1 Some Linear Regression Examples

Linear regression is an important method, and so we discuss a few additional examples. First, recall that a linear model given by

\[y = m \cdot x + b + \epsilon, \]

where \(x \in \mathbb{R} \) is a single predictor, \(y \in \mathbb{R} \) is the response variable, \(m, b \in \mathbb{R} \) are the coefficients of the linear model, and \(\epsilon \) is zero-mean noise with finite variance that is also assumed to be independent of \(x \).

For this linear model, the method of least squares can be used to estimate \(m, x \). If we let

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \]
\[\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \]
\[\bar{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i, \]
\[\bar{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \]

then the least squares estimates of \(m, x \) are given by

\[\hat{m} = \frac{\bar{xy} - \bar{x} \cdot \bar{y}}{\bar{x^2} - (\bar{x})^2} \]
\[\hat{b} = \bar{y} - \hat{m} \cdot \bar{x}. \]

These equations look different from the ones we derived in the previous lecture, but they can be shown to be equivalent after performing some algebraic manipulation.

1.1 Example: Linear Model of Demand

Imagine we are running a several hot dog stands, and for \(n = 7 \) different stands we have different prices for a hotdog. For these different stands, we record the number of hotdogs purchased (in a single day) at the \(i \)-th stand and the price of a single hotdog at the \(i \)-th stand. Suppose we would like to build a linear model that predicts demand of hotdogs as a function price, and assume the (paired) data is \(H = \{91, 86, 74, 85, 86, 87, 82\} \) and \(P = \{0.80, 1.30, 2.00, 1.25, 1.20, 1.00, 1.50\} \).

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
 A: The predictor is the price \(P \) of a hotdog, and the response is the number \(H \) of hotdogs purchased.
2. Q: What is the linear model?
 A: The linear model is $H = m \cdot P + b$.

3. Q: Construct a scatter plot of the raw data.
 A:

![Scatter plot](image)

4. Q: Estimate the parameters of the linear model.
 A: We first compute the sample averages:

 \[
 \bar{x} = \frac{1}{7} \cdot (0.80 + 1.30 + 2.00 + 1.25 + 1.20 + 1.00 + 1.50) = 1.2929 \\
 \bar{y} = \frac{1}{7} \cdot (91 + 86 + 74 + 85 + 86 + 87 + 82) = 84.4286 \\
 \bar{xy} = \frac{1}{7} \cdot (91 \cdot 0.80 + 86 \cdot 1.30 + 74 \cdot 2.00 + 85 \cdot 1.25 + 86 \cdot 1.20 + 87 \cdot 1.00 + 82 \cdot 1.50) \\
 = 107.4357 \\
 \bar{x^2} = \frac{1}{7} \cdot (0.80^2 + 1.30^2 + 2.00^2 + 1.25^2 + 1.20^2 + 1.00^2 + 1.50^2) = 1.7975.
 \]

 Inserting these into the equations for estimating the model parameters gives:

 \[
 \hat{m} = \frac{\bar{xy} - \bar{x} \cdot \bar{y}}{\bar{x^2} - (\bar{x})^2} = \frac{107.4357 - 1.2929 \cdot 84.4286}{1.7975 - (1.2929)^2} = -13.7 \\
 \hat{b} = \bar{y} - \hat{m} \cdot \bar{x} = 84.4286 - (-13.7) \cdot 1.2929 = 102.
 \]

5. Q: Draw the estimated linear model on the scatter plot.
 A:
6. Q: What is the predicted demand if the price was 1.25?
A: The predicted demand is

\[\hat{H}(1.25) = \hat{m} \cdot 1.25 + \hat{b} = -13.7 \cdot 1.25 + 102 = 85. \]

1.2 Example: Linear Model of Vehicle Miles

Imagine we conduct a survey in which we ask a random subset of the population to provide the following information:

- Annual salary \(S \)
- Vehicle miles driven last month \(M \)
- County of residence, and we only survey people from the counties

\[C \in \{\text{Alameda, San Francisco, San Mateo, Santa Clara}\} \]

Suppose we would like to build a linear model that predicts vehicle miles driven last month based on an person's annual salary and what county they live in.

