Saddle Property [33]). Consider an optimization problem minx∈X⊂Rd F (x) and
let X ∗ denote the set of its global minima. We say that the problem satisfies the (θ, β, γ)-strict saddle
property for θ, β, γ > 0 if at least one of the following conditions is satisfied for every x ∈ X :

dist(x,X ∗) ≤ θ; ∥∇F (x)∥F ≥ β; λmin[∇2F (x)] ≤ −γ,

where dist(x,X ∗) := infx∗∈X∗ ∥x− x∗∥F is the distance between x and X ∗.

For the low-rank optimization problem, the distance in the factorization space is equivalent to the
distance in the matrix space in the sense that there exist constants c1(X ∗), c2(X ∗) > 0 such that

c1(X ∗) · ∥U − U∗∥F ≤ ∥UUT − U∗(U∗)T ∥F ≤ c2(X ∗) · ∥U − U∗∥F

holds for all U ∈ X as long as ∥U − U∗∥F is small and X ∗ is bounded [34]. Denote the objective
function of problem (12) as ℓ(U). As an example of saddle-avoiding methods, the accelerated
perturbed gradient descent algorithm [23] can find a point U0 such that

∥∇ℓ(U0)∥F = O(ϵ), λmin[∇2ℓ(U0)] = −O(
√
ϵ)

in O(ϵ−1.75) iterations with high probability. If we choose ϵ > 0 to be small enough, the strict saddle
property ensures that the point U0 satisfies ∥U0U

T
0 −M∗∥F = O(θ). We note that the Lipschitz

continuity of the Hessian of ℓ can be guaranteed by the regularity assumption 1 and the boundedness
of trajectories of the algorithm, which can be proved in a similar way as Theorem 8 in [22]. In
summary, if the strict saddle property holds, we can apply saddle-avoiding methods to achieve the
polynomial-time global convergence for problem (12).

Now, we prove that the problem (12) satisfies the strict saddle property with high probability under
the Ω-RIP2r,2r condition and the incoherence condition. Compared with Theorem 1, we assume, for
the simplicity of the statement of the theorem, that the Ω-RIP condition holds for all subset Ω since
otherwise, the result will only differ by a small probability.
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Theorem 3. Suppose that the loss function f satisfies the (δ,Ω)-RIP2r,2r condition for all Ω ⊂
[n]× [n] and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(
√
µ+

√
nδ)n

√
µr

]
, np ≥ Θ[µ2r3(κ∗)2 log n], δ <

1

16
.

Then, there exists a small constant ϵ > 0 such that with probability at least 1− 1/poly(n), the MSoG
problem (12) satisfies the (θ, β, γ)-strict saddle property with

θ = Θ(ϵ/σ∗
r ), β = ϵ, γ = Θ(ϵ2/σ∗

r ).

In Theorem 3, we provide the first theoretical results on the MSoG problem (12). Basically, the
theorem shows that if the Ω-RIP2r,2r constant is smaller than an absolute constant, then the same
sampling rate as for the matrix completion problem is sufficient to guarantee the benign landscape of
problem (12). Therefore, the result is a generalization of the results in [17], which considered the case
when the Ω-RIP constant δ is zero and the sampling rate p satisfies a stricter condition (9). On the
other hand, if the sampling rate p is equal to 1, Theorem 3 guarantees that the strict saddle property
holds when the (regular) RIP condition holds with δ < 1/16. Compared with the state-of-the-art
results in [38, 5], the upper bound on δ in our work may not be optimal but is only worse by an
absolute constant. We leave the improvement of the upper bound as future work.

3.2 Tightness of the Ω-RIP condition

To study the tightness of our Ω-RIP condition for problem (12), we construct an instance of problem
(12) that satisfies the (1/2,Ω)-RIP condition but has spurious second-order critical points. Note
that the existence of spurious second-order critical points negates the strict saddle property. The
counterexample is based on a similar idea as those in [38]. More specifically, we assume that n ≥ 2r
and consider the tensor:

H :=
∑
i∈[r]

{
− 1

2

[
(e2i−1e

T
2i−1)⊗ (e2i−1e

T
2i−1) + (e2ie

T
2i)⊗ (e2ie

T
2i)

]
+

1

2

[
(e2i−1e

T
2i−1)⊗ (e2ie

T
2i) + (e2ie

T
2i)⊗ (e2i−1e

T
2i−1)

]
− 1

4

[
(e2i−1e

T
2i)⊗ (e2i−1e

T
2i) + (e2ie

T
2i−1)⊗ (e2ie

T
2i−1)

]
+

1

4

[
(e2i−1e

T
2i)⊗ (e2ie

T
2i−1) + (e2ie

T
2i−1)⊗ (e2i−1e

T
2i)

] }
,

where ei ∈ Rn is the i-th standard basis of Rn. The rank-r ground truth matrix M∗ is constructed as

U∗ := [e1 e3 · · · e2r−1] , M∗ := U∗(U∗)T =
∑
i∈[r]

e2i−1e
T
2i−1.

Then, the loss function is given by

f3/2(MΩ;M
∗
Ω) :=

1

2
(MΩ −M∗

Ω) :

(
3

2
· I +H

)
: (MΩ −M∗

Ω), ∀M ∈ Rn×n.

It is proved in [38] that if Ω = [n]× [n], the function f3/2 satisfies the 1/2-RIP2r,2r condition and
has a spurious second-order critical point. In this work, we generalize the results to the case when the
set Ω is random and the objective function contains a regularizer.
Theorem 4. Suppose that the loss function in problem (12) is chosen to be f3/2. Then, it holds that:

1. The loss function f3/2 satisfies the (1/2,Ω)-RIP2r,2r condition for all Ω ⊂ [n]× [n];

2. For all p ∈ [0, 1], problem (12) has a spurious second-order critical point with probability
at least max{pr(r+1), 1− pr(r+1)/2} ≥ (3−

√
5)/2.

