Sparse solution of linear systems:

- Given a matrix \(\Phi \) of size \(m \times n \) with \(m \leq n \), define:

\[R_k = \{ \Phi x \mid x \in \mathbb{R}^n \text{ s.t. } \| x \|_0 \leq k \} \]

where \(\| x \|_0 = \text{number of nonzero entries of } x \)

- Problem of interest: \(\min \| x \|_0 \text{ s.t. } \Phi x = y \) where \(y \in R_k \)

- We aim to find a sparse solution of \(y = \Phi x \).

- Naive strategy if \(\Phi \) is full rank:
 - Choose \(m \) columns of \(\Phi \) and form a matrix \(A = [\phi_1, \phi_2, \ldots, \phi_m] \).
 - Solve \(y = Az \) if \(A \) is non-singular.
 - Among all possible \(A \)'s, find the one leading to the sparsest \(z \).
 - Design \(y \) by adding 0 to \(z \).

- This is not a good strategy because if \(n = 2m \), we need to solve about \(2^n \) equations.

- If \(m = 512 \) and \(n = 1024 \) \(\Rightarrow \) solve at least \(2^{512} \) systems of size \(512 \times 512 \).

- Question: How to find a good algorithm?

- Motivations:

 1. Compressed sensing: economically recording information
 about a vector \(x \).
 - \(\text{data} = \text{signal, image, ...} \)
 - \(x \to \Phi \to A \to \hat{x} \) where \(\hat{x} = x \)
 - \(x \): compressible data, \(\text{goal: design } (\Phi, A) \)
2. Error Correcting Codes:

\[x \rightarrow \begin{array}{c} R \rightarrow Z \\ A \end{array} \]

\[Z = Ax \] where \(A \in \mathbb{R}^{m \times n} \) and \(m > n \)

- The channel corrupts some random entries of \(Z \).

- The received signal is \(W = Z + V \) \(\text{sparse signal; need to correct the errors.} \)

- Define \(B = \begin{bmatrix} A & A^T \end{bmatrix} \) such that \(BB^T = I \)

\[\Rightarrow B^TW = B^TZ + B^TV = \begin{bmatrix} X + A^TV \\ (A^T)^TV \end{bmatrix} \]

- Define \(y = (A^T)^TV \) \(\Rightarrow \) Given \(y \) and \(A^T \), find the sparsest vector \(V \).

- Other motivations: Cryptography, recovery of lost data, ...

- Convex relaxation:

\[\min_x \|x\|_0 \quad \text{s.t.} \quad \Phi x = y \]

\[\Rightarrow \min_x \|x\|_1 \quad \text{s.t.} \quad \Phi x = y \]

- Two techniques to study the relaxation: 1. Mutual coherence, 2. Restricted Isometric Property (RIP)

- Mutual coherence:

- Define spark of \(A \), \(\text{spark}(A) \), as the minimum number of linearly dependent columns of \(A \).

\[\Rightarrow \text{spark}(A) \leq \text{rank}(A) + 1 \]

- Thm: If \(y = \Phi x^* \) and \(\|x\|_0 < \text{spark}(\Phi)/2 \), then \(y \) \(\text{is the sparsest solution.} \)
Proof: Let \(\tilde{x} \) be another solution such that
\[\| \tilde{x} \|_0 \leq \| x^* \|_0. \]
Then,
\[y = \Phi x^* = \Phi \tilde{x} \Rightarrow \Phi (x^* - \tilde{x}) = 0 \]
and
\[\| x^* - \tilde{x} \|_0 \leq \| x^* \|_0 + \| \tilde{x} \|_0 < \text{spark } (\Phi) \]
but \(\| x^* - \tilde{x} \|_0 \) columns of \(\Phi \) must be linearly dependent. \(\Rightarrow \) Contradiction.

By-product: The sparsest solution is unique.