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
 A: The response is vehicle miles \(M \). The predictor variables are more complicated because \(C \) is a categorical variable. The predictor variables are: \(S, C_1 = 1(C = \text{Alameda}), C_2 = 1(C = \text{San Francisco}), \) and \(C_3 = 1(C = \text{San Mateo}). \)
In general, if C is a categorical variable with d possibilities, then we must define $d - 1$ binary variables to represent the d possibilities. The $d - 1$ binary variables represent d possible combinations because setting the $d - 1$ binary variables to zero represents the d-th category. Note that we do not define d binary variables.

1.3 Example: Ball Trajectory

Imagine we are conducting a physics experiment for our class, and the experiment is that we throw a small ball and measure its displacement x and height y. Suppose we would like to build a linear model that predicts height of the ball as a function of displacement, and assume the (paired) data is $x = \{0.56, 0.61, 0.12, 0.25, 0.72, 0.85, 0.38, 0.90, 0.75, 0.27\}$ and $y = \{0.25, 0.22, 0.10, 0.22, 0.25, 0.10, 0.18, 0.11, 0.21, 0.16\}$.

Consider the following questions and answers:

1. Q: What is the predictor? What is the response?
 A: The predictor x, and the response y.

2. Q: What is the linear model?
 A: The linear model is $y = m \cdot x + b$.

3. Q: Construct a scatter plot of the raw data.
 A:

 ![Scatter Plot](image)

4. Q: Estimate the parameters of the linear model.
A: We first compute the sample averages:
\[
\bar{x} = 0.5410 \\
\bar{y} = 0.1800 \\
\bar{x}\bar{y} = 0.0974 \\
\bar{x}^2 = 0.3593.
\]

Inserting these into the equations for estimating the model parameters gives:
\[
\hat{m} = \frac{\bar{x}\bar{y} - \bar{x} \cdot \bar{y}}{\bar{x}^2 - (\bar{x})^2} = \frac{0.0974 - 0.5410 \cdot 0.1800}{0.3593 - (0.5410)^2} = 0 \\
\hat{b} = \bar{y} - \hat{m} \cdot \bar{x} = 0.1800 - 0 \cdot 0.5410 = 0.18.
\]

5. Q: Draw the estimated linear model on the scatter plot.
A:

![Scatter plot with linear model](image.png)

6. Q: What is the predicted height if the displacement was 0.2?
A: The predicted height is
\[
\hat{y}(0.2) = \hat{m} \cdot 0.2 + \hat{b} = 0 \cdot 0.2 + 0.18 = 0.18.
\]

2 Coefficient of Determination

From a practical standpoint, it can be useful to evaluate the accuracy of a linear model. Given the ubiquity of linear models, a large number of approaches have been developed. The simplest approach is to visually compare a scatter plot of the data to the plot of the estimated linear model;
however, this comparison can be misleading or difficult to evaluate. Another simple approach is known as the coefficient of determination, which is defined as the quantity

\[R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sum_{i=1}^{n}(y_i - \bar{y})^2} = 1 - \frac{(y - \hat{y})^2}{(y - \bar{y})^2} \]

This is a common approach, and it is popular because it is easy to compute.

The quantity \(R^2 \) ranges in value from 0 to 1. The intuition for this range is that if we chose estimates of \(\hat{m} = 0 \) and \(\hat{b} = \hat{y} \), then the least squares objective would be \(\sum_{i=1}^{n}(y_i - \bar{y})^2 \). And since \(\hat{y}_i \) correspond to the \(\hat{m}, \hat{b} \) estimates that minimize the least squares objective, we must have that \(0 \leq (y - \hat{y})^2 \leq (y - \bar{y})^2 \). Thus, it holds that

\[0 \leq \frac{(y - \hat{y})^2}{(y - \bar{y})^2} \leq 1, \]

which means that \(0 \leq R^2 \leq 1 \).

Furthermore, the closer the quantity \(R^2 \) is to the value 1, then the better the estimated linear model fits the measured data. The reason is that the better the model fits the data, the closer the \(\hat{y}_i \) are to the \(y_i \). Thus, \((y - \hat{y})^2 \) will be close to the value 0 when the model fits the data very well. And so \(\frac{(y - \hat{y})^2}{(y - \bar{y})^2} \) will be close to 0, and \(R^2 \) will be close to 1.

