
Discrete Applied Mathematics 6 (1983) 243-254

North-Holland

243

EFFICIENT BOUNDS FOR THE STABLE SET, VERTEX
COVER AND SET PACKING PROBLEMS*

Dorit S. HOCHBAUM

School of Business Administration, University of California, Berkeley, CA 94720, USA

Received 21 May 1982

In this paper we describe a collection of efficient algorithms that deliver approximate solution

to the weighted stable set, vertex cover and set packing problems. Ah algorithms guarantee

bounds on the ratio of the heuristic solution to the optimal solution.

1. Introduction

A cover in a graph G is a set of vertices C such that each edge of G has at least

one endpoint in C. The vertex cover problem is the problem of finding a cover of

the smallest weight in a graph whose vertices carry positive weights. This problem

is known to be NP-complete even when the input is restricted to planar cubic graphs

with unit weights [8]. A stable set in a graph is a set of pairwise nonadjacent vertices.

The largest weight stable set is the complement of the smallest weight cover. An-

other related problem is the set packing problem, maximize wx subject to Ax5 e,

x binary, e a column vector of ones and A a zero-one matrix. This problem can be

represented as the stable set problem by constructing a graph (called the derived

graph) whose vertices are columns of A, and two such vertices being adjacent if the

two columns have a nonzero dot product.

We propose several heuristics to address the three problems above. All the heuris-

tics are executed with a preprocessing step first. The preprocessing that relies on the

concept of ‘fixing variables’ reduces the gap between the heuristic solution and the

optimal solution. All the heuristics guarantee a solution to the vertex cover problem

that is less than twice the weight of an optimal cover.

The algorithms proposed compare favorably with the ‘greedy’ heuristic [5] and

the ‘LP-heuristic’ [IO] designed to solve the set covering problem that generalizes

the vertex cover problem. The weight of the cover delivered by the greedy heuristic

is at most IF=, l/i (k = the largest vertex degree) times the weight of the optimal

cover. The ‘LP-heuristic’ cover weight equals at most twice the weight of an optimal

cover. A special case of the ‘LP-heuristic’, the maximum matching heuristic [lo],

is not comparable to the algorithms proposed as the size of the cover delivered is

at most 2 - 2/(r+ 1) times the size of the optimal cover, where r is the length of the

largest odd cycle in graphs with all unit weights. Finding the parameter r is however

*This research was supported in part by the National Science Foundation under grant ECS-8204695.

0166-218X/83/$3.00 0 1983, Elsevier Science Publishers B.V. (North-Holland)

244 D.S. Hochbaum

an NP-complete problem, in that sense r is not a ‘good’ parameter. All of these
factors are tight, i.e. there are graphs for which the weight of the heuristic cover
is equal to the factor indicated times the weight of the optimal cover.

Section 3 discusses algorithms that color the graph. Given a weighted graph G
with n vertices and maximum vertex degree k one algorithm takes only O(kn* log n)

steps to deliver a cover whose weight is at most 2 -2/k times the weight of an opti-
mal cover, and a stable set of weight at least 2/k times the weight of an optimal
stable set. The corresponding factor for the set packing problem depends on the
maximum degree in the derived graph. The graph is constructed in number of steps
proportional to the number of nonzero entries of the matrix A. Let d(G) denote the
maximum of the minimum degree of vertex in all subgraphs of G (this parameter
can be evaluated quickly). The second ‘coloration’ algorithm delivers a cover whose
weight is at most 2- 2/(d(G) + 1) times the weight of an optimal cover. For the
stable set delivered, its weight is at least 2/(&G) + 1) the weight of an optimal stable
set. The ‘coloration’ heuristic yields a particularly good approximate solution for
graphs that are planar. The weight of the cover delivered is at most + times the
weight on an optimal cover, and the weight of the stable set at least + the weight
of an optimal stable set.

