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We present here 2-approximation algorithms for several node deletion and edge
deletion biclique problems and for an edge deletion clique problem. The biclique
problem is to find a node induced subgraph that is bipartite and complete. The
objective is to minimize the total weight of nodes or edges deleted so that the
remaining subgraph is bipartite complete. Several variants of the biclique problem
are studied here, where the problem is defined on bipartite graph or on general
graphs with or without the requirement that each side of the bipartition forms an
independent set. The maximum clique problem is formulated as maximizing the

Ž .number or weight of edges in the complete subgraph. A 2-approximation algo-
rithm is given for the minimum edge deletion version of this problem. The
approximation algorithms given here are derived as a special case of an approxima-
tion technique devised for a class of formulations introduced by Hochbaum. All

Žapproximation algorithms described and the polynomial algorithms for two ver-
.sions of the node biclique problem involve calls to a minimum cut algorithm. One

conclusion of our analysis of the NP-hard problems here is that all of these
problems are MAX SNP-hard and at least as difficult to approximate as the vertex
cover problem. Another conclusion is that the problem of finding the minimum
node cut-set, the removal of which leaves two cliques in the graph, is NP-hard and
2-approximable. Q 1998 Academic Press
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1. INTRODUCTION

We present here new approximation algorithms based on a technique
w xrecently introduced by Hochbaum Hoc96 . The technique relies on the

integer programming formulation of the problem on constraints that
involve up to three variables per constraint, where one of the three
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variables appears only in one constraint. Such problems have approxima-
tion algorithms easily derived by solving a certain minimum cut problem
on a related network. The technique may also be used as a tool to identify
the polynomiality of a problem via the easily recognized structure of its
constraints, which we call monotonicity.

The collection of problems explored here is related to the maximum
clique problem and to the biclique problem. A biclique is a complete
bipartite graph. The maximum biclique problem was studied recently by

w xDawande et al. DKT97 . They described interesting applications of finding
the maximum edge weight subgraph that forms a biclique in bipartite
graphs, and proved that the problem is NP-hard. We study this problem
and several other problems of minimum node deletion or edge deletion so
that the remaining subgraph is a biclique. The biclique problems discussed
are listed in minimization form here:

v Bipartite edge biclique. Given a bipartite graph, the problem is to
delete the minimum weight collection of edges so that the remaining
subgraph forms a biclique.

v General edge biclique. Here the goal is to remove the minimum
Ž .weight collection of edges from a general graph G s V, E so that the

remaining subgraph is a biclique. We consider two variants of the problem
that are NP-hard. In one variant the edges in each side of the biclique may
remain. In the second variant the nodes on each set of the bipartition must
form an independent set and be pairwise nonadjacent in G.

v Bipartite node biclique. Given a bipartite graph, the goal is to delete
a minimum weight collection of nodes, so that the remaining subgraph is a
biclique. This problem is identified as solvable in polynomial time from the
monotonicity of the formulation.

v General node biclique. Given a general graph, the goal is to delete
the minimum weight collection of nodes so that the remaining subgraph is
a biclique. As in the analogue edge problem, the biclique may or may not
be required to have each set in the bipartition independent. Without this
requirement the problem is shown to be solvable in polynomial time; with
the requirement it is shown to be NP-hard and 2-approximable. This latter
problem is also equivalent to a problem of a minimum node separator
leaving two cliques in a graph.

In addition to the biclique problems, we consider an optimization-equiv-
alent variant of the maximum clique problem. This problem is to delete
minimum weight collection of edges so that the remaining subgraph is a
clique. The node deletion clique problem is easily seen to be identical to a
vertex cover problem, and is therefore not discussed here. The formulation
structure of this edge deletion clique problem is technically similar to that
of the edge biclique problems.
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Although the biclique problems may seem at first to be more difficult
than the bipartization problem that involves deleting nodes or edges so the
remaining graph is bipartite, the approximation algorithms here are evi-
dence that the opposite is the case: For the edge and node deletion
bipartization problems, the best approximation algorithms known are of

Ž . Žw x w x.factor O log n GVY96 , GVY94 , where n is the number of nodes in
the graph, whereas all problems discussed here are 2-approximable in
polynomial time. The reader may verify that in our analysis the complete-
ness restriction of a biclique plays a role in making the problem easier.

The paper is organized as follows. We first review the relevant technique
for deriving approximation algorithms for the type of problems discussed
here, IP2 problems. We then discuss the node biclique problems, then the
edge biclique problems, and finally the clique problem. We present the full
network for several selected problems.

One consequence of our analysis here is that since all NP-hard IP2
w xproblems are also at least as hard to approximate as vertex cover Hoc96a ,

then the problems addressed here are MAX SNP-hard and can be approxi-
mated by a factor better than 2 only if vertex cover has such approxima-
tion. To date, no such approximation is known, and it has been conjectured

w xin Hoc83 that 2-approximation is the best possible for the vertex cover
problem.

Notation

Ž . � 4We use either i, j or i, j to denote an undirected edge. For a graph
Ž . Ž . � < Ž . 4G s V, E and a vertex ¨ g V let N ¨ s u u, ¨ g E , the set of

< Ž . < Ž . Ž . Ž .neighbors of ¨ . Let n s N ¨ , N u, ¨ s N u l N ¨ . We refer¨
throughout to a bipartition as the two subsets of nodes that serve on each
side of the biclique or any type of bipartite graph. We will use sans-serif
acronyms to refer to formulations, and roman letters in the reference to
problems.

2. THE IP2 ALGORITHM: AN
APPROXIMATION TECHNIQUE

A class of integer programming formulations with up to three variables
w xper inequality, called IP2, was analyzed for approximations in Hoc96 .

While any linear optimization problem can be written with at most three
variables per inequality, the distinguishing feature of IP2 formulations is

Ž .that two of the three variables the so-called x-variables may appear any
Ž .number of times in other constraints, but the third one the z-variable



APPROXIMATING CLIQUE AND BICLIQUE PROBLEMS 177

may appear only once. An IP2 problem is formulated as

Min Ýn w x q Ýe zjs1 j j i i

subject to a x q b x G c q d z for i s 1, . . . , mi j i k i i ii i

Ž .IP2 l F x F u j s 1, . . . , nj j j

z integer i s 1, . . . , mi 2

x integer j s 1, . . . , n.j

It is assumed that among the constraints’ coefficients, the values of di
are integers. All other entries may attain arbitrary rational values. The

Ž .range of values of the variables U s max u y l is an importantjs1, . . . , n j j
parameter in the complexity of algorithms for IP2. For the biclique and
clique problems, the variables assume no more than three values, and the
value of U is thus fixed. It is thus assumed throughout the discussion in
this section that the value of U is fixed.

A crucial property of some IP2 problems is monotonicity.