We note that the results in Theorem 4 holds for all p ∈ [0, 1]. From Theorem 4, we cannot improve
the upper bound of δ in Theorem 3 to be better than 1/2. In addition, this result shows that our bound
in Theorem 3 is optimal up to a constant. This tightness result is consistent with that of the matrix
sensing problem in [40, 38].
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4 Conclusion

In this work, we provide the first theoretical analysis of the MSoG problem. A new notion, dubbed as
the Ω-RIP condition, is proposed and shown to be useful in characterizing the optimization complexity
of the MSoG problem. Using an improved incoherence regularizer, we proved the polynomial-time
global convergence of saddle-avoiding methods under the Ω-RIP condition and the incoherence
condition. The bounds on the sampling rate and the Ω-RIP constant are state-of-the-art up to a
constant. Moreover, we showed that our bound on the Ω-RIP condition is tight (up to a constant).
Future works include improving the upper bound on the Ω-RIP constant and the lower bound on the
sampling rate.

References

[1] Ahn, K., Suarez, F.: Riemannian perspective on matrix factorization. arXiv preprint
arXiv:2102.00937 (2021)

[2] Allen-Zhu, Z., Li, Y.: Neon2: Finding local minima via first-order oracles. Advances in Neural
Information Processing Systems 31 (2018)

[3] Bhojanapalli, S., Jain, P.: Universal matrix completion. In: International Conference on Machine
Learning, pp. 1881–1889. PMLR (2014)

[4] Bi, Y., Lavaei, J.: On the absence of spurious local minima in nonlinear low-rank matrix
recovery problems. In: International Conference on Artificial Intelligence and Statistics, pp.
379–387. PMLR (2021)

[5] Bi, Y., Zhang, H., Lavaei, J.: Local and global linear convergence of general low-rank matrix
recovery problems. In: Proceedings of 36th AAAI Conference on Artificial Intelligence (AAAI),
Vancouver, Canada, pp. 1–9 (2022)

[6] Burer, S., Monteiro, R.D.: A nonlinear programming algorithm for solving semidefinite pro-
grams via low-rank factorization. Mathematical Programming 95(2), 329–357 (2003)

[7] Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the
ACM (JACM) 58(3), 1–37 (2011)

[8] Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: Theory and
algorithms. IEEE Transactions on Information Theory 61(4), 1985–2007 (2015)

[9] Candes, E.J., Plan, Y.: Tight oracle inequalities for low-rank matrix recovery from a minimal
number of noisy random measurements. IEEE Transactions on Information Theory 57(4),
2342–2359 (2011)

[10] Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of
Computational mathematics 9(6), 717–772 (2009)

[11] Candès, E.J., Tao, T.: The power of convex relaxation: Near-optimal matrix completion. IEEE
Transactions on Information Theory 56(5), 2053–2080 (2010)

[12] Cartis, C., Gould, N.I., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained
optimization. part i: motivation, convergence and numerical results. Mathematical Programming
127(2), 245–295 (2011)

[13] Chen, J., Liu, D., Li, X.: Nonconvex rectangular matrix completion via gradient descent without
ℓ2,∞ regularization. IEEE Transactions on Information Theory 66(9), 5806–5841 (2020)

[14] Chen, Y., Chi, Y., Fan, J., Ma, C.: Gradient descent with random initialization: Fast global
convergence for nonconvex phase retrieval. Mathematical Programming 176(1), 5–37 (2019)

[15] Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: An
overview. IEEE Transactions on Signal Processing 67(20), 5239–5269 (2019)

[16] Chou, H.H., Gieshoff, C., Maly, J., Rauhut, H.: Gradient descent for deep matrix factorization:
Dynamics and implicit bias towards low rank. arXiv preprint arXiv:2011.13772 (2020)

[17] Ge, R., Jin, C., Zheng, Y.: No spurious local minima in nonconvex low rank problems: A unified
geometric analysis. In: International Conference on Machine Learning, pp. 1233–1242. PMLR
(2017)

10



[18] Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. Advances in
Neural Information Processing Systems pp. 2981–2989 (2016)

[19] Hou, T.Y., Li, Z., Zhang, Z.: Fast global convergence for low-rank matrix recovery via rieman-
nian gradient descent with random initialization. arXiv preprint arXiv:2012.15467 (2020)

[20] Jain, P., Meka, R., Dhillon, I.: Guaranteed rank minimization via singular value projection.
Advances in Neural Information Processing Systems 23 (2010)

[21] Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization.
In: Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pp. 665–674
(2013)

[22] Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points
efficiently. In: International Conference on Machine Learning, pp. 1724–1732. PMLR (2017)

[23] Jin, C., Netrapalli, P., Jordan, M.I.: Accelerated gradient descent escapes saddle points faster
than gradient descent. In: Conference On Learning Theory, pp. 1042–1085. PMLR (2018)

[24] Jin, M., Lavaei, J., Sojoudi, S., Baldick, R.: Boundary defense against cyber threat for power
system state estimation. IEEE Transactions on Information Forensics and Security 16, 1752–
1767 (2020)

[25] Király, F.J., Theran, L., Tomioka, R.: The algebraic combinatorial approach for low-rank matrix
completion. J. Mach. Learn. Res. 16(1), 1391–1436 (2015)

[26] Li, Y., Ma, T., Zhang, H.: Algorithmic regularization in over-parameterized matrix sensing
and neural networks with quadratic activations. In: Conference On Learning Theory, pp. 2–47.
PMLR (2018)