The algorithm described in Section 4 is especially useful for the set packing prob-
lem. It can be applied directly to the set packing problem without evaluating the
derived graph first. The algorithm delivers a set packing whose weight is at least l/p
times the weight of the optimal solution, where p stands for the maximum column
sum in A. The algorithm takes only O(n log n +pn) steps where n is the dimension
of the vector X. Applying the algorithm to a weighted graph, it delivers a cover
whose weight is at most 2 - l/p the weight of an optimal cover, where p denotes the
largest p(G) + 1 such that G contains an induced p(G)-claw (a tree with p(G) + 1
vertices, p(G) of which are of degree one). The corresponding factor for the stable
set delivered is l/p, delivering such a stable set takes only O(n log n + m) steps where
m is the number of edges in the graph.

Section 5 describes an algorithm for graphs with unit weights. For graphs with
average degree equal k the stable set delivered is of size at least 2/(k+ 1) the size
of an optimal stable set. The size of the cover delivered is at most 2 - 2/(kH + 1) the
size of an optimal cover, where kH is the average degree in a certain subgraph N
of G. These solutions are derived in only 0(kn3’*) steps.

2. Preprocessing the input

Many heuristics for the vertex cover problem may fare quite badly compared to
the optima1 solution to the problem. For instance, consider the renowned ‘greedy’
heuristic that finds a cover C in a weighted graph G:

Step 0: Set C=0.

Efficient bounds 245

Step 1: If G has no edges then stop, otherwise choose a vertex i minimizing the ratio
between the vertex weight Wi and the number of neighbors of i.

Step 2: Add i to C, delete i and all edges incident with i from G and return to Step 1.

As shown by Johnson [12], this heuristic applied to a graph of maximum degree
k, may deliver a cover whose weight exceeds the weight of an optimal cover by a
factor of C:=, l/i even if all weights are unit.

Another example is available when the set of vertices of the graph V is split into
stable sets Vi, Vs, . . . , V,. (Methods of obtaining such a split will be described in
Section 3.) Each set V\ K is a cover. In particular I’\ I$ of the smallest weight may
seem to be a good candidate for a cover C. Still, the ratio w(C)/w(C*) may be arbi-
trarily large even when G is fixed. (Here and elsewhere, w(S) stands for the weight
of a set S of vertices). Indeed, consider the path with vertices 1,2,3,4 and weights
wi = w, = A4, w2 = ws = 1 for some large M. When I/ is partitioned into two stable
sets, the strategy proposed here yields a cover C with w(C) = M+ 1 and yet the opti-
mal cover C * has w(C *) = 2. Some more illustrations of such undesirable behavior
of other heuristics will be discussed in detail later.

Nevertheless, the quality of the solution delivered by any heuristic can be im-
proved if we first partition the graph into two subgraphs with the property that in
one subgraph an optimal selection of a cover is known and in the other the weight
of the optimal cover is at least half of the total weight of all vertices. The existence
of such a partition, implied by the fractional solution to the problem, has been
established by Nemhauser and Trotter [4]. They suggested to solve first the ‘LP
relaxation’,

minimize 1 wjxi,

subject to Xi + Xj 1 1 for all edges ij,

Xi 2 0 for all vertices i,

and then use a trick known as ‘fixing variables’. In at least one optimal solution to
the relation, each Xi has value 0, +, or 1. If we write

iEP if Xi= 1,

irsQ if xi=+,

ieR if xi =0,

then
(i) at least one optimal cover in G contains P,

(ii) each vertex in R has all its neighbors in P,

(iii) each cover in G has weight at least w(P) + 3 w(Q).

From (i) and (ii), it follows instantly that at least one optimal cover in G consists
of the set P and of an optimal cover in the subgraph N induced by Q. Thus it suf-
fices to find an optimal cover in H; working with H rather than with G is what is
meant by ‘fixing variables’,

246 D.S. Hochbaum

Fixing variables is a trick which can be applied not only in the context of finding
optimal covers but also in the context of heuristics for finding near-optimal covers.
In this new context, the trick has a nice corollary: If C is any cover in H, then (by
(ii)) PU C is a cover in G and (by (iii)) its weight is at most twice the weight of an
optimal cover. Thus any heuristic for finding near-optimal covers can be made to
deliver a cover whose weight is at most twice the weight of an optimal cover: it suf-
fices to preprocess G by finding P, Q, R and then to apply the heuristic to H rather
than directly to G. Can the upper bound of two be replaced by a smaller constant?
We suspect that the answer is negative even in the special case of unit weights.