DEFINITION 1. An inequality ax y by F c q dz is monotone if a, b G 0
and d s 1.

w xIndeed, as proved in Hoc96 , monotone IP2 problems are solvable in
polynomial time:

Žw x.THEOREM 2.1 Hoc96 . An IP2 problem on monotone constraints is
Žsol̈ able in integers in the time required to sol̈ e a minimum cut or maximum

. Ž . Ž .flow problem on a graph with O n nodes and O m edges.

� 4A monotone IP2 with all constraint coefficients in y1, 0, 1 is also
totally unimodular. That means that all of the subdeterminants of the

� 4constraint matrix assume values in y1, 0, 1 , and in particular, that all
extreme points of the feasible solutions polytope are integral. Such IP2
problems can therefore be solved using any linear programming algorithm,

Ž .and the optimal basic, or extreme point solution is guaranteed to be
integer.

Some of the problems discussed here are ‘‘almost monotone,’’ in the
sense that the first part of the monotonicity requirement with respect to
the x-variables applies. We shall call this form of restricted monotonicity
monotone with respect to the x-̈ ariables. For such problems the violation of
monotonicity is in the z-variables appearing in more than one constraint,
or having coefficients, d, not equal to 1:

COROLLARY 2.1. Consider an IP2 problem monotone with respect to the
x-̈ ariables.



DORIT S. HOCHBAUM178

Ž .i If the z-̈ ariables appear up to p times, then there is a polynomial
time algorithm attaining a superoptimal solution with the x-̈ ariables integral
and the z-̈ ariables integer multiples of 1rp.

Ž . < <ii If the z-̈ ariables appear with coefficients d with D s max d ) 1,i i i
then there is a polynomial time algorithm attaining a superoptimal solution
with the x-̈ ariables integral and the z-̈ ariables integer multiples of 1rD.

Ž .With Theorem 2.1 the proof is straightforward. For i each occurrence
of a z-variable is interpreted as a different variable, z Ž i., and the cost of

Ž . Ž . Ž .each such occurrence is 1rp c z , where c z is the cost coefficient of z
in the objective function. The resulting system is monotone and solvable in

Ž . p Ž i.integers where the value of z is then set equal to z s 1rp Ý z . Foris1
Ž .ii the variable z is substituted by z9 s DZ, and the problem is solved in

Ž .integer z9 as a monotone problem. The value of z is set to z s 1rD z9
for z9 integer.

Although the general IP2 is NP-hard, it is solvable in polynomial time in
half integers in the x-variables. That solution is a lower bound to the
integer optimum and thus is a superoptimal solution. Not only is the bound
of better quality compared to a bound derived from a linear programming
relaxation; it is also obtained by using a combinatorial algorithm of
minimum cut on graph that runs in strongly polynomial time and more
efficiently than a linear programming algorithm. Such a superoptimal
solution is useful in approximation algorithms. The reader is referred to
w xHoc96 for additional details.

In this paper we show that for all problems discussed we can derive a
superoptimal half integral solution that can be rounded to a 2-approximate
solution.

The case of IP2 problems with only two variables per inequality was
w x w x w xanalyzed in HN94 and in HMNT93 . Hochbaum and Naor HN94

devised a polynomial time algorithm to solve the monotone problem in
integers, when the coefficients a , b in constraint i are of opposite signs.i i

w xHochbaum et al. HMNT93 described a polynomial time 2-approximation
algorithm for the nonmonotone version which is NP-hard. Problems that
are IP2 with no more than two variables per inequality always have a
feasible rounding leading to a 2-approximation, provided that the problem
has a feasible integer solution. This property is not shared with problems
that have three variables per inequality. But if a feasible rounding exists, it
frequently leads to a more efficient approximation algorithm. Several
examples of this type are illustrated in this paper.

Ž .In the complexity expressions we let T n, m be the time required to
solve a minimum s, t cut problem on a graph with m arcs and n nodes.
Ž . Ž Ž 2 ..T n, m may be assumed to be equal to O mn log n rm , which is the

complexity of the push-relabel algorithm with dynamic tree data structure
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w xGT88 . When we refer to half integral solutions, these are feasible solu-
tions with all components that are integer multiple of half.

Žw x.THEOREM 2.2 Hoc96 . Assume that in the gï en IP2 problem, d F 1i
and U F 2. Then, a superoptimal half integral solution to the IP2 problem is

Ž .attained in time T n, m .

The half integral solution resulting from the solution is used to derive a
2-approximate solution by rounding its components to an integer feasible
solution for each of the problems discussed. The 2-approximation algo-
rithms presented in this paper are special cases of Theorem 2.2.

The technique for solving the IP2 problem in integer multiples of half
involves transforming the formulation to another formulation where the
constraints are monotone and their coefficients form a totally unimodular
matrix. That, in turn, is solvable in polynomial time in integers. The
transformation is such that only a factor of 2 is lost in the integrality of the

Žx-variables if the original formulation was nonmonotone for monotone
.formulations there is no loss of integrality . That is, when the inverse

transformation is applied, every integer value of the variable is mapped to
a half integer. This technique will be illustrated in detail for some of the
problems discussed here.

The construction of the networks described here follows the method
w xintroduced in Hoc96 . To facilitate the deciphering of the networks

described, we mention only that each node is associated with some binary
choice of values, and the rule of identifying a node value is to set it at its
upper bound if and only if it is in the source set of a cut.

3. THE NODE BICLIQUE PROBLEM

3.1. The Bipartite Node Biclique Problem

The node biclique problem on a bipartite graph is solvable in polynomial
w xtime. This was first observed by Yannakakis Yan81b . The problem is

equivalent to the maximum independent set on bipartite graphs that is
known to be solvable by a minimum cut algorithm. The polynomiality
is also evident from the formulation that is monotone and thus solvable in

Ž .polynomial time in integers. To see this, consider a maximization formu-
Ž w x.lation of the problem previously given in DKT97 given on the bipartite

Ž .graph B s V , V , E . Let x s 1 if node j is in the biclique.1 2 j

BNBŽ .
Max Ý w xjg V j j

� 4subject to x q x F 1 for edge i , j f E, i g V , j g Vi j 1 2

� 4x g 0, 1 for all j g V .j
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The constraints each involve two types of variables, those representing
nodes in V and those representing nodes in V . Thus multiplying one of1 2
these sets, say the variables in V , by y1 gives a formulation that is2
monotone. The network constructed for solving such a formulation is a
bipartite network with only source and sink-adjacent arcs having finite
capacity. The network is depicted in Fig. 1.

The formulation of BNB is identical to the formulation of the indepen-
Ž .dent set problem on the bipartite complement B s V , V , E . We sketch1 2

for the sake of completeness the basic idea of using a minimum cut
algorithm for solving the independent set problem on bipartite graphs.