[27] Luo, Y., Li, X., Zhang, A.R.: Nonconvex factorization and manifold formulations are almost
equivalent in low-rank matrix optimization. arXiv preprint arXiv:2108.01772 (2021)

[28] Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. Advances
in Neural Information Processing Systems 26 (2013)

[29] Netrapalli, P., UN, N., Sanghavi, S., Anandkumar, A., Jain, P.: Non-convex robust pca. Advances
in Neural Information Processing Systems 27 (2014)

[30] Pimentel-Alarcón, D.L., Boston, N., Nowak, R.D.: A characterization of deterministic sampling
patterns for low-rank matrix completion. IEEE Journal of Selected Topics in Signal Processing
10(4), 623–636 (2016)

[31] Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM review 52(3), 471–501 (2010)

[32] Stöger, D., Soltanolkotabi, M.: Small random initialization is akin to spectral learning: Opti-
mization and generalization guarantees for overparameterized low-rank matrix reconstruction.
Advances in Neural Information Processing Systems 34 (2021)

[33] Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. Foundations of Computa-
tional Mathematics 18(5), 1131–1198 (2018)

[34] Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M., Recht, B.: Low-rank solutions of linear
matrix equations via procrustes flow. In: International Conference on Machine Learning, pp.
964–973. PMLR (2016)

[35] Wei, K., Cai, J.F., Chan, T.F., Leung, S.: Guarantees of riemannian optimization for low rank
matrix recovery. SIAM Journal on Matrix Analysis and Applications 37(3), 1198–1222 (2016)

[36] Wei, K., Cai, J.F., Chan, T.F., Leung, S.: Guarantees of riemannian optimization for low rank
matrix completion. Inverse Problems & Imaging 14(2) (2020)

[37] Yi, X., Park, D., Chen, Y., Caramanis, C.: Fast algorithms for robust pca via gradient descent.
Advances in neural information processing systems 29 (2016)

[38] Zhang, H., Bi, Y., Lavaei, J.: General low-rank matrix optimization: Geometric analysis and
sharper bounds. Advances in Neural Information Processing Systems 34 (2021)

[39] Zhang, R.Y., Lavaei, J., Baldick, R.: Spurious local minima in power system state estimation.
IEEE transactions on control of network systems 6(3), 1086–1096 (2019)

[40] Zhang, R.Y., Sojoudi, S., Lavaei, J.: Sharp restricted isometry bounds for the inexistence of
spurious local minima in nonconvex matrix recovery. J. Mach. Learn. Res. 20(114), 1–34 (2019)

11



[41] Zheng, Q., Lafferty, J.: A convergent gradient descent algorithm for rank minimization and
semidefinite programming from random linear measurements. In: Proceedings of the 28th
International Conference on Neural Information Processing Systems-Volume 1, pp. 109–117
(2015)

[42] Zhu, Z., Li, Q., Tang, G., Wakin, M.B.: Global optimality in low-rank matrix optimization.
IEEE Transactions on Signal Processing 66(13), 3614–3628 (2018)

12



Appendix

Without loss of generality, we assume that the loss function is symmetric in M , namely,

f(M ;M∗) = f(MT ;M∗), ∀M ∈ Rn×n.

Otherwise, we can replace the loss function by f̄(M ;M∗) := [f(M ;M∗) + f(MT ;M∗)]/2 and
this will not change the values of the objective function in problem (1) in the feasible set.

Denote the objective function of problem (12) as 1
ph(U) + g(U), where

h(U) := f [(UUT )Ω;M
∗
Ω], g(U) :=

∑
i∈[n]

r(∥eTi U∥F ).

For every ∆ ∈ Rn×r, the gradient and the Hessian matrix of h(U) satisfy

⟨∇h(U),∆⟩ = 2
〈
∇f [(UUT )Ω;M

∗
Ω],

(
U∆T

)
Ω

〉
,[

∇2h(U)
]
(∆,∆) = 2

〈
∇f [(UUT )Ω;M

∗
Ω],

(
∆∆T

)
Ω

〉
+
[
∇2f [(UUT )Ω;M

∗
Ω]
] [(

∆UT + U∆T
)
Ω
,
(
∆UT + U∆T

)
Ω

]
.

Since we can exchange the convolution and the derivatives, the gradient and the Hessian matrix of
g(U) satisfy

⟨∇g(U),∆⟩ = 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi U∆T ei
∥eTi U∥F

(1− |y|) dy,

[
∇2g(U)

]
(∆,∆)

=4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 ∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

(1− |y|) dy

+ 12λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2 (eTi U∆T ei
∥eTi U∥F

)2

(1− |y|) dy.

For all ϵ > 0, we say that a point U ∈ Rn×r is an ϵ-approximate first-order critical point of problem
(12) if ∥∥∥∥1p∇h(U) +∇g(U)

∥∥∥∥
F

≤ ϵ.

A Proof of Theorem 3

We first bound the norm of an approximate first-order critical point.
Lemma 1. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ > 0 and

δ < 1, max
i∈[n]

∥eTi U∥F ≥ 11α.

Then, it holds that

∥(UUT )Ω∥F ≤ 1 + δ

1− δ
∥(M∗)Ω∥F .

