1 Problem 5.3

(i) Imagine that when in state \(i \), dummy (or false) transitions which leave the system in state \(i \) occur at rate \(M - v_i \). Then all transitions (real plus dummy) occur at a Poisson rate \(M \) and so the number of such transitions by any time \(t \) is finite. Hence, the number of real transitions is also finite with probability 1.

(ii) let \(X_{n+1} \) denotes the time between the \(n^{th} \) and \(n + 1^{th} \) transition and let \(J_n \) denote the state at time \(n \). If we let

\[N(t) = \sup \{ n : X_1 + \cdots + X_n \leq t \} \]

then \(N(t) \) denote the number of transitions by time \(t \). Let \(j \) be the first recurrent state that is reached and suppose it was reached at \(n_0 \) transition (which is finite by our assumption). Let \(n_1, n_2, \ldots \) be the successive integers \(n \) at which \(J_n = j \). Such integers exist as \(j \) is recurrent. Set \(T_0 = X_1 + \cdots + X_{n_0} \) and \(T_k = X_{n_k - 1} + \cdots + X_{n_k} \). \(T_k \) is the time between \(k - 1^{th} \) and \(k^{th} \) visit to \(j \). It follows that \(\{T_k, k \geq 1\} \) forms a renewal process and hence \(\sum_{k \geq 1} T_k = \infty \) with probability 1. But we have:

\[\sum_{n=1}^{\infty} X_n = \sum_{k=1}^{\infty} = \infty \]

Hence if the number of transitions are infinite then the time for these transitions is also infinite with probability one.

2 Problem 5.4

Let \(T_i \) denote the time to go from \(i \) to \(i + 1 \), \(i \geq 0 \). Then \(\sum_{i=0}^{N-1} T_i \) is the time taken to go from 0 to \(N \). As \(T_i \) is exponential with rate \(\lambda_i \) and the time \(T_i \) are independent we have:

\[E \left[\exp \left(s \sum_{i=0}^{N-1} T_i \right) \right] = \Pi_{i=1}^{N-1} E[\exp(sT_i)] = \Pi_{i=1}^{N-1} \frac{\lambda_i}{\lambda_i - s} \]

Also

\[E \sum_{i=0}^{N-1} T_i = \sum_{i=0}^{N-1} \frac{1}{\lambda_i} \]

and

\[\text{Var} \sum_{i=0}^{N-1} T_i = \sum_{i=0}^{N-1} \frac{1}{\lambda_i^2} \]

3 Problem 5.5

For \(0 \leq s_1 \leq s_2 \ldots \leq s_n \leq t \), we want to calculate

\[P(S_i = s_1, S_{i+1} = s_2, \ldots, S_{i+k-1} = s_k | X(t) = i + k, X(0) = i) \]

which is same as

\[\frac{P(T_i = s_1, T_{i+1} = s_2 - s_1, \ldots, T_{i+k-1} = s_k - s_{k-1}, T_{i+k} > t - s_k | X(0) = i)}{P(X(t) = i + k | X(0) = i)} \]
Using the independence of T_m's and substituting their densities we get:

$$i\lambda e^{-i\lambda s_1} (i+1)\lambda e^{-(i+1)\lambda(s_2-s_1)} \ldots (i+k-1)\lambda e^{-(i+k-1)\lambda(s_{i+k}-s_{i+k-1})}e^{-(i+k)\lambda(t-s_{i+k-1})}$$

\[
\binom{i+k-1}{i-1} e^{-\lambda ti} (1 - e^{-\lambda t})^k
\]

Simplifying we get:

$$k!\prod_{m=1}^k \frac{\lambda e^{-\lambda(t-s_m)}}{1 - e^{-\lambda t}}$$

4 Problem 5.12

(i) Since $P_0 = \frac{1}{\lambda + 1/\mu} = \frac{\mu}{\lambda + \mu}$, it follows from renewal theory (renewal every time we come back to state 0),

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{\alpha_0 \mu}{\lambda + \mu} + \frac{\alpha_1 \lambda}{\lambda + \mu}$$

(ii) The expected total time spent in state 0 by time t is

$$E[T_0(t)] = \int_0^t P_{00}(s)ds = \frac{\mu}{\lambda + \mu} t + \frac{\lambda}{(\lambda + \mu)^2} \left(1 - e^{(\lambda + \mu)t}\right)$$

From this:

$$E[N(t)] = \alpha_0 E[T_0(t)] + \alpha_1 (t - E[T_0(t)])$$.