The minimum s, t-cut problem corresponding to the independent set
problem is defined on a network where all nodes i in V are linked to the1
source with arcs of capacities u s w , and all nodes j in V are linkeds, i i 2
to a sink t with arcs of capacities u s w . All edges in the bipartitej, t j
graphs are represented as directed arcs from V nodes to V nodes with1 2

Ž . Ž .infinite capacity. Given a finite capacity cut S, T , the set S l V j1
Ž . ŽT l V is an independent set of weight Ý w y Ý u q2 jg V j V j ig V l T s, i1 2 1

.Ý u . Thus the weight of the independent set is equal to ajg V l S j, t2

constant minus the weight of the corresponding finite cut. Minimizing the
capacity of the cut is therefore equivalent to maximizing the weight of the
independent set. Although not immediately evident, this algorithm is a
special case of the algorithm for solving problems on two variables per

w xinequality of HMNT93 , which generates a network identical to that in
Fig. 1.

The corresponding node deletion problem}the deletion of minimum
weight collection of nodes so that the remaining bipartite graph is com-

Ž .FIG. 1. The network used to solve the bipartite node biclique BNB problem.
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plete}is obviously solvable in polynomial time as well. The optimal
solution is the complement of the independent set corresponding to the
minimum cut.

3.2. General Node Biclique, without the Independence Requirement

The general node biclique problem is to find in a general graph
Ž .G s V,E , a node-induced subgraph that forms a biclique in that it

defines two disjoint subsets of nodes, V , V ; V, that include all edges1 2
between V and V , V = V . In this subsection we consider the version in1 2 1 2
which the biclique is not required to have the nodes on each side of the
bipartition pairwise nonadjacent. We provide two different formulations
for this problem, with the first having two variables per inequality, and the
second having three variables per inequality. The second formulation leads
to a more efficient algorithm and is more useful in extensions to other
formulations discussed here. In the first formulation the objective is to
maximize the weight of the nodes in the biclique. It is shown that the
formulation is monotone, and thus the problem is solvable in polynomial
time.

3.2.1. Formulation 1

Let each node have three possible states indicated by the values y1, 0, 1.
The values 1 and y1 imply that the node is in the bipartition, and specify
which side of the bipartition it is in. The value 0 implies that node j is not
in the biclique. A node contributes to the objective function if it is in the
biclique, or if its value is y1 or 1. The variable y Ž1. is equal to 1 whenj
x s y1 and y Ž2. s 1 when x s 1. One trivial feasible solution is a singlej j j
edge, the endpoints of which form a biclique. The formulation is given for

� 4each possible choice of such edge s, t g E. The formulation is given first
for the maximization problem. It models the maximum node biclique
Ž .MNB problem on general graphs conditioned on a given pair s, t being in
the biclique.

MNB s, t( )Ž .1

Ž1. Ž2.Max Ý w y q Ý w yjg V j j jg V j j

Ž1.subject to 1 y x G 2 y for all j g Vj j

Ž2.1 q x G 2 y for all j g Vj j

� 4x y x F 1 for edge i , j f Ei j

� 4x y x F 1 for edge i , j f Ej i

x s 1, x s y1.s t

Ž1. Ž2.� 4x g y1, 0, 1 , y , y binary for all j g V .j j j
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The first two sets of constraints ensure that nodes contribute weight to the
biclique only when they are selected on either side of the bipartition.

Ž Ž . . Ž .LEMMA 3.1. The formulation MNB s, t is monotone, and MNB is1
nŽ Ž Ž . ..thus sol̈ able in integers in O m ? T n, y m .2

Proof. The formulation has up to two variables per inequality, and
their coefficients are of opposite signs. To see this, we replace the
variables y Ž1. by their negatives yXŽ1. s yy Ž1.. The variables yXŽ1. thusj j j j

� 4assume values in y1, 0 . Theorem 2.1 is applicable to this monotone
formulation. The optimal integer solution can therefore be generated in
polynomial time, by constructing a minimum cut solution on a certain

Ž .network. The network for the minimization version, DNB s, t , is given in1
Fig. 2.

The running time for solving the problem is m times the complexity of
nŽ . < <minimum cut on a graph with n nodes and m s y E arcs. The overall2

nŽ Ž Ž . ..complexity is thus O m ? T n, y m .2

To speed up the running time, one could employ ideas similar to those
used by Hao and Orlin’s algorithm for minimum cut in directed networks
w xHO94 . That algorithm involves switching the identity of the sink, yet it is
necessary also to adapt it to switching the identity of the source. Such an
adaptation was recently presented by Henzinger et al. in the context of

w xnode connectivity HRG96 . Indeed, the node biclique problem is closely
related to the node connectivity problem, as we show next.

The complementary problem to the maximum node biclique is the
minimization of weight of nodes deleted so that the remaining subgraph is

Ž Ž . .FIG. 2. The network used to solve DNB s, t .1



APPROXIMATING CLIQUE AND BICLIQUE PROBLEMS 183

a biclique. This minimization problem is, of course, also solvable in
polynomial time. The formulation of the deletion node biclique problem
Ž . Ž Ž . .DNB corresponding to the formulation MNB s, t has one shortcoming1
}the objective value is not quite the weight of the deleted nodes. Here
the value of the integer objective is Ý w q Ý w , which differs fromjg V j x s0 jj

the desired objective by a constant, W s Ý w .jg V j
The corresponding set of variables for the deletionrminimization prob-

lem includes the variables y Ž1. s 1 if x s 0 or y1, and y Ž2. s 1 if x sj j j j
1 or 0.

DNB s, tŽ .Ž .1

Ž1. Ž2.Min Ý w y q Ý w yjg V j j jg V j j

Ž1.subject to 1 y x F 2 y for all j g Vj j

Ž2.1 q x F 2 y for all j g Vj j

� 4x y x F 1 for edge i , j f Ei j

� 4x y x F 1 for edge i , j f Ej i

x s 1, x s y1.s t

Ž1. Ž2.� 4x g y1, 0, 1 , y , y binary for all j g V .j j j

A description of the network is given in Fig. 2. For each node j we have
four nodes in the network. One, indicated by x s 0, implies that x G 0 ifj j
the node is in the source set of a minimum cut. Similarly, the node
indicated with x s 1 implies that x s 1 if this node is in the source set.j j
The two other nodes correspond to yXŽ1. and y Ž2., and attain their upperj j
bound, of 0 and 1, respectively, if the nodes are in the source set.

