1 Little’s Law

Suppose that we define the following variables

- L – average number of customers in system;
- λ – average arrival rate;
- W – average time in the system.

Then a useful relationship for queues is Little’s Law, which states that

$$L = \lambda W.$$

To see why this relationship is useful, consider the M/M/1 queue from last lecture. There we showed that the average number of customers in the system is given by

$$L = \rho/(1 - \rho), \text{ for } \rho = \lambda/\mu,$$

where λ is the average arrival rate and μ is the average service rate. Using Little’s Law, we have that the average time in the system for a customer in an M/M/1 queue is given by

$$W = L/\lambda = \frac{1}{\mu(1 - \rho)} = \frac{1}{\mu - \lambda}.$$

1.1 Variants of Little’s Law

There are other versions of Little’s Law. Suppose that we define the following additional variables

- L_q – average number of customers waiting to be served;
- L_s – average number of customers being served;
- W_q – average time in the queue waiting to be served;
- W_s – average service time.
Then, we also have

\[L_q = \lambda W_q \]
\[L_s = \lambda W_s. \]

Also, note that because the average time in the system is the average time spent waiting to be served and the average serving time, we have that

\[W = W_q + W_s \]

Again returning to the example of the M/M/1 queue from last lecture, we have that

\[L_s = \frac{\lambda}{\mu} = \rho \]
\[W_q = W - 1/\mu = \frac{\mu - (\mu - \lambda)}{(\mu - \lambda)\mu} = \frac{\rho}{\mu - \lambda} \]
\[L_q = \lambda W_q = \frac{\rho}{1/\rho - 1} = \frac{\rho^2}{1 - \rho}. \]

2 M/M/s Queue with s Lines

Now, we turn our attention to a Markovian queue with \(s \) servers, average arrival rate \(\lambda \), and average service rate for each queue of \(\mu \). First, we examine the situation in which there is a single line for each server. This is the situation at, for instance, Safeway. In our model, we will assume that each customer randomly chooses a line. Then, this is simply \(s \) distinct M/M/1 queues with average arrival rate \(\lambda/s \) and average service rate of \(\mu \), for each queue. Using the results for M/M/1 queues we have that

\[L = s \left(\frac{\lambda/(s\mu)}{1 - \lambda/(s\mu)} \right) = \frac{\lambda/\mu}{1 - \lambda/(s\mu)} \]
\[W = \frac{1}{\mu - \lambda/s}. \]

3 M/M/s Queue with One Line

Now, we turn our attention to a Markovian queue with \(s \) servers, average arrival rate \(\lambda \), and average service rate for each queue of \(\mu \). Here, we examine the situation in which there is a single line. This is the situation at, for instance, Fry’s Electronics or the baggage check-in line for an airline at the airport. Some math gives that

\[L = \frac{\rho}{1 - \rho} C(s, \rho) + s\rho \]
\[W = \frac{C(s, \rho)}{s\mu - \lambda} + \frac{1}{\mu}, \]
where
\[
C(s, \rho) = \frac{\left(\frac{(s\rho)^{s}}{s!}\right) \left(\frac{1}{1-\rho}\right)}{\sum_{k=0}^{s-1} \frac{(s\rho)^{k}}{k!} + \frac{(s\rho)^{s}}{s!} \frac{1}{1-\rho}}
\]
is the probability that all servers are occupied. An approximation is that
\[
W_q \approx \frac{\left(\frac{\lambda}{s\mu}\right) \sqrt{2(s+1)-1}}{s(1 - \frac{\lambda}{s\mu})} \cdot \frac{1}{\mu}
\]
It is interesting to compare an M/M/s queue with one line to an M/M/s queue with s lines. The time spent in an M/M/s queue with s lines is longer than the time spent in an M/M/s queue with one line. The intuition is that having just one line allows for greater utilization of all s servers.

4 M/M/\infty Queue

Some systems are modeled using an infinite number of servers. In this model, the service rate is state-dependent and is given by \(n\mu\) where \(n\) is the number of customers in line, and \(\mu\) is the service rate for a single customer. Some calculations give that \(L = \frac{\lambda}{\mu}\) and \(W = 1/\mu\).

5 More Information and References

The material in these notes follows that of the course textbook “Service Systems” by Mark Daskin and of the Wikipedia article on “Poison process”.