Conjecture. Unless P = NP, there is no polynomial-time algorithm which, given an
arbitrary graph, delivers a cover whose size is at most C times the size of an optimal
cover for some constant C smaller than two.

The power of preprocessing can be demonstrated on the ‘greedy’ heuristic men-
tioned earlier. If the graph is preprocessed and the heuristic applied to H then the
weight of the resulting cover in G is at most twice the weight of an optimal cover,
where without preprocessing it could be arbitrarily large. Incidentally, the greedy
heuristic with preprocessing does not constitute a counterexample to the conjecture
made above. To justify this claim, consider the graph G arising from k+ 1 disjoint
cliques (kr2), each of them having k vertices, and introduce k* additional
vertices, each of which is joined to the original k(k+ 1) vertices. It is an easy exercise
to show that (a) the preprocessing step yields H= G, (b) the greedy heuristic applied
to G delivers a cover of size k2 + (k+ l)(k - 1) and (c) the smallest cover in G has
size k(k+ 1). As k increases, the ratio (2k2- l)/(k’+ k) gets arbitrarily close to two.

As suggested by Edmonds and Pulleybank, and noted in [14], the LP relaxation
can be solved by finding an optimal cover C in the bipartite graph with two vertices
ai, b; of weight Wi for each vertex i of G, and two edges ai bjsaj bi for each edge ij
of G: then it suffices to set

Xi = 1 if ai, bi E C,

Xi=~ if aiEC, bi$C or ai$C, biEC,

xi = 0 if a,C, biC.

In turn, the problem of finding C can be reduced into a minimum cut problem: the
bipartite graph can be converted into a network by making each edge ai bi into a
directed arc aj bj of an infinite capacity, adding a source s with an arc sai of capacity
wj for each i and adding a sink t with an arc bit of capacity wj for each i. Now a
minimum cut S, T with SE S and t E T points out the desired C: it suffices to set
ai E C iff ai E T and 6, E C iff bi E S. The minimum cut can be found by algorithms
of Galil [7] and Sleator [15] in only O(n 5’3m2’3) and O(nm log n) steps, respec-
tively, with n standing for the number of vertices in G and m standing for the
number of edges in G. In short, it takes only O(nm log n) steps to preprocess G by
partitioning the set of its vertices into P, Q and R.

Efficient bounds 241

3. Easily colorable graphs

Theorem 1. Let G be a weighted graph with n vertices and m edges; let k be an
integer greater than one. If it takes only s steps to color the vertices of G in k colors
(so that adjacent vertices have distinct colors), then it takes only s + O(nm log n)
steps to find a stable set whose weight is at least 2/k times the weight of an optimal
stable set and to find a cover whose weight is at most 2 -2/k times the weight of
an optimal cover.

Proof. It takes only s + O(nm log n) steps to color G in k colors and to find the set
P, Q, R of the preceding section. (Note that it suffices to color only the vertices of
Q.) The coloring of G splits Q into k color classes; if S denotes the heaviest of them
then w(S) r w(Q)/k. The set R U S is stable; since

w(R U S) 2 w(R) + i w(Q) I; (w(R) + f w(Q)),

its weight is at least 2/k times the weight of an optimal stable set. The complement
C of R U S is a cover; since

k-l
w(C) I w(P) + - k w(Q)- <y (w(P) + ; w(Q)),

its weight is at most 2 - 2/k times the weight of an optimal cover. 0

The remainder of this section consists of various corollaries of Theorem 1. To
begin with, let d(G) denote the largest d such that G contains a subgraph in which
each vertex has degree at least d. As proved by Szekeres and Wilf [16], every graph
G can be colored in d(G) + 1 colors. For the sake of completeness, we shall describe
a way of finding such a coloring and evaluating d(G) in only O(n+m) steps. To
evaluate d(G), it suffices to dismantle G by successive removals of vertices of
minimum degree.

Step 0:
Step 1:

Step 2:

Set d=O.
If G has no vertices left then stop; otherwise choose a vertex u of the
smallest degree.
Replace d by the maximum of d and the degree of u. Then remove o (and
all the edges incident with o) from G and return to Step 1.