Ž . Ž .The network has O n nodes and O m q n edges. The DNB problem is
nŽ Ž Ž . ..thus solvable in time O m ? T n, y m .2

Although the problem is in P as a consequence of its monotonicity, it
turns out that there is another explanation for the polynomiality:

LEMMA 3.2. The deletion node biclique problem, DNB, without the inde-
pendence restriction is equï alent to the weighted node connectï ity problem on
the complement graph.1

Ž .Proof. A graph is complete bipartite without independence restriction
if and only if its complement is disconnected}the two sides of the
bipartition form unions of connected components in the complement
graph. So, the minimum number of nodes whose deletion leaves a com-
plete bipartite subgraph is equal to the node connectivity of the comple-
ment graph.

1 We gratefully acknowledge M. Yannakakis for pointing this out.
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The equivalence of DNB to the node connectivity problem permits the
w xuse of the implementation described in HRG96 to solve DNB in time

nŽ Ž Ž . ..O k ? T n, y m , where k F mrn is the unweighted node connectiv-1 12

ity of G.
The directed version of the problem is also easy to represent: to

Ž .formulate the directed node connectivity problem on G s V, A , we
replace the pairs of constraints,

� 4x y x F 1 for edge i , j f Ei j

� 4x y x F 1 for edge i , j f E,j i

Ž .by the single constraint, x y x F 1, for i, j f A. The directed nodei j
connectivity is equivalent to a directed node biclique problem with a
complete set of arcs directed from one side of the bipartition to the other.

3.2.2. Formulation 2

This alternative formulation for the node biclique problem has the
advantage of having an ‘‘exact’’ objective. The formulation relies again on
the argument that the optimal biclique contains at least one pair of nodes
in the graph and the edge that links them. This time, however, we take
advantage of the restriction to include nodes s and t in the clique by
removing a priori all nodes that cannot be present in the same biclique
with these two nodes. For a pair of adjacent nodes s, t in the biclique, we

Ž .consider the subgraph induced by the neighbors of s, N s , that contain t,
Ž .and the neighbors of t, N t , that contain s. Any biclique containing s and

Ž . Ž .t must have each side of its bipartition contained in N s and N t ,
respectively. This construction appears to reduce the general graph prob-

Ž . Ž .lem to the bipartite version on N s , N t . This is not the case, however, as
Ž . Ž . Ž .there are nodes in N s, t s N s l N t that are candidates for either

side of the bipartition.
Ž .The construction of the induced bipartite graph has N s for one side of

Ž . Ž .the bipartition and N t for the other. The nodes in N s, t appear on
Ž . Ž .both sides, with each node ¨ duplicated as ¨ in N s and ¨ 9 in N t , and

each copy having all edges between ¨ and all of the nodes adjacent to it on
the opposite side of the bipartition. It is important to note that there is no
edge between ¨ and ¨ 9 to prevent both copies from being present in the
biclique.

We choose here decision variables x and y that are binary. Thej j
Ž . Ž . Ž .variable x s 1 if the node j g N s j N t _ N s, t is deleted from thej

Ž .graph and the variable y s 1 for j g N s, t if the node j is deleted fromj
the graph. The determination of the side of the bipartition that j belongs
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Ž . Ž .to follows immediately from its membership in either N s or N t . The
Žchallenge is to make sure that a node that appears on both sides because

Ž ..it is in N s, t will not be charged for unless it appears on neither side of
the selected biclique, and then charged for only once for its deletion. This

Ž .is achieved first by setting a constraint x q x G 1 for i, j f E, whichi j
applies in particular to the pair ¨ , ¨ 9 as x q x G 1, thus ensuring that at¨ ¨ 9

Ž .least one of the copies it deleted. Second, a node ¨ in N s, t is considered
deleted only if both copies of the node are deleted and the corresponding
variables’ values are 1, in which case the value of the corresponding y
variable is 1.

Ž . Ž .Let V s N s j N t , and E be the set of edges with both endpointss, t s, t
in V .s, t

Ž Ž . .DNB s, t 2

z s Min Ý w x q Ý w ys, t jg V _ NŽ s, t . j j jg NŽ s, t . j js, t

Ž .subject to x q x y 1 F y for ¨ g N s, t¨ ¨ 9 ¨
� 4 Ž .x q x G 1 for edge i, j f E i g N t ,i j s, t

Ž .j g N s
� 4x g 0, 1 , for j g V .j s, t

Remark 3.1. It is optional but not essential to include here the condi-
tion that x s x s 0. If one of these two nodes is deleted in the optimals t

Ž .solution, then the edge s, t is not a part of an optimal biclique.

Ž Ž . .LEMMA 3.3. The formulation DNB s, t is monotone, and the linear2
programming relaxation’s basic solutions are integral.

Proof. To see that the formulation is equivalent to a monotone one, we
Ž .multiply the variables x for j in N s by y1 so that they attain values inj

� 4y1, 0 . The resulting formulation is

Ž Ž . .DNB s, t 2

z s Min Ý w x q Ý w ys, t jg V _ N j j ig NŽ s, t . i is, t Ž s, t ..
Ž . Ž .subject to y1 q yx q x F y for ¨ g N s, t¨ ¨ 9 ¨

� 4x y x G 1 for edge i, j f E,i j

Ž . Ž .i g N t , j g N s
� 4 Ž .x g y1, 0 , for j g N sj

� 4 Ž .x g 0, 1 , for i g N ti

� 4 Ž .y g 0, 1 , for j g N s, t .j

This formulation is now monotone. Therefore a procedure involving mini-
mum cut is delivering an integer solution. Furthermore, the constraint
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� 4matrix has all coefficients in 0, y1, 1 and is monotone and therefore
w xtotally unimodular, as shown in Hoc96 , and as discussed in the Introduc-

tion, it is a cut polytope. Hence the linear programming optimal solution
and all basic solutions are also integer.

Solution method for general node biclique. We solve for each s, t g V
Ž . Ž Ž . .such that s, t g E the formulation DNB s, t . We then choose among2

the values Ý w q z the smallest value of the relaxation. Sincejg V _V j 2, ts, t

the formulation is monotone, the optimal solution delivered is in integers.
Ž .The network is given in Fig. 3. Note that a node in N s is in the source

set if and only if its value is 0, and in the sink set if and only if its value
is y1.

nŽ . < Ž . <Complexity. For each s, t pair there are up to 2 y 2m q N s, t s2

Ž 2 .O n edges in the constructed graph. The complexity is thus m times the
Ž .complexity of solving a minimum cut problem on a graph with O n nodes

Ž 2 . Ž Ž 2 ..and O n edges, O m ? T n, n . This running time is a constant factor
faster than for formulation 1. The difference in running time is attributed
to having a formulation with three variables per inequality versus the two
variables per inequality interpretation in the previous formulation. As we
shall see, for edge biclique formulations this different interpretation may

Ž Ž . .FIG. 3. The network used to solve DNB s, t .2



APPROXIMATING CLIQUE AND BICLIQUE PROBLEMS 187

result in a more significant gap in the complexity of the approximation
algorithm.