Proof. Assume that U is an ϵ-approximate first-order critical point such that

∥(UUT )Ω∥F >
1 + δ

1− δ
∥(M∗)Ω∥F .(14)

Using the approximate first-order stationarity, we have

ϵ∥U∥F ≥
〈[

1

p
∇h(U) +∇r(U)

]
, U

〉
=

〈
1

p
∇h(U), U

〉
+ ⟨∇g(U), U⟩ .
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For the first term, we can calculate that〈
1

p
∇h(U), U

〉
=

2

p

〈
∇f [(UUT )Ω],

(
UUT

)
Ω

〉
=
2

p

∫ 1

0

[
∇2f [(M∗)Ω + t(UUT −M∗)Ω; (M

∗)Ω]
]
[(UUT )Ω, (UUT −M∗)Ω] dt

≥2(1− δ)

p

∥∥(UUT )Ω
∥∥2
F
− 2(1 + δ)

p
∥(UUT )Ω∥F ∥(M∗)Ω∥F ≥ 0,

where the first inequality is from the (δ,Ω)-RIP2r,2r condition and Lemma 11 of [4], and the last
inequality is from the assumption (14). Define the set

I := {i ∈ [n] | ∥eTi U∥F ≥ 11α}.
Then, for the second term, we have

⟨∇g(U), U⟩ = 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi UUT ei
∥eTi U∥F

(1− |y|) dy

= 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3
∥eTi U∥F (1− |y|) dy

≥ 4λ

∫ 1

−1

∑
i∈[n]

[(
∥eTi U∥F − 11α

)
+
+ 8α

]3
∥eTi U∥F (1− |y|) dy

≥ 4λ

∫ 1

−1

∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F (1− |y|) dy

= 4λ
∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F .

Combining the last two inequalities, we obtain

ϵ∥U∥F ≥ 4λ
∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F .

Define
i∗ := argmax

i∈[n]

∥eTi U∥.

Then, we obtain

ϵ
√
n∥eTi∗U∥F ≥ ϵ∥U∥F ≥ 4λ

∑
i∈I

(
∥eTi U∥F − 3α

)3 ∥eTi U∥F ≥ 4λ
(
∥eTi∗U∥F − 3α

)3 ∥eTi∗U∥F ,

which further leads to (
∥eTi∗U∥F − 3α

)3 ≤ ϵ
√
n

4λ
.

By choosing ϵ to be sufficiently small, the above inequality implies that

∥eTi∗U∥F < 11α.

This is a contradiction to the condition in the lemma.

Next, we provide a generalization to Lemma 9 of [17].
Lemma 2. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ > 0 and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(1− δ)(

√
µ+

√
nδ)n

√
µr

]
, np ≥ Θ(µr log n) , δ < 1.

Then, there exists a constant c > 0 such that it holds with probability at least 1− 1/poly(n) that

max
i∈[n]

∥eTi U∥2F = O

(
µrσ∗

1

n

)
.
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Proof. Let
i∗ := argmax

i∈[n]

∥eTi U∥.

We only need to consider the case when ∥eTi∗U∥F ≥ 11α. Since U is an ϵ-approximate first-order
critical point, it holds that

ϵ∥eTi∗U∥F ≥
〈
eTi∗

[
1

p
∇h(U) +∇g(U)

]
, eTi∗U

〉
.(15)

Using Taylor’s expansion, it holds that〈
eTi∗ · 1

p
∇h(U), eTi∗U

〉
=
2

p

∫ 1

0

[
∇2f [(M∗)Ω + t(UUT −M∗)Ω; (M

∗)Ω]
]
[(UUT ei∗e

T
i∗)Ω, (UUT −M∗)Ω] dt.

By the (δ,Ω)-RIP2r,2r condition and Lemma 11 of [4], one can write〈
eTi∗ · 1

p
∇h(U), eTi∗U

〉
(16)

≥2

p

〈
(UUT ei∗e

T
i∗)Ω, (UUT −M∗)Ω

〉
− 2δ

p
∥(UUT ei∗e

T
i∗)Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
=
2

p

〈
eTi∗(UUT )Ω, e

T
i∗(UUT −M∗)Ω

〉
− 2δ

p
∥eTi∗(UUT )Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
≥− 2

p
∥eTi∗(UUT )Ω∥F ∥eTi∗(M∗)Ω∥F − 2δ

p
∥eTi∗(UUT )Ω∥F

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
.

By Lemmas 35 and 39 of [17] and Lemma 1, it holds with probability at least 1− 1/poly(n) that

1
√
p
∥eTi∗(M∗)Ω∥F ≤

√
1 + ν∥eTi∗M∗∥F ≤

√
(1 + ν)µr

n
σ∗
1 ,

1
√
p
∥eTi∗(UUT )Ω∥F ≤ O(

√
n)∥UUT ∥∞,

1
√
p

(
∥(UUT )Ω∥F + ∥(M∗)Ω∥F

)
≤ 2

(1− δ)
√
p
∥(M∗)Ω∥F ≤

2
√
(1 + ν)rσ∗

1

1− δ
,

where the constant ν > 0 can be made sufficiently small by choosing a large constant in the condition
np ≥ Θ(µr log n). Substituting into the inequality (16), it follows that〈

eTi∗ · 1
p
∇h(U), eTi∗U

〉
≥−O(

√
µrσ∗

1)∥UUT ∥∞ −O[
√
nrσ∗

1δ/(1− δ)] · ∥UUT ∥∞

=−O[(
√
µ+

√
nδ)

√
rσ∗

1/(1− δ)] · ∥eTi∗U∥2F ,

where the last equality is from ∥UUT ∥∞ = ∥eTi∗U∥2F . Additionally, since ∥eTi∗U∥F ≥ 9α, we have〈
eTi∗∇h(U), eTi∗U

〉
=4λ

∫ 1

−1

〈
eTi∗ ·

∑
i∈[n]

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eie
T
i U

∥eTi U∥F
, eTi∗U

〉
(1− |y|) dy

=4λ

∫ 1

−1

(
∥eTi∗U∥F + αy − 2α

)3 ∥eTi∗U∥F (1− |y|) dy

≥4λ
(
∥eTi∗U∥F − 3α

)3 ∥eTi∗U∥F ≥ 4λ ·
(

8

11

)3

∥eTi∗U∥4F > λ∥eTi∗U∥4F .

