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Berkeley, Berkeley, California 94720, hochbaum@ieor.berkeley.edu

Abstract In a generic group decision scenario, the decision makers review alternatives and then
provide their own individual ranking. The aggregate ranking problem is to obtain a
ranking that is fair and representative of the individual rankings. We argue here that
using cardinal pairwise comparisons provides several advantages over scorewise mod-
els. The aggregate group ranking problem is then formalized as the separation model
and separation-deviation model. The premise of the models is to use the implied or
explicit pairwise comparisons in the reviewers’ input and assign an aggregate ranking
that minimized the penalty of not agreeing with the scores, and the penalty for not
agreeing on the intensity of the pairwise preference. The latter permits to the incor-
poration of confidence levels in the input provided by reviewers on specific pairwise
comparisons, as well as on specific scores. Both separation and separation-deviation
models have been shown to be solved efficiently, for convex penalties. This tutorial
presents several group ranking scenarios where the pairwise comparisons are the input,
such as sports competitions. We show that using cardinal, rather than ordinal, pairwise
comparisons, and the proposed separation model, is advantageous. In group ranking
contexts, where pairwise comparisons are not inherently available, there is also an
advantage of using implied pairwise comparisons. The latter contexts include, e.g., the
National Science Foundation review panels, choosing winning projects, determining
countries’ credit risk, and customer segmentation. We unify the group decision prob-
lem with the problem of webpages rankings and ranking academic papers in terms
of citations. We compare and contrast the separation approach with PageRank and
the principal eigenvector methods. The problem of aggregating rankings “optimally”
with pairwise comparisons is shown to be linked to a problem we call the inverse
equal-paths problem. The graph representation provides insights and enables the intro-
duction of a specific performance measure for the quality of the aggregate ranking as
per its deviations from the individual rankings observations. We show that for con-
vex penalties of deviating from the reviewers’ inputs the problem is polynomial-time
solvable, by combinatorial and polynomial-time algorithms related to network flows.
As such, the approach is very efficient. We demonstrate further how graph properties
are related to the quality of the resulting aggregate ranking. Our graph representation
paradigm provides a unifying framework for problems of aggregate ranking, group
decision making, and data mining.

Keywords network flow; aggregate ranking; inverse problems

1. Introduction
In group decision making, one of the major challenges is to achieve an aggregate solu-
tion that is fair and representative of the evaluations of the decision makers in the group.
Naturally, the concepts of “fair” and “representative” elude precise and formal definition,
which accounts for the numerous alternative models and interpretations that exist for group
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Table 1. Classification of group decision problems.

Cardinal Ordinal NP-hard, Arrow’s impossibility theorem (Arrow [8])
Comparisons Scores
Evaluating pairs Rating singletons
Partial list Full list

decision making. These models are classified according to characteristics, some of which are
listed in Table 1. Our focus here is on decision problems that are cardinal, have input that
includes pairwise comparisons that are provided explicitly or generated implicitly, and that
allow partial lists.
In ordinal rankings the input is in the form of an ordering, or preorder, or permutation of

the alternatives. Arrow’s impossibility theorem (Arrow [8]), states that there is no aggregate
ranking that satisfies simultaneously several necessary fair representation conditions. More
details on this are provided in §5. The rankings addressed here are cardinal, meaning that
the pairwise comparisons are provided with intensity. Therefore, an alternative i might be
preferred to alternative j by a tiny intensity of ε, or by a huge amount of intensity, which is
taken into account in the cardinal model, but for ordinal ranking there is no differentiation
between those preferences of i to j.

The simplest and most common method for aggregating rankings considers the average (or
weighted average) of scores as the weight indicator for the aggregate ranking. This approach
cannot be used in scenarios where the input is in the form of pairwise comparisons, such as
in ranking sports competitors based on the outcomes of games, which amount to pairwise
comparisons of the strengths of the respective competitors. It is demonstrated here that the
use of, explicit or implied, pairwise comparisons improves the quality of the aggregate deci-
sion in that the outcome represents more fairly the decision makers’ evaluations. A recent
article by Brandstatter et al. [10] demonstrates that pairwise comparisons and relative eval-
uation of attributes is the preferred mode for people to make decisions and rank alternatives.
This is in contrast to decision making based on a scalar value or score associated with each
object.
An issue that often mires the decision-making process is that of partial lists (aka incom-

plete ranking). Partial lists mean that each decision maker reviews only a subset of the
alternatives. This results in several challenges, one of which is the extrapolation of the
individual decision maker assessment of the subset to the entire set. Another is the biases
introduced by the allocation of the review tasks to the individual reviewers. Therefore, many
decision-making models require full lists in their setup.
The problem of ranking competitors based on an incomplete set of pairwise comparisons is

a well-studied one in the context of football and other sports, and also in general (David [21]).
There are numerous ranking schemes, each with its unique emphasized factors, and each with
its advantages and shortcomings. The shortcomings, particularly in sports teams rankings
where passions run high, bring about the ire of some people. The generic criticism is that
certain game outcomes have not been adequately incorporated, or have had an excessive
impact on the aggregate ranking. Another critique expressed concerns the “strength of the
schedule,” which amounts to the allocation of the pairwise comparisons, or the collection of
the pairs who will play the games. The schedule, or allocation, has an inordinate effect on
popular techniques based on principal eigenvector (Google Rank is one such technique). We
will show here that, in contrast, the separation model avoids these shortcomings, and deals
with partial lists while still providing a fair aggregate ranking.
One aspect shared by most existing schemes for pairwise comparisons is the consideration

of all pairwise comparisons as equal in their impact on the final outcome. This brings about
biases such as counting a win against a weak team of equal weight to a win against a
strong team. Consequently, it might be preferable to not play a game at all if it is against
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a weak team, because such a game played by a strong team can actually reduce its rank
(Keener [45]). This uniformity of consideration of each pairwise comparison is one reason
for the inclusion of human polls in, e.g., college footfall ranking. Human judgement has the
advantage that it can take into account the quality of the game played, rather than the score
alone, which is often attributed, to some degree, to chance. These human polls, in turn, are
often criticized for lack of transparency, because the factors that go into human ranking are
not made explicit.
We consider here an aggregate ranking scenario with partial lists, whereby the input to

the ranking process is in the form of pairwise comparisons or implied pairwise compar-
isons. An aggregate ranking is one that minimizes the total penalties for deviating from the
input comparisons. The power of this paradigm, the separation model, is in its capabilities
of dealing with partial lists, and with difference confidence levels in the