3.3. General Node Biclique, with the Independence Requirement

Adding the independence requirement lends the previous formulations
nonmonotone: it is necessary to include constraints of the type x q x F 1i i1 2

Ž . Ž .for i , i g N s , or for i , i g N t . Such constraints are no longer1 2 1 2
monotone, since the variables cannot be partitioned into two distinct sets
so that one set’s coefficients can be made negative. We verify that such a
partition is impossible by demonstrating that the general node biclique
problem is an NP-hard problem.

LEMMA 3.4. The general node biclique problem with independence require-
ment is NP-hard.

Proof. We reduce the independent set problem to this general node
biclique problem. Given an independent set problem on a graph G s
Ž . 2V, E , we construct a graph G by duplicating the set of nodes V as V and
V 9 and the edges as E and E9. Now join every node in V with every node
in V 9. A biclique in G2 is any pair of independent sets in V and V 9. In
particular, the weight of the nodes in the biclique is maximized if the
independent set in V and the one in V 9 are of maximum weight.

For an alternative proof that the problem is NP-hard, observe that the
biclique subgraph property is hereditary, and as such the complexity

w xargument of Yannakakis Yan81b implies it is NP-hard.
To formulate the problem we employ the choice of variables x asj

binary variables equal to 1 and only if node j is deleted. As before, we
Ž . Ž .construct the bipartite graph on N s , N t for any choice of adjacent

nodes s and t. This time, since each side of the bipartition must be
Ž .independent, all nodes of N s, t are removed from the graph, as they are

adjacent to both s and t and thus cannot be on either side of the
bipartition.

Ž . Ž . Ž . Ž . Ž . Ž .We let N9 s s N s _ N s, t and N9 t s N t _ N s, t , and V ss, t
Ž . Ž .N9 s j N9 t .

NBI s, tŽ .Ž .
z s Min Ý w xs , t jg V j js , t

� 4subject to x q x G 1 for edge i , j f E, i g N9 t ,Ž .i j

j g N9 sŽ .
� 4x q x G 1 for edge i , j g E i , j g N9 tŽ .i j

� 4x q x G 1 for edge i , j g E i , j g N9 sŽ .i j

� 4x g 0, 1 , for j g V .j s , t
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The first set of constraints says that for any edge missing in the
bipartition, at least one endpoint is deleted so as not to violate the
complete bipartite requirement. The two other sets of constraints say that

Ž . Ž .for any edge within N s or N t , at least one endpoint is not in the
biclique, as otherwise the independence requirement will be violated.

Complexity and solution method. There are a couple of alternative
ways of solving this problem. In one we monotonize and solve m minimum

Ž . Ž 2 .cut problems on a graph with 2 n q n nodes and O n edges for a totals t
Ž Ž 2 ..complexity of O m ? T n, n . Alternatively, observe that the formulation

Ž Ž ..NBI s, t is that of a vertex cover on a graph containing the set of edges
Ž . Ž .induced by N9 s and N9 t and the complement of the edge set in the

bipartition. Each of these m vertex cover problems is 2-approximable in
polynomial time. The 2-approximation for the general node biclique prob-
lem is the minimum of Ý w q z for all pairs s and t. It isjg V _V j s, ts, t

possible to use Bar-Yehuda and Even’s 2-approximation algorithm for
w xvertex cover BYE81 , which runs linear in time in the number of ele-

Ž 2 .mentsredges that need to be covered. Here this number is O n . The
Ž .procedure has to be run for each selected edge s, t , and thus the overall

Ž 2 .complexity is O mn . The appropriate network is depicted in Fig. 4.

FIG. 4. The network used to solve the node biclique problem with independence
Ž Ž .. � 4 Ž . Ž .requirement NBI s, t . Here i, j f E, or i, j g N9 t , or i, j g N9 s . The set V iss, t

� 4assumed to contain n nodes. V s 1, . . . , n .s, t
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Therefore we have a polynomial 2-approximation algorithm for minimiz-
ing node biclique on general graphs.

Remark 3.2. Consider the clique vertex connectivity problem, which is
to find a minimum weight node separator, the removal of which leaves two
disconnected cliques. That problem is identical to the general node bi-

Ž .clique with the independence requirement NBI on the complement
Ž .graph. To see this, apply the same arguments as in Lemma 3.2 . The

clique vertex connectivity problem is hence NP-hard and 2-approximable,
as a consequence of the discussion above.

This is remarkable in that the node deletion problem that leaves a single
clique in a graph is equivalent to the vertex cover problem and thus is
2-approximable. Here we require that the deleted node set leaves two
cliques, and yet the problem is still 2-approximable without an increase in
complexity. In contrast, the node deletion problem to two cliques that are
not required to be fully disconnected is the bipartization node deletion
problem. For this problem the best approximation factor known to date is
Ž . w xO log n GVY94 .

4. THE EDGE BICLIQUE PROBLEM ON
BIPARTITE GRAPHS

The edge-weighted biclique problem is to delete from a bipartite graph
Ž .B s V , V , E a minimum weight collection of edges so that the remain-1 2

ing edges induce a complete bipartite graph}a biclique. We refer to this
Ž .problem with the acronym BEB bipartite edge biclique . Dawande et al.

proved that the weighted version of this problem is NP-complete by
w xreduction from maximum clique DKT97 . For the sake of completeness,

we sketch this reduction.

Žw x.LEMMA 4.1 DKT97 . Edge biclique on bipartite graph is an NP-hard
problem.

Proof. The reduction is from the maximum clique problem defined on
Ž . Ž .a graph G s V, E . Construct a bipartite graph V, V, E9 with the set of

�Ž . <Ž . 4 Ž .edges E9 s u, ¨ u, ¨ g E, or u s ¨ . The edges of the form u, u get
the weight of 1, and the others the weight of 0. A maximum weight
biclique corresponds to a maximum clique with a number of nodes equal
to the weight of the biclique.

We present two alternative formulations of the problem. There is a
trade-off between the two formulations, with one leading to a superopti-
mal half integral solution faster than the other. Yet the slower formulation
provides a tighter lower bound but the same approximation factor.
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4.1. Formulation 1

Let a node variable x be 1 if node j is in the biclique and 0 otherwise.j
Ž .Let variable z be defined for each edge i, j g E as equal to 1 if thei j

edge is deleted or 0 otherwise. Equivalently stated, z s 1 if and only ifi j
x q x - 2. The following formulation of bipartite biclique is an IP2:i j

BEB1Ž .
Min Ý c zŽ i , j.g E i j i j

subject to 2 y x q x F 2 z for i , j g EŽ . Ž .i j i j

x q x F 1 for i , j f E i g V , j g V .Ž .i j 1 2

x , z binary for all i , j.i i j

The first set of constraints guarantees that unless an edge has both
endpoints in the biclique, it must be deleted. The second set ensures that
every pair of nodes included in the biclique, on opposite sides of the
bipartition, must have an edge between them. Together these constraints
say that the set of nodes selected is a biclique, and that edges not in the
biclique are deleted. In each constraint there is one node variable that
belongs to V and one to V . These can thus be made to appear with1 2
opposite signs. Only the coefficient 2 of z destroys the total unimodular-i j
ity of the constraint matrix: all entries in a totally unimodular matrix must
be 0, 1 or y1. We can thus solve in polynomial time the problem in

Ž .integer x-variables and half integral z-variables as in Corollary 2.1 ii . The
network and its construction are discussed later in Subsection 4.3.1.