Substituting the last two bounds into inequality (15), we know that

ϵ∥eTi∗U∥F ≥ λ∥eTi∗U∥4F −O[(
√
µ+

√
nδ)

√
rσ∗

1/(1− δ)] · ∥eTi∗U∥2F

15



holds with high probability. We can rewrite the above bound as

λ∥eTi∗U∥3F ≤ ϵ+
c(
√
µ+

√
nδ)

√
rσ∗

1

1− δ
· ∥eTi∗U∥F ,

where c > 0 is a constant. If we choose ϵ sufficiently small such that

ϵ2/3 ≤
c(
√
µ+

√
nδ)

√
rσ∗

1

λ1/3(1− δ)
,

the inequality leads to

∥eTi∗U∥2F ≤
c(
√
µ+

√
nδ)

√
rσ∗

1

λ(1− δ)
.

By our choice of λ, we conclude that

∥eTi∗U∥2F ≤ O

(
µrσ∗

1

n

)
.

This concludes our proof.

Now, we consider the second-order necessary optimality condition for an approximate first-order
critical point U . The next lemma bounds the curvature along the direction ∆.
Lemma 3. For all U ∈ Rn×r, we define the direction ∆ := U − U∗R, where U∗ ∈ Rn×r satisfies
U∗(U∗)T = M∗ and

R ∈ argmin
S∈Rr×r,SST=Ir

∥U − U∗S∥F .

Then, it holds that[
∇2h(U)

]
(∆,∆) ≤ 4⟨∇h(U),∆⟩ − [3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F

+ [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F ,

where the constant t =
√
2.

Proof. Define M := UUT . By Taylor’s expansion, we have[
∇2h(U)

]
(∆,∆)

=2
〈
∇f(MΩ),

(
∆∆T

)
Ω

〉
+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
=4⟨∇h(U),∆⟩ − 4 ⟨∇f(MΩ), (M −M∗)Ω⟩ − 2

〈
∇f(MΩ),

(
∆∆T

)
Ω

〉
+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
=4⟨∇h(U),∆⟩ − 4

∫ 1

0

[
∇2f(MΩ + t(M −M∗)Ω;M

∗
Ω)

]
[(M −M∗)Ω, (M −M∗)Ω] dt

− 2

∫ 1

0

[
∇2f(MΩ + t(M −M∗)Ω;M

∗
Ω)

] [
(M −M∗)Ω, (∆∆T )Ω

]
dt

+
[
∇2f(MΩ;M

∗
Ω)

] [
(∆UT + U∆T )Ω, (∆UT + U∆T )Ω

]
.

Using the (δ,Ω)-RIP2r,2r condition, it follows that

[
∇2h(U)

]
(∆,∆) ≤4⟨∇h(U),∆⟩ − 4(1− δ)∥(M −M∗)Ω∥2F − 2

〈
(M −M∗)Ω, (∆∆T )Ω

〉(17)

+ 4δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F + (1 + δ)∥(∆UT + U∆T )Ω∥2F
=4⟨∇h(U),∆⟩ − (3− 5δ)∥(M −M∗)Ω∥2F + (1 + δ)∥(∆∆T )Ω∥2F
+ 4δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F + 2δ

〈
(M −M∗)Ω, (∆∆T )Ω

〉
≤4⟨∇h(U),∆⟩ − (3− 5δ)∥(M −M∗)Ω∥2F + (1 + δ)∥(∆∆T )Ω∥2F
+ 6δ∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F ,
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where we have used the relation ∆UT + U∆T = M −M∗ +∆∆T . Using Hölder’s inequality, we
have

2∥(M −M∗)Ω∥F ∥(∆∆T )Ω∥F ≤ t∥(M −M∗)Ω∥2F + t−1∥(∆∆T )Ω∥2F .
Substituting the above inequality into (17), we obtain[

∇2h(U)
]
(∆,∆) ≤ 4⟨∇h(U),∆⟩ − [3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F

+ [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F .

This is the desired result.

The following lemma is a generalization of Lemma 10 in [17].

Lemma 4. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(
√
µ+

√
nδ)n

√
µr

]
, np ≥ Cµ2r3(κ∗)2 log n, δ <

1

16
,

where C > 0 is a sufficiently large constant. Then, it holds with probability at least 1− 1/poly(n)
that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤ −0.03σ∗

r∥∆∥2F ,

where the constant t =
√
2 and ∆ ∈ Rn×r is defined in Lemma 3.

Proof. By Lemma 2, we can bound the norm of each row of U by

max
i

∥eTi U∥2F = O

(
µrσ∗

1

n

)
with probability at least 1− 1/poly(n). Then, we split the proof into two different cases.