If ui denotes the vertex removed from G in the ith iteration then each Ui has at
most d neighbors among the vertices ui+ t, u;+~, . . . , u,. To color G in no more than
d+ 1 colors, it suffices to scan the sequence of u;‘s from u, to ur, assigning to each
ui the smallest positive integer not yet assigned to any of its neighbors.

Corollary 1A. It takes only O(nm log n) steps to find, in any weighted graph G

248 D.S. Hochbaum

with n vertices and m edges such that m > 0, a stable set whose weight is at least
2/(d(G) + 1) times the weight of an optimal stable set and a cover whose weight is
at most 2 - 2/(d(G) + 1) times the weight of an optimal cover.

The celebrated theorem of Brooks [4] asserts the following: if G is a connected
graph of a maximum degree k such that k 2 3 and if G is not the complete graph
with k+ 1 vertices then G is k-colorable. An elegant and constructive proof of this
theorem, due to Lovasz [131, provides an algorithm which finds the coloring in only
O(kn) steps. (The algorithm requires finding cutpoints and endblocks in a graph.
This can be done in O(m) steps by depth-first search as described, for instance,
in [3].)

Corollary 1B. It takes only O(kn2 log n) steps to find, in any weighted graph with
n vertices and a maximum degree k such that k 2 2, a stable set whose weight is at
least 2/k times the weight of an optimal stable set and a cover whose weight is at
most 2-2/k times the weight of an optimal cover.

Proof. We may assume that k 13: otherwise each component is a cycle or a path
and a straightforward dynamic programming algorithm finds an optimal stable set
and an optimal cover in only O(n) steps. Furthermore, we may assume that the
graph is connected: otherwise each component may be treated separately. Finally,
we may assume that the graph is not complete: otherwise an optimal stable set and
an optimal cover may be found trivally in O(n) steps. But then the desired con-
clusion follows directly from Brooks’ theorem and Theorem 1. 0

The coloration heuristics are not counterexamples to our conjecture. To see that
we let a graph G be defined as follows. Consider k k-cliques and k (k - I)-stable sets.
Each clique has one edge connecting it to one of the vertices of a stable set. k- 1
of the stable sets are one set of vertices in a complete bipartite graph with the kth
stable set as the second set of vertices. For such family of graphs, one can easily
verify that G is k chromatic and G = H. One feasible’ k-coloration consists of each
one of the stable sets colored by one of the k-colors. The heuristic then delivers a
cover C of size (2k - 1) (k - 1). the Optimum cover C* is of size k(k - 1) + (k - 1) and
the ratio

2-3/k
w(C)/w(C*) = 2 - ~

k- l/k

which could be arbitrarily close to 2.
The standard proof due to Heawood that every planar graph is five-colorable

’ In order to make this coloration unique we add few edges to the graph: The vertices in the cliques

that connect each clique to each stable set are linked together to make a complete subgraph. The ith

stable set is connected to all these vertices except for the ith vertex.

Efficient bounds 249

(see, for instance, [9]) is easiiy convertible into an algorithm which actually finds
the coloring in only 0(n2) steps2.

Corollary 1C. It takes o&y 0(n2 log n) steps to find, in any weighted planar graph
with n vertices, a stable set whose weight is at least 0.4 times the weight of an opti-
mal stable set and a cover whose weight is at most 1.6 times the weight of an optimal
cover.

Furthermore, the proof that every planar graph is four-colorable [1,2] is con-
vertible into an algorithm which actually finds the coloring in only a polynomial
number of steps.

Corollary 1D. It takes only a polynomial number of steps to find, in any weighted
planar graph, a stable set whose weight is at least 0.5 times the weight of an optimal
stable set and a cover whose weight is at most 1.5 times the weight of an optimal
cover.

4. Set-packing problems

By a p-claw in a graph, we shall mean distinct vertices, uo, ul, . . . , up such that u.
is adjacent to the p vertices u1 u2, . . . , up but no two of the p vertices ul. u2, . . . , up are
adjacent to each other.

Theorem 2. It takes only O(n log n + m) steps to find, in any weighted graph G with
n vertices, m edges and no (p + I)-claw, a stable set whose weight is at least 1 /p times
the weight of an optimal stable set.

It takes only O(nm log n) steps to find a cover in the graph G whose weight is at
most 2 - 1/p times the weight of the optimal cover.