There is a subtlety to this definition, however. In particular, it is the case that \(\hat{y}_i \) can only get closer to \(y_i \) as the number of predictors increases. So if we have a large number of predictors (even if the predictors are completely irrelevant to the real system), it is typically the case that \((y_i - \hat{y}_i)^2 \) is small. Hence, \(R^2 \) will go closer to 1 as the number of predictors increases. As a result, sometimes the adjusted \(R^2 \) value is used instead. The adjusted \(R^2 \) is defined as

\[R^2_{adj} = R^2 - (1 - R^2) \cdot \frac{d}{n - d - 1}, \]

where \(d \) is the total number of predictors (not including the constant/intercept term), and \(n \) is the number of data points. The adjusted \(R^2 \) is only of interest when we have more than one predictor variable.

2.1 Example: Linear Model of Demand

We can compute \(R^2 \) for the hotdog example. First, we compute \(\hat{y}_i \):

\[
\begin{align*}
\hat{y}_1 &= \hat{m} \cdot x_1 + \hat{b} = -13.7 \cdot 0.8 + 102 = 91.0400 \\
\hat{y}_2 &= 84.1900 \\
\hat{y}_3 &= 74.6000 \\
\hat{y}_4 &= 84.8750 \\
\hat{y}_5 &= 85.5600 \\
\hat{y}_6 &= 88.3000 \\
\hat{y}_7 &= 81.4500
\end{align*}
\]
Next, we compute \((y_i - \hat{y}_i)^2\):

\[
\begin{align*}
(y_1 - \hat{y}_1)^2 &= (91 - 91.0400)^2 = 0.0016 & (y_5 - \hat{y}_5)^2 &= 0.1936 \\
(y_2 - \hat{y}_2)^2 &= 3.2761 & (y_6 - \hat{y}_6)^2 &= 1.6900 \\
(y_3 - \hat{y}_3)^2 &= 0.3600 & (y_7 - \hat{y}_7)^2 &= 0.3025 \\
(y_4 - \hat{y}_4)^2 &= 0.0156
\end{align*}
\]

We also compute \((y_i - \overline{y})^2\):

\[
\begin{align*}
(y_1 - \overline{y})^2 &= (91 - 91.4286)^2 = 43.1833 & (y_5 - \overline{y})^2 &= 2.4694 \\
(y_2 - \overline{y})^2 &= 2.4694 & (y_6 - \overline{y})^2 &= 6.6122 \\
(y_3 - \overline{y})^2 &= 108.7551 & (y_7 - \overline{y})^2 &= 5.8980 \\
(y_4 - \overline{y})^2 &= 0.3265
\end{align*}
\]

Finally, we can compute \(R^2\):

\[
R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sum_{i=1}^{n}(y_i - \overline{y})^2} = 1 - \frac{0.0016 + 3.2761 + 0.3600 + 0.0156 + 0.1936 + 1.6900 + 0.3025}{43.1833 + 2.4694 + 108.7551 + 0.3265 + 2.4694 + 6.6122 + 5.8980} = 0.96
\]

2.2 Example: Ball Trajectory

We can compute \(R^2\) for the physics example. First, we compute \(\hat{y}_i\). Since \(\hat{m} = 0\), we have that \(\hat{y}_i = \hat{b} = 0.18\). Next, we compute \((y_i - \hat{y}_i)^2\):

\[
(y_i - \hat{y}_i)^2 = \{8248.3, 7365.1, 5449.4, 7194.4, 7365.1, 7537.7, 6694.5\}.
\]

We also compute \((y_i - \overline{y})^2\):

\[
(y_i - \overline{y})^2 = \{8248.3, 7365.1, 5449.4, 7194.4, 7365.1, 7537.7, 6694.5\}.
\]

Since \((y_i - \hat{y}_i) = (y_i - \overline{y})\), we have that

\[
R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sum_{i=1}^{n}(y_i - \overline{y})^2} = 1 - 1 = 0.
\]