4.2. Formulation 2

Using the same variables as in formulation 1, we state the problem in an
equivalent disaggregate formulation:

BEB2Ž .
Min Ý c zŽ i , j.g E i j i j

subject to 1 y x F z for i , j g EŽ .i i j

x q x F 1 for i , j f E i g V , j g V .Ž .i j 1 2

x , z binary for all i , j.i i j

Ž .This formulation is identical to BEB1 , except that the first set of
constraints is split into twice as many equivalent constraints, each enforc-
ing the requirement that if an endpoint of an edge is not in the biclique,

Ž .then the edge must be deleted. The formulation is tighter than BEB1 ,
Ž . Ž .since a fractional feasible solution to BEB2 is also feasible for BEB1 ,
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Ž .but not the other way around. BEB2 is in general slower to solve. If we
cast it as a problem in two variables per inequality, then the number of

Ž . Ž .nodes in the network created is O m q n , as opposed to O n nodes in
Ž .BEB1 . The number of arcs in the networks is the same for both

Ž . Ž .formulations: O m q n . However, we can treat BEB2 as a formulation
with up to three variables per inequality, while the double appearance of
the variable z can be considered as two different variables as in Corollaryi j

Ž .2.1 i . The resulting network corresponding to this formulation would then
Ž .be equivalent to that of BEB1 , which will be discussed in detail later.

� 4As all coefficients are in y1, 0, 1 , it is not obvious that the constraints
Ž .of BEB2 cannot be written as a monotone system. This would be a

consequence of the NP-hardness of the problem. We settle this directly in
the following lemma:

( )LEMMA 4.2. The constraint matrix of BEB2 is not totally unimodular.

Proof. The following subset of constraints creates a 6-cycle with cor-
responding determinant equal to 2. The constraints involve the nodes

Ž . Ž .i , i g V , j , j g V , and the edges i , j , i , j g E, the edges1 2 1 1 2 2 1 2 2 1
Ž . Ž .i , j , i , j f E. The six inequalities creating a 6-cycle are1 1 2 2

1 y x F zi i j1 j 2

1 y x F zj i j2 1 2

x q x F 1i j2 2

1 y x F zi i j2 2 1

1 y x F zj i j1 2 1

x q x F 1.i j1 1

The determinant of the 6 = 6 submatrix defined by the coefficients of
these constraints is 2, and thus the matrix is not totally unimodular.

4.3. Sol̈ ing BEB1

Either formulation leads to a 2-approximation algorithm. We show how
this is done for formulation 1.

To transform the constraints into a monotone system, we apply a
transformation on the variables:

xqs x for i g Vi i 1

xys yx for j g Vj j 2

q s 2 z .i j i j
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� 4With this transformation q g 0, 2 . Substituting this requirement byi j
0 F q F 2 and integer, the constraints are of the formi j

relaxed BEB1Ž .
y qx y x F y2 q q for i , j g EŽ .j i i j

q yx y x F 1 for i , j f E i g V , j g V .Ž .i j 1 2

q y� 4 � 4x g 0, 1 , x g y1, 0i j

� 4q g 0, 1, 2 , for all i , j.i j

The transformed constraints form a relaxation of BEB1, relaxed BEB1.
The constraints’ coefficients constitute a totally unimodular matrix: a
matrix with one 1 and one y1 in each row, appended with the identity
matrix. All extreme points of such polytopes are integral. Therefore this
problem is solvable in integers using linear programming. Having inte-

� 4ger extreme points means that q assumes values in 0, 1, 2 rather thani j
� 4in 0, 2 .
The integer optimal solution to relaxed-BEB1 provides a superoptimal

half integral solution to the problem BEB, in which the x variables assume
1� 4integer values and z assume values in 0, , 1 .i j 2

We now show how to solve relaxed BEB1 as a minimum cut problem on
a certain network.

4.3.1. The Network for Relaxed BEB1

As previously mentioned, a node in the network belongs in the source
set if and only if the corresponding variable value is at the upper bound,
which is 1 for xq and 0 for xy.i j

With this interpretation, a constraint from the second set xqy xyF 1 isi j
represented by an arc going from xq to xy. The arc has infinite capacity,i j
enforcing the requirement that if xqs 1, then xys 0. A constraint fromi j
the first set, xyy xqF y2 q q , is represented by an arc from the sourcej i i j

1q yto x s 1 of capacity c and an arc from x s 0 to the sink of the samei i j j2
1 Ž .capacity, c . The gadget used to represent such a constraint, with c qi j2

representing the cost per unit of q in the objective, is

y q � 4x y x F y2 q q , q g 0, 1, 2j i

Ž . Ž .c q c qyq6 6xxs tji "" # #
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FIG. 5. The network uses to solve the relaxed bipartite edge biclique, relaxed BEB1
problem.

Ž .All arcs i, j adjacent to node i are consolidated into one arc from s to
xq and from xy to t. Figure 5 illustrates the entire bipartite network ini i

which a minimum cut corresponds to an optimal solution to the relaxed
BEB1. This is proved in the next lemma, which is a special case of
Theorem 2.2.

Ž .LEMMA 4.3. Any finite cut S, S corresponds to a feasible solution to
relaxed BEB1, and the minimum cut corresponds to an optimal solution
to relaxed BEB1.