Proof. The algorithm goes as follows.

Step 0: Sort the vertices in a sequence 1,2, . . . , n such that w1 2 w2 r ... L w,.
Set S=0.

Step 1: If G has no vertices then stop; otherwise take the smallestj which is a vertex
of G and proceed to Step 2.

Step 2: Add j to S, delete j and all its neighbors (along with all the edges incident
with at least one of these vertices) from G and return to Step 1.

‘Recently linear algorithms were devised to S-color a planar graph: (1) “A linear 5-coloring algorithm

of planar graphs” by N. Chiba, T. Nishizeki and N. Saito, J. Algorithms 2 (1981) 317-327; (2) “Two

linear-time algorithms for 5-coloring a planar graph” by D. Matula, Y. Shiloach and R. Tarjan, Stanford

Department of Computer Science, Report No. STAN-CS-80-830.

250 D.S. Hochbaum

Let ui denote the vertex added to S in the ith iteration and let v denote the set of

vertices deleted from G in the ith iteration. If S* is a stable set then there are at

most p vertices in each S* n 5 and the weight of each of them is at most the weight

of Wi. Hence w(S*n V,)<pwi for all i, and so w(S*)~pw(S).

The ratio l/p for the stable set cannot be improved in the worst case using pre-

processing. For the vertex cover problem the ratio [w(V)- w(S)]/[w(V) - w(S*)]

can be reduced fromp without preprocessing to 2 - I/p with preprocessing. We apply

the algorithm for finding a stable set on the subgraph of G, H. The complement of

the stable set is a cover of weight not exceeding w(P)+ w(Q)- w(S*)/p. Dividing

by the weight of the optimal cover w(P) + w(Q) - w(S*), yields an upper bound on

the ratio 2 - l/p. 0

The following example illustrates that preprocessing does not necessarily increase

the weight of the stable set delivered by the heuristic in the worst case, and it also

proves that the bound for the cover problem could be arbitrarily close to 2 (with

preprocessing). Consider a graph G consisting of a p-claw and a t-clique. Each

vertex of the claw, except for the ‘center’, has unit weight. The ‘center’ of the claw

has weight 1 + E, and all the vertices of the clique have weight E. t is chosen such

that t > (p - 1)/s - 1. Each vertex of the claw is linked to all vertices of the clique.

The algorithm in Theorem 2 delivers a stable set S of weight 1+ E and the weight

of the optimal stable set is p. It is easy to check that G = H hence the preprocessing

does not improve the ratio w(S)/w(S*) in the worst case. Taking the complement

of the stable set S yields a cover C of weight p + et where the weight of an optimal

cover C* is 1 +E+E~. By the choice of t,

w(c)/w(c*) 5 (2p - l)/(p + E) = 2 - (1 + 2&)/(P +&),

thus the ratio could be arbitrarily close to 2. For the vertex cover problem the pre-

processing is essential. If preprocessing was not used then for a graph G that is a

p-claw with center weighted 1 +E and all other vertices 1 the weight of the cover

delivered by the heuristic without preprocessing is p where the weight of the opti-

mum cover is 1 +a. (For this particular graph applying preprocessing yields im-

mediately the optimal solution.)

Note that the ratio l/p featured in Theorem 2 is neither necessarily majorized nor

necessarily minorized by the ratio 2/k featured in Corollary 1B: the largest p such

that G contains a p-claw may be anywhere between one and the largest degree k.

Although it is an NP-complete problem to decide whether G contains a p-claw or

not, Theorem 2 has an immediate application to the set-packing problems maximize

wx subject to Ax5 e, x binary. The point is that the derived graph has no (p + I)-claw

with p standing for the largest column sum in A. Note also that, in order to apply

the algorithm of Theorem 2 to the derived graph G, one does not have to make an

explicit list of all the edges in G. If A is represented as a sparse matrix by lists

R,,Rz, R, and C,, C,, C, such that each Rj lists all the columns j with aU = 1

and each Ci lists all the rows i with aii = 1, then the neighbor of a specified vertex

Efficient bounds 251

of G can be easily detected and deleted: the time spent on all the executions of Step

2 is only proportional to the total number of nonzeros in A.