Case I. We first consider the case when ∥∆∥2F ≤ σ∗
r/4. We can calculate that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
(18)

=− 4[3− (5 + 3t)δ]

p

[〈
(U∗∆T )Ω, (∆∆T )Ω

〉
+ ∥(U∗∆T )Ω∥2F

]
+ [1 + (1 + 3t−1)δ − 3 + (5 + 3t)δ]∥(∆∆T )Ω∥2F

≤− 9

p

[〈
(U∗∆T )Ω, (∆∆T )Ω

〉
+ ∥(U∗∆T )Ω∥2F

]
≤− 9

p
· ∥(U∗∆T )Ω∥F

[
∥(U∗∆T )Ω∥F − ∥(∆∆T )Ω∥F

]
,

where the first inequality is from the condition that δ < 1/16 and t =
√
2. Using a similar analysis as

Lemma 10 of [17] and the condition δ < 1/16, it holds with probability at least 1− 1/poly(n) that

1

p
∥(U∗∆T )Ω∥2F ≥ (1− ν)σ∗

r∥∆∥2F ,
1

p
∥(∆∆T )Ω∥2F ≤ σ∗

r

2
∥∆∥2F ,

where constant ν > 0 can be made sufficiently small by choosing a large enough C. Substituting the
above bounds into inequality (18), it holds with the same probability that

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤− 9

√
1− ν

(√
1− ν − 1/

√
2
)
σ∗
r∥∆∥2F < −0.03σ∗

r∥∆∥2F ,

where the last inequality is by choosing a sufficiently small ν.
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Case II. Now, we consider the case when ∥∆∥2F ≥ σ∗
r/4. By a similar analysis as Lemma 10 of

[17], it holds with probability at least 1− 1/poly(n) that

1

p
∥(∆∆T )Ω∥2F ≤ ∥∆∆T ∥2F + νσ∗

r∥∆∥2F ,

1

p
∥(M −M∗)Ω∥2F ≥ (1− ν)∥M −M∗∥2F − νσ∗

r∥∆∥2F ,

where constant ν > 0 can be made sufficiently small by choosing a large enough C. Therefore, the
condition δ < 1/16 implies that with the same probability, we have

1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤[1 + (1 + 3t−1)δ] ·

(
∥∆∆T ∥2F + νσ∗

r∥∆∥2F
)

− [3− (5 + 3t)δ] ·
[
(1− ν)∥M −M∗∥2F − νσ∗

r∥∆∥2F
]

≤
[
2 + 2(1 + 3t−1)δ − (1− ν)[3− (5 + 3t)δ]

]
· ∥M −M∗∥2F

+ [1 + (1 + 3t−1)δ − 3 + (5 + 3t)δ] · νσ∗
r∥∆∥2F

≤
[
−1 + (7 + 3t+ 6t−1)δ +O(ν)

]
· 2(

√
2− 1)σ∗

r∥∆∥2F
=2(

√
2− 1)

[
−1 + (7 + 6

√
2)δ +O(ν)

]
· σ∗

r∥∆∥2F < −0.03σ∗
r∥∆∥2F ,

where the second inequality is from ∥∆∆T ∥2F ≤ 2∥M −M∗∥2F , the second last inequality is from
2(
√
2− 1)∥∆∥2F ≤ 2∥M −M∗∥2F and the last inequality is by choosing a sufficiently small ν.

Combining the two cases completes the proof.

By the same proof as that of Lemma 11 of [17], we can bound the curvature of the regularizer.

Lemma 5. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ ≥ 0,

Then, it holds with probability at least 1− 1/poly(n) that[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩ ≤ 0,

where ∆ ∈ Rn×r is defined in Lemma 3.

Proof. For each i ∈ [n], since the regularizer is non-zero only if ∥eTi U∥ ≥ 9α, we only need to
consider the index set

I := {i ∈ [n] | ∥eTi U∥F ≥ 9α}.

We can calculate that[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩

=4λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 ∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

(1− |y|) dy

+ 12λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2 (eTi U∆T ei
∥eTi U∥F

)2

(1− |y|) dy

− 16λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3 eTi U∆T ei
∥eTi U∥F

(1− |y|) dy

=I1 + I2,
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where we define

I1 :=4λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]3
·
(
∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei

∥eTi U∥3F
− 0.4 · e

T
i U∆T ei
∥eTi U∥F

)
(1− |y|) dy

I2 :=12λ

∫ 1

−1

∑
i∈I

[(
∥eTi U∥F + αy − 10α

)
+
+ 8α

]2
·
(
eTi U∆T ei
∥eTi U∥F

− 1.2 · e
T
i U∆T ei
∥eTi U∥F

)2

(1− |y|) dy.

It is proved in Lemma 11 of [17] that

∥eTi U∥F ∥eTi ∆∥F − eTi U∆T ei
∥eTi U∥3F

− 0.4 · e
T
i U∆T ei
∥eTi U∥F

< 0,

which implies that
I1 < 0.

Similarly, since we assume ∥eTi U∥F ≥ 9α, the second case of Lemma 11 of [17] implies that

eTi U∆T ei
∥eTi U∥F

− 1.2 · e
T
i U∆T ei
∥eTi U∥F

≤ 0,

which leads to
I2 ≤ 0.

Hence, we get I1 + I2 ≤ 0 and[
∇2g(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩ ≤ 0,

which is the desired result.

The next lemma establishes the bound on the curvature along ∆ for an ϵ-approximate first-order
critical point.
Lemma 6. Suppose that U is an ϵ-approximate first-order critical point of problem (12) for a
sufficiently small ϵ and

α2 = Θ

(
µrσ∗

1

n

)
, λ = Θ

[
(
√
µ+

√
nδ)n

√
µr

]
, np ≥ Cµ2r3(κ∗)2 log n, δ <

1

16
,

Then, it holds with probability at least 1− 1/poly(n) that[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆) ≤ −0.03σ∗

r∥∆∥2F + 4ϵ∥∆∥F ,

where ∆ ∈ Rn×r is defined in Lemma 3.