Proof. Recall that variables are in the source set if and only if they are
at their upper bound. Namely,

0 xyg Siyx si y½ y1 x g Si

1 xqg Siqx si q½ 0 x g S.i

qŽ .An arc is charged to the cut if it is an arc s, i and x g S, or if it is an arci
Ž . yj, t and x g S.j



DORIT S. HOCHBAUM194

Consider the four possible cases for the values of the x variables
associated with nodes i and j and their corresponding membership in
source or sink sets.

q y Ž .x x q Arcs in cut S, S Cost of cut arcsi j i j

1, S y1, S 0 B 0
1yŽ .1, S 0, S 1 x , t cj i j2
1qŽ .0, S y1, S 1 s, x ci i j2

q yŽ . Ž .0, S 0, S 2 s, x , x , t ci j i j

Thus the value of the cut is the same as the value of the feasible
solution, and vice versa. The minimum cut thus provides the optimal
integer solution to the problem with the variables q .i j

The minimum cut solution provides a superoptimal half integral solution
in which only z may be fractional, whenever q s 1. A feasible roundingi j i j
is achieved by rounding z up.i j

The number of nodes in the network used to derive the half integral
< < < <solution is n q n s V q V . The number of arcs is m q n q n ,1 2 1 2 1 2

where m is the number of arcs in the complement graph m s n n y m.1 2
ŽWe thus have a 2-approximation algorithm of complexity T n q n , n q1 2 1

.n q m for this NP-hard problem.2
The readers familiar with the vertex cover problem may notice that the

bipartite network used to solve the bipartite edge biclique approximately is
the same network as would be used to solve the vertex cover problem on a

1bipartite graph where the weight of node i is Ý c , half the sum ofŽ i, k .g E ik2

Ž .weights of the adjacent edges. The nonedges those in E are the ones to
be covered. Indeed, this vertex cover problem is a factor of 2 relaxation of

Ž .the edge biclique problem on bipartite graphs: for every nonedge i, j f E,
delete the set of edges adjacent to either i or j, so that the total cost of the
deleted edges is minimum. If the edges are deleted because of only one
endpoint, then the cost charged is half of the cost of the edge. This renders
the solution a lower bound that is also within a factor of 2 of a value of a
feasible solution that is an upper bound.

Ž .The network for the disaggregate formulation BEB2 has a node for
each variable, for a total of 2m q n nodes, and two arcs for each
constraint, for a total of 2m q 2m arcs. The detailed description of the
network is omitted. Interpreting the variables z in the formulation as ai j
‘‘third’’ z-variable results in exactly the same network as the one for
Ž .BEB1 in Fig. 5.
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5. EDGE BICLIQUE ON GENERAL GRAPHS

The aim in the edge biclique problem is to delete a minimum weight
Ž .collection of edges from a graph G s V, E so that the remaining

Ž .edge-induced subgraph V , V , E forms a biclique. When defined on1 2 1, 2
general graphs the problem has two possible interpretations, mentioned
earlier in the Introduction:

v Version 1: Nodes in V and V must form an independent set in the1 2
Ž .graph G s V, E .

v Version 2: V and V may form any subgraph in G, and the edges1 2
within them need not be eliminated to create a biclique.

The two versions are NP-hard, since the general graph problem general-
Ž .izes the bipartite case the bipartite case is reducible to the general case .

Version 1 is also NP-hard because of the independence requirement for
each side of the bipartition. To see this we construct a new graph formed
by duplicating G twice, with nodes V and V 9 and all edge weights set to
zero, and placing all possible edges between all nodes of V and V 9 with
edge weights equal to 1. Clearly, any pair of subsets of V and V 9 forms a
biclique. If each side of the biclique is required to be independent, the
problem is equivalent to maximizing the size of an independent set in G.

5.1. Formulation and approximation of Version 1

An optimal edge biclique contains at least one edge. The formulations
Ž .are therefore given for each possible guess of such an edge, s, t g E. The

Ž .presence of s, t in the biclique implies that the nodes in one side of the
Ž .biclique are in the set of neighbors of s, N s , and the nodes on the other
Ž . Ž . Ž . Ž .side are in the set of the neighbors of t, N t . Let N s, t s N s l N t

as before.
Here each side of the bipartition must form an independent set in

Ž . Ž .G s V, E . Nodes of N s, t are adjacent to both s and t and thus cannot
be on the same biclique with this pair of nodes on opposite sides.
Therefore the candidate nodes for one side of the bipartition are in the set

Ž . Ž . Ž . Ž .N9 s s N s _ N s, t , and for the other side the nodes are in N9 t s
Ž . Ž .N t _ N s, t .

Ž .The edge biclique problem with the requirement that s, t is in the
biclique is denoted by EB and the optimal value by z . This problem iss, t s, t

Ž . Ž .defined on the set of nodes V s N9 s j N9 t and the set of edges Es, t s, t
that have both endpoints in V . All other edges are deleted. The optimals, t
solution to the edge biclique will be min Ý c q z .Ž s, t .g E Ž i, j.g E _ E i j s, ts, t

Let x s 1 if node j is deleted, s and t be on opposite sides of thej
biclique, and z be a binary edge variable equal to 1 if and only if edgei j
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Ž .i, j is deleted:

Ž (1) .EBs, t

z s Min Ý c zs, t Ž i, j.g E i j i js, t

Ž .subject to x F z for i, j g E , i g Vi i j s, t s, t

Ž . Ž .x q x G 1 i, j g E and i, j g N9 si j s, t

Ž . Ž .x q x G 1 i, j g E and i, j g N9 ti j s, t

Ž . Ž . Ž .x q x G 1 for i, j f E i g N9 t , j g N9 s .i j s, t

� 4x g 0, 1 for i g Vi s, t

� 4 Ž .z g 0, 1 for i, j g E .i j s, t

The first set of constraints says that all edges adjacent to a node not in the
biclique are deleted. The second and third sets ensure the independence of
the nodes on each side of the biclique. The fourth set of constraints
ensures that the biclique contains all possible edges and is a complete
bipartite graph.

This formulation has no more than two variables per inequality. A
2-approximation algorithm thus follows immediately by solving a minimum

Ž . ŽŽ n.. w xcut on a graph on O n q m nodes, and O edges as in HMNT93 .2
1The half integral optimal solution is rounded up for z s and fori j 2

1x s .j 2
Ž .Once each instance for a pair s, t g E has been 2-approximated with

an objective value z , and the weight of all deleted edges in E _ E iss, t s, t
added to this value, the minimum is selected across all s, t pairs. Formally,

Ž1.given a 2-approximation to EB of value z F 2 z , thes, t s, t s, t
min Ý c q z is a 2-approximation to version 1 of theŽ s, t .g E Ž i, j.g E _ E i j s, ts, t

edge biclique problem.

Remark 5.1. If the first set of constraints is interpreted as three
variables per inequality, then the complexity of solving the problem is
improved, but since each variable z appears in two constraints, this leadsi j
to a 4-approximation algorithm.