Corollary 2A. It takes only O(n log n +pn) steps to find, in any set-packing prob-
lem whose matrix A has n columns and the largest column sump, a feasible solution
whose value is at least l/p times the optimal value.

5. Unweighted sparse graphs

Sparse graphs have large stable sets. More precisely, the celebrated Theorem of

Turrin [17] asserts that every graph with n vertices and an average degree k (this

quantity is not necessarily an integer) contains a stable set of size at least n/(k+ 1).

An elegant proof of Turan’s theorem, due to Erdos [6], is easily converted into the

following algorithm for finding a stable set S in at most O(m) steps.

Step 1: Set S=O.

Step 1: If G has no vertices then stop; otherwise choose a vertex u with the smallest

degree.

Step 2: Add u to S, delete u and all its neighbors (along with all the edges incident

with at least one of these vertices) from G and return to Step 1.

To show that the size ISI of the stable set delivered upon termination is at least

n/(k+ l), we observe that whenever a vertex ui of degree di is chosen and deleted

we eliminate a total of di + 1 vertices from the graph and at least +di (di + 1) edges.

The minimum number q of vertex selections when

i di(di+l)<nk and i (di+l)=n
i-l i=l

is attained for di + 1 = n/q for all i. Solving

4.: i-1 rnk
(>

we find that q 2 n/(k + 1). If we apply the algorithm to the subgraph H induced by

the set of vertices Q, the value of the stable set delivered is at least 2/(k,+ 1) the

size of a maximum stable set when kH is the average degree in the graph H.

Though kH can be much larger compared to k, the average degree in G, we still

have the following result.

Theorem 3. In any graph G with n vertices and average degree k it takes O(kn3’2)
steps to find a stable set of size at least 2/(k+ 1) times the size of maximum stable
set.

252 D.S. Hochbaum

Proof. Preprocessing an unweighted graph can be executed in only O(mfi) steps

[111. Once the partition P, Q, R is obtained we apply the algorithm above to the sub-

graph H. The total number of steps does not exceed O@Z~‘~). The size of the

stable set delivered by the algorithm is at least IRl + IQ1 /(kH+ 1) where kH is the

average degree in H. (Incidently, note that kH 2 2 as there is always a solution with

no vertices of degree one in the subgraph H.) Now we note that:

Fact 1. G is a connected graph, hence

k2 Mb+ IRI + IPI
IQ1 + IRI + IPI

(note that n = IQ1 + IRI + IPI).

Fact 2. lRl> IPJ, th o erwise setting G =H (i.e., all vertices are assigned the value

3) implies an ‘LP relaxation’ solution of value larger than I R I + +) QI, contradiction.

To complete the proof it suffices to show using Fact 1 that

lRl+lQl4k,+l) >2 lQlk~+lRl+lPl +1 -’
IRl++lQl - (> IQI+IRI+IPI .

Rearranging this inequality we reduce it to

lQl(lRlk,(k~-1)-lPl(k~-1)-IPI(k~-1>)~0~
The validity of this inequality follows easily from fact 2. 0

Unlike the other algorithms discussed in previous sections we cannot show that

the bound l/(k+ 1) for the ratio w(S)/w(S*) is indeed tight when S is the set

delivered by the algorithm without preprocessing. Nevertheless we know that this

factor is strictly less than 2/(k+ 1). In that sense the algorithm in Theorem 3 (that

includes preprocessing) does increase in the worst case the size of the stable set. An

example that illustrates this fact is given by a graph on 50 vertices. The graph con-

sists of 12 3-claws and a 2-clique. The two vertices of the 2-clique are linked to all

36 pendant vertices of the claws. The average degree of such a graph is 4.36, the

size of the optimal stable set -36, and the algorithm without preprocessing selects

(with ties broken arbitrarily) 13 vertices (12 claw centers and one vertex in the

2-clique). Now, 13/36 < 2/(4.36 + 1) hence the ratio 2/(k + 1) cannot be guaranteed

without preprocessing. Using preprocessing the algorithm delivers the optimal solu-

tion for this particular graph.