Proof. With probability at least 1− 1/poly(n), we have[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆)

≤4

〈
1

p
∇h(U) +∇g(U),∆

〉
+

[
∇2r(U)

]
(∆,∆)− 4⟨∇g(U),∆⟩

+
1

p

[
−[3− (5 + 3t)δ] · ∥(M −M∗)Ω∥2F + [1 + (1 + 3t−1)δ] · ∥(∆∆T )Ω∥2F

]
≤ϵ∥∆∥F − 0.03σ∗

r∥∆∥2F ,

where the first inequality is by Lemma 3 and the second inequality is by Lemmas 4 and 5. This
finishes the proof of the lemma.
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Using Lemmas 1-6, we are ready to prove the main theorem.

Proof of Theorem 3. Define ∆ ∈ Rn×r in the same way as in Lemma 3. Suppose that U is an
ϵ-approximate first-order critical point of problem (12) for a sufficiently small ϵ and

dist(U,U∗) = ∥∆∥F ≥ 100ϵ

σ∗
r

.

Then, Lemma 6 implies that[
1

p
∇2h(U) +∇2g(U)

]
(∆,∆) ≤ ϵ∥∆∥F − 0.03σ∗

r∥∆∥2F ≤ −200ϵ2

σ∗
r

holds with probability at least 1− 1/poly(n). Hence, with the same probability, the MSoG problem
(12) satisfies the (θ, β, γ)-strict saddle property with

θ = 100ϵ/σ∗
r , β = ϵ, γ = 200ϵ2/σ∗

r .

This completes the proof.

B Proof of Theorem 4

We split the proof into two parts. We first prove that the (1/2,Ω)-RIP2r,2r condition holds for all
non-empty Ω and then prove the existence of spurious second-order critical points.

Proof of the Ω-RIP condition. Since the loss function f3/2 is a quadratic function, it holds that

[∇2f3/2(MΩ;M
∗
Ω)](K,K) =

3

2
∥KΩ∥2F +KΩ : H : KΩ, ∀K,M ∈ Rn×n.

For the notational simplicity, we define
K̃ := KΩ.

By the definition of tensor H, we can calculate that

KΩ : H : KΩ =
∑
i∈[r]

[
− 1

2

(
K̃2

2i−1,2i−1 + K̃2
2i,2i

)
+ K̃2i−1,2i−1K̃2i,2i

− 1

4

(
K̃2

2i−1,2i + K̃2
2i,2i−1 − 2K̃2i−1,2iK̃2i,2i−1

) ]
=− 1

2

∑
i∈[r]

(
K̃2i−1,2i−1 − K̃2i,2i

)2

− 1

4

∑
i∈[r]

(
K̃2i−1,2i − K̃2i,2i−1

)2

.

It is straightforward to see that

KΩ : H : KΩ ≤ 0.(19)

For all real numbers a, b, we have the inequality (a− b)2 ≤ 2(a2 + b2). This inequality leads to

KΩ : H : KΩ ≥ −
∑
i∈[r]

(
K̃2

2i−1,2i−1 + K̃2
2i,2i

)
− 1

2

∑
i∈[r]

(
K̃2

2i−1,2i + K̃2
2i,2i−1

)
≥ −∥K̃∥2F = −∥KΩ∥2F ,

where the last equality is from the definition of K̃. Combining with inequality (19), it follows that

−∥KΩ∥2F ≤ KΩ : H : KΩ ≤ 0.

Hence, we have

1

2
∥KΩ∥2F ≤ [∇2f3/2(MΩ;M

∗
Ω)](K,K) ≤ 3

2
∥KΩ∥2F , ∀K,M ∈ Rn×n,

which further implies the (1/2,Ω)-RIP2r,2r condition of f3/2.
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Existence of spurious second-order critical points. Now, we prove the existence of a spurious
second-order critical point by explicit construction. For all i, j ∈ [n], we define

ωi,j :=

{
1, if (i, j) ∈ Ω

0, otherwise.

Note that we can choose α to be large enough so that

α ≥ 2max
i∈[n]

∥eTi U∗∥F = 2.

Otherwise, the ground truth U∗ is not a global minimum of problem (12) since the regularizer
has a non-zero gradient at U∗. This is consistent with our choice of α in Theorem 3, because the
incoherence of M∗ is µ =

√
n/r and α2 is on the order of Θ(1). We consider two different cases.

Case I. We first consider the case when

p
r(r+1)

2 ≤
√
5− 1

2
.(20)

In this case, we show that the loss function f3/2 has multiple global minima with probability at least
(3−

√
5)/2. By the condition (20), we can estimate the probability

P (ω2i,2j = 1, ∀i, j ∈ [r]) = p
r(r+1)

2 ≤
√
5− 1

2
.(21)

This is because ω2i,2j = ω2j,2i for all i, j ∈ [r] and thus, there are r(r + 1)/2 independent Bernoulli
random variables with parameter p. Suppose that the event in (21) does not happen (this event has
probability (3−

√
5)/2) and ω2i,2j = 0 for some i, j ∈ [r]. Then, we consider the matrix

M̃∗ := M∗ + ϵ · e2ieT2j + ϵ · e2jeT2i,

where ϵ > 0 is sufficiently small. We can verify that M̃∗ is a PSD matrix and

M̃∗
Ω = M∗

Ω, which further leads to f3/2(M̃
∗
Ω;M

∗
Ω) = 0.

This implies that when the event in (21) does not happen, there exists a global minimum of f3/2
that is different from M∗. Therefore, function h(U) also has a global minimum Ũ∗ such that
Ũ∗(Ũ∗)T = M̃∗ ̸= M∗. Note that we can choose ϵ to be small enough such that

α ≥ max
i∈[n]

∥eTi Ũ∗∥F .

Then, we know that the regularizer r(U) is zero at Ũ∗ and Ũ∗ is a spurious second-order critical
point of problem (12).