5.2. Formulation and Approximation of Version 2

Ž . Ž .Here the sets N s , N t are again potential two sides of the biclique for
a given adjacent pair of nodes s, t. In this problem we permit adjacent
nodes on each side of the bipartition. Therefore, unlike the case for

Ž .version 1, the nodes in the set N s, t are also candidates for inclusion in
the biclique. Consequently, it is essential to make sure that only one of the

Žtwo copies of such nodes is selected. Moreover, some of the edges those
Ž ..that connect nodes on N s, t are duplicated, but should not be charged

for twice. There is a charge for such deleted edge only if both copies are
deleted.
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Let x s 1 when node j is deleted from the biclique and z s 1 whenj i j
Ž .edge i, j is deleted:

Ž (2).EBs, t

z s Min Ý c zs, t Ž i, j.g E l ŽNŽ s.=NŽ t .. i j i js, t

Ž . Ž .subject to x F z for i, j g E i g V _ N s, ti i j s, t s, t

Ž .x q x y 1 F z for ¨ g N s, t , j g V¨ ¨ 9 ¨ j s, t

Ž .x q x G 1 for i, j f E ,i j s, t

Ž . Ž .i g N t , j g N s
� 4x g 0, 1 for i g Vi s, t

� 4z g 0, 1 for all i, j.i j

The first set of constraints enforces the deletion of edges adjacent to
Ž . Ž .deleted nodes not in N s, t . The edges adjacent to nodes in N s, t are

deleted only if both copies of the node are deleted, as in the second set of
constraints. The third set of constraints ensures the completeness of the
biclique.

This formulation has up to three variables per inequality. In the next
lemma we show that the formulation is ‘‘almost monotone,’’ except that
the variables z may appear twice.i j

Ž Ž2. .LEMMA 5.1. The formulation EB has monotone inequalities withs, t
respect to the x-̈ ariables, with the z-̈ ariables appearing in two constraints
each.

Proof. To show the monotonicity of the constraints, we let the variables
Ž . � 4 Ž .for nodes in N t assume values in 0, y1 with x s y1 if node j g N tj

is deleted. The formulation now has the two variables appearing with
opposite signs in every constraint:

Ž (2).monotone EBs, t

z s Min Ý c zs, t Ž i, j.g E l ŽNŽ s.=NŽ t .. i j i js, t

Ž .subject to x F z for i, j g E ,i i j s, t

Ž . Ž . Ž .i g N s _ N s, t , j g N t
Ž .yx F z for i, j g E,j ji

Ž . Ž . Ž .j g N t _ N s, t , i g N s
Ž .x y x G 1 for i, j f E ,i j s, t

Ž . Ž .i g N s , j g N t
Ž .yx q x y 1 F z for ¨ g N s, t , j g V¨ ¨ 9 ¨ j s, t

� 4 Ž .x g 0, 1 for i g N si

� 4 Ž .x g y1, 0 for j g N tj

� 4z g 0, 1 for all i, j.i j
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This is a monotone formulation, except that each z variable appears twice:
once for each endpoint constraint.

To recover the monotonicity of constraints, we substitute for each edge
the two occurrences of z by z Ž1. and z Ž2., where z s z Ž1. and z s z Ž2..i j i j i j i j i j ji i j

Ž .As in Corollary 2.1 i ,
1 Ž1. Ž2.z s z q z .Ž .i j i j i j2

This monotone formulation is solvable optimally in integers. When the
1� 4 Žvalues of z are recovered, they are in 0, , 1 the values of the x-varia-i j 2

.bles are integers . Rounding the values up provides a feasible solution that
is at most twice the optimum.

Notice that the constructed network here is the same as in Fig. 3, except
1that the weights w are replaced by Ý c . The complexity of thei Ž i, k .g E ik2

Ž Ž 2 ..resulting 2-approximation algorithm is O m ? T n, n .

6. A 2-APPROXIMATION FOR A PROBLEM
EQUIVALENT TO MAXIMUM CLIQUE

The maximum clique problem is a well-known optimization problem that
w xis notoriously hard to approximate, as shown by Hastad Ha96 . The˚

Ž .problem is to find in a graph G s V, E the largest set of nodes that form
a clique}a complete graph.

An equivalent statement of the clique problem is to find the complete
Ž .subgraph that maximizes the number or sum of weights of the edges in

the subgraph. There is a clique of size k if and only if there is a clique on
Ž k . edges.2

The complement of this edge-variant of the maximum clique problem is
to find a minimum weight set of edges to delete so the remaining
edge-induced subgraph is a clique.

Let x be a variable that is 1 if node j is not in the clique, and 0j
Ž .otherwise. Let z be 1 if edge i, j g E is deleted. The first set ofi j

constraints ensures that if an edge has an endpoint not in the clique, then
it must be deleted. The second set of constraints says that the set of nodes
selected forms a clique by requiring that if an edge is not in the graph,
then both of its endpoints cannot be in the clique:

Min Ý c zŽ i, j.g E i j i j

Ž .subject to x F z for i, j g E, j g Vj i jŽ .Clique
Ž .x q x G 1 for i, j f Ei j

x , z binary for all i, j.i i j
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With this formulation each inequality has no more than two variables.
w xThus the problem is 2-approximable, since the results of HMNT93 apply

Ž . Ždirectly. In the network we have 2 m q n nodes one for each variable in
.the monotonized version and 4m q 2m edges. The resulting complexity

Ž Ž . .of the 2-approximation algorithm is therefore T 2 m q n , 4m q 2m ,
Ž 2 .which is O mn log n .

Ž .The formulation Clique has, like all problems in two variables per
Ž .inequality, an interpretation as 2SAT with the clauses x , x for eachi j

Ž . Ž . Ž .i, j f E and x , z for every node i and i, j g E. Furthermore, it isi i j
reducible to a vertex cover problem by using the transformation described

w x Ž .in Hoc96a, p. 132 . The resulting bipartite monotonized vertex cover
Ž .problem has the same number of nodes O m q n as above. The number

of edges of this vertex cover problem is quadratic in the number above,
Ž 4.i.e., O n .

EPILOGUE

The original version of the paper contained a 4-approximation algorithm
to the clique problem. Following a presentation of this result, I received a
number of suggestions regarding the improvements of the approximation
factor of the Clique problem from 4 to 2. Among these, Reuven Bar-
Yehuda was the first to point this fact out by restating the problem: for
each nonedge and each pair of edges adjacent to the nonedge, at least one
edge of the pair must be deleted. That problem is a vertex cover problem
in which the edges of E play the role of the vertices that must cover each
nonedge. The set of constraints is thus

z q z G 1 for i , j f E, i , p , j, k g E.Ž . Ž . Ž .i p jk

2< <The number of variables is m s E , and the number of constraints is mn
Ž < <.for m s E . The running time required for the 2-approximation of this

2Ž .vertex cover problem is thus O mn .
The SODA98 program committee provided the 2SAT interpretation,

which motivated the formulation presented here. A formulation identical
to ours, was proposed independently by the referee.

ACKNOWLEDGMENT

This is to express my gratitude to an anonymous referee on this paper. His insightful
comments led to significant improvements in the scope and content of the results presented.



DORIT S. HOCHBAUM200

In particular, the referee pointed out an error in an earlier formulation of the general node
biclique.
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