The complement of the stable set delivered by the algorithm of Theorem 3 is a

cover C of size at most 2 - 2/(k,+ 1) times the size of an optimal cover C*. Un-

fortunately we cannot in general replace kH by k in this factor. (To see why the

stable set problem differs from the vertex cover problem in this case, consider any

graph G augmented by a huge p-claw. The average degree in the augmented graph

can be set to be arbitrarily close to 1 with increasing values of p. The sizes of the

cover delivered by the algorithm C and the optimal cover C* are increased by 1 com-

pared to their sizes in the graph G where the optimal and algorithm stable sets are

Efficient bounds 253

increased by p. That means that the ratio of the optimal and heuristic stable sets
gets asymptotically close to 1 as the average degree gets close to 1, but the
heuristic to optimal covers ratio remains fixed. If the heuristic to optimal covers
ratio were bounded by 2 - 2/(/c+ l), then for k sufficiently close to 1 we could have
derived the optimal cover in G using the heuristic. That of course is impossible
unless P=NP.) One corollary of this observation is that the guaranteed upper
bound on the ratio JCJ/JC*J is at least 4 since kH 2 2. Finally we describe a counter
example to illustrate that this algorithm does not violate our conjecture. Consider
t cycles of size 6 each all having the first and fourth vertices ul, u4 in common. Add
to this graph one more cycle of size 7 with the same two vertices ul, u4 as first and
fourth (or first and fifth depending which direction one counts). Let the set of all
neighbours of the vertex ui be N(u,). The vertex u5 adjacent to u4 on the 7-cycle
consists with the set N(u,) of a stable set. We introduce edges between each vertex
of the set N(uI)U {u5} and each vertex of V\N(u,)\(u,, u4,us}, and all possible
edges between all vertices of V\N(ui)\{ ul, u4, us}. The number of vertices in this
graph is 4t +7. It is easy to check that G=H and that N(u,) U {us} is an optimal
stable set of size 2t + 3. The algorithm selects (ties broken arbirarily) vertices
ul, u4, 06 in this order (ug is adjacent to u5 on the 7-cycle), ICI = 4t + 4 and (C*l =
2t + 4. The ratio ICI //C*l = 2 - 2/(t + 2) is arbitrarily close to 2 for graphs G with
t arbitrarily large.

Acknowledgement

The work described in this paper was motivated by discussions with V. Chvatal.
I wish to thank him for the generous help and the time and effort he devoted.

References

[l] K. Appel and W. Haken, Every planar map is four colorable. Part I: Discharging, Illinois J. Math.

21 (1977) 429-490.

[2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable. Part II: Reducibility, Illinois

J. Math. 21 (1977) 491-567.

[3] S. Baase, Computer Algorithms: Introduction to Design and Analysis (Addison-Wesley, Reading,

MA, 1978).

[4] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Sot. 37 (1941) 194-197.

[S] V. Chvatal, A greedy-heuristic for the set-covering problem, Math. Operations Research 4(3) (1979)

233-235.

[6] P. Erdos, On the graph-theorem of Turan, Math. Lapok 21 (1970) 249-251.

[7] Z. Galil, A new algorithm for the maximal flow problem, Proc. Nineteenth Annual Symposium on

Foundations of Computer Science (1978) 231-245.

[8] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems,

Theoret. Comput. Sci. 1 (1976) 237-267.

[9] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

254 D.S. Hochbaum

[lo] D.S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems, SIAM

J. Comput. ll(3) (1982), also W.P. #64-79-80, GSIA, Garnegie-Mellon University, April 1980.

[ll] J.E. Hopcroft and P.M. Karp, A n5’2 algorithm for maximum matchings in bipartite graphs,

SIAM J. Comput. 2 (1973) 225-231.

[12] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci. 9

(1974) 256-278.

[13] L. Lovasz, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271.

[14] G.L. Nemhauser and L.E. Trotter, Vertex packings: structural properties and algorithms, Math.

Programming 8 (1975) 232-248.

[15] D.D.K. Sleator, An O(nm log n) algorithm for maximum network flow, Doctoral Dissertation,

Dept. Computer Science, Stanford University, 1980.

[16] G. Szekeres and H.S. Wilf, An inequality for the chromatic number of a graph, J. Combin. Theory

4 (1968) l-3.

[17] P. Turin, An external problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.