Case II. Now, we consider the case when (20) does not hold, namely,

p
r(r+1)

2 ≥
√
5− 1

2
.

In this case, a similar calculation to (20) leads to

P (ω2i,2i = ω2i−1,j = 1, ∀i, j ∈ [r]) ≥ pr(r+1) ≥ 3−
√
5

2
.(22)

We focus on the case when the event in (22) holds. Define

U0 :=
1√
2
[e2 e4 · · · e2r] .

It is straightforward that

U0U
T
0 =

1

2

∑
i∈[r]

e2ie
T
2i ̸= M∗.
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We prove that U0 is a second-order critical point of problem (12). By the construction of U0, we have

∥eTi U0∥F ≤ 1√
2
≤ α, ∀i ∈ [n].

Hence, the regularizer r(U) does not contribute to the local landscape of problem (12) around point
U0 and we only need to prove that U0 is a second-order critical point of h(U).

For the first-order optimality condition, we can calculate that

∇f3/2
[(
U0U

T
0

)
Ω
;M∗

Ω

]
=

∑
i∈[r]

(
−ω2i−1,2i−1 +

ω2i,2i

4

)
e2i−1e

T
2i−1(23)

+
∑
i∈[r]

1

2
(ω2i,2i − ω2i−1,2i−1) e2ie

T
2i.

Therefore, the i-th column of the gradient of h(U) at U0 is

[∇h(U0)]i = 2∇f3/2
[(
U0U

T
0

)
Ω
;M∗

Ω

]
(U0)i =

∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1)ω2i,2i · e2i.

If ω2i−1,2i−1 is 0 for some i ∈ [r], a similar construction as Case I shows that function f3/2 has
multiple global minima. Thus, we only need to consider the case when ω2i−1,2i−1 = 1 for all i ∈ [r]
and under this condition, it holds that

[∇h(U0)]i =
∑
i∈[r]

(ω2i,2i − 1)ω2i,2i · e2i = 0,

where the last equality is from the property ω2i,2i ∈ {0, 1}. This verifies the first-order optimality
condition of U0.

Next, we check the second-order necessary optimality condition for U0. For all direction K ∈ Rn×r,
the curvature of h(U) at U0 along K is[

∇2h(U0)
]
(K,K) = 2

〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
+
[
∇2f3/2[(U0U

T
0 )Ω;M

∗
Ω]
] [(

KUT
0 + U0K

T
)
Ω
,
(
KUT

0 + U0K
T
)
Ω

]
= 2

〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
+
(
KUT

0 + U0K
T
)
Ω
:

(
3

2
· I +H

)
:
(
KUT

0 + U0K
T
)
Ω
.

By the event in (22), equation (23) and the condition ω2i−1,2i−1 = 1 for all i ∈ [r], we have

2
〈
∇f3/2[(U0U

T
0 )Ω;M

∗
Ω],

(
KKT

)
Ω

〉
(24)

=

〈 ∑
i∈[r]

(
−2ω2i−1,2i−1 +

ω2i,2i

2

)
e2i−1e

T
2i−1

+
∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1) e2ie
T
2i,

(
KKT

)
Ω

〉

=
∑
i∈[r]

(
−2ω2i−1,2i−1 +

ω2i,2i

2

)
ω2i−1,2i−1∥K2i−1∥2F

+
∑
i∈[r]

(ω2i,2i − ω2i−1,2i−1)ω2i,2i∥K2i∥2F

=
(
−2 +

ω2i,2i

2

) ∑
i∈[r]

∥K2i−1,:∥2F ,
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where Ki,: is the i-th row of K for all i ∈ [n]. By the definition of U0, we can calculate that

U0K
T =

1√
2

[
0 KT

:,1 0 KT
:,2 · · · KT

:,r 0 · · ·
]
, KUT

0 =
1√
2



0
K:,1

0
K:,2

...
K:,r

0
...


.

Therefore, it holds that(
KUT

0 + U0K
T
)
Ω
:
3

2
· I :

(
KUT

0 + U0K
T
)
Ω
=

3

2

∥∥(KUT
0 + U0K

T
)
Ω

∥∥2
F

(25)

≥3
∑
i∈[r]

ω2i,2iK
2
2i,i +

3

2

∑
i∈[r]

∑
j∈[r]

ω2i−1,jK
2
2i−1,j

and (
KUT

0 + U0K
T
)
Ω
: H :

(
KUT

0 + U0K
T
)
Ω
= −

∑
i∈[r]

ω2i,2iK
2
2i,i.(26)

Combining the relations in (24)-(26), it follows that[
∇2h(U0)

]
(K,K) ≥

(
−2 +

ω2i,2i

2

) ∑
i∈[r]

∥K2i−1,:∥2F +
3

2

∑
i∈[r]

∑
j∈[r]

ω2i−1,jK
2
2i−1,j

+ 2
∑
i∈[r]

ω2i,2iK
2
2i,i

=
∑
i∈[r]

∑
j∈[r]

(
−2 +

ω2i,2i

2
+

3ω2i−1,j

2

)
K2

2i−1,j + 2
∑
i∈[r]

ω2i,2iK
2
2i,i.

Now, when the event in (22) happens, we have

ω2i,2i = ω2i−1,j = 1, ∀i, j ∈ [r].

Therefore, we have[
∇2h(U0)

]
(K,K) ≥ 2

∑
i∈[r]

ω2i,2iK
2
2i,i ≥ 0, ∀K ∈ Rn×r,

which is the second-order necessary optimality condition for h(U). In summary, the point U0 is a
spurious second-order critical point of problem (12) with probability at least (3−

√
5)/2.
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