Assume that each column of \(\Phi \) is normalized (\(\Phi \) is called a dictionary)

\[M(\Phi) = \max_{\{i,j \leq n \}} |(\Phi^T \Phi)_{ij}| \]

Mutual coherence

- Property: \(M(\Phi) \leq 1 \)
- Goal: Make \(M(\Phi) \) small.
- Fact: \(M(\Phi) \geq (2^m)^{-\frac{1}{2}} \) if \(n \geq 2m \).

Thm: \(\text{spark } (\Phi) > \frac{1}{M(\Phi)} \)

Main Theorem: Consider the optimization

\[\min \| x \|_1 \text{ s.t. } \| \Phi x - y \|_2 \leq \varepsilon \]

Where \(y = \Phi x_0 + \varepsilon \) with \(\| \varepsilon \|_2 \leq \varepsilon < \varepsilon \) and \(\| x_0 \|_0 = k \).

(\(\varepsilon \): measurement error, \(\varepsilon \): accuracy of solution)

Denote the solution as \(\hat{x}_0 \). If

\[k < \frac{1}{M(4k-1)} \]

\[\Rightarrow \| \hat{x}_0 - x_0 \|_2^2 \leq \frac{(\varepsilon + \delta)^2}{1 - M(4k-1)} \]
- Restricted Isometry Property:

- Given an index set $T \subset \{1, 2, \ldots, n\}$, let A_T be a matrix consisting of those columns of A with indices in T.

- Definition of k restricted isometry constant δ_k:

 Smallest number $\delta_k > 0$ (if exists) such that

 $$
 (1 - \delta_k) \|x\|_2^2 \leq \|A_T x\|_2^2 \leq (1 + \delta_k) \|x\|_2^2 \quad \forall x
 $$

 for all T's satisfying $\#(T) \leq k$.

- Thm: Consider $y = \Phi x_0$ with $\|x_0\|_0 \leq k$. If $\delta_{2k} < 1$, then x_0 is the sparsest solution of $y = \Phi x$.

- Proof: If x_0 and \tilde{x}_0 are both sparse, then:

 $\Phi(x_0 - \tilde{x}_0) = 0$

 $$
 \implies (1 - \delta_{2k}) \|x_0 - \tilde{x}_0\|_2^2 \leq \|\Phi_T (x_0 - \tilde{x}_0)\|_2^2 = 0
 $$

 where y_0 and \tilde{y}_0 are the non-zero parts of x_0 and \tilde{x}_0, and T contains the indices of non-zero entries of $x_0 - \tilde{x}_0$.

- Main Thm: If $\delta_{3k} + 3 \delta_{4k} < 2$, then the convex relaxation is exact.

- How to find an RIP matrix Φ?

- Thm: Let A be a matrix with entries being iid Gaussian random variables with zero mean and variance $\frac{1}{\sqrt{m}}$.
 Then for any $\epsilon > 0$, we have:
\[P \left(|\|\mathbf{A}\|_2^2 - \|\mathbf{x}\|_2^2| < \varepsilon \|\|\mathbf{x}\|_2^2 \right) \geq 1 - 2\varepsilon e^{-\frac{3m}{2}} \quad \forall \mathbf{x} \]

where \(\varepsilon \) is a positive number independent of \(\varepsilon \) and \(\|\mathbf{x}\|_2 \).

\[\Rightarrow \text{ when } m \text{ is large enough, we can find an RIP matrix.} \]

- **Summary:** \(\mathbf{y} = \Phi \mathbf{x}_0 \) and assume \(\Phi = \text{full rank} \)

 if \(\|\mathbf{x}_0\| \leq \frac{m}{\varepsilon} \) \(\Rightarrow \) \(\mathbf{y} = \Phi \mathbf{x} \) has a unique solution \(\text{sparse} \)

\[\text{spark}(\Phi) = m + 1 \]

- **Convex relaxation** \(\min_{\|\mathbf{x}\|_1} \text{ s.t. } \mathbf{y} = \Phi \mathbf{x} \)

 Thm: The relaxation is exact with a high probability in a random case if \(m \geq \text{constant} \cdot k \log \frac{n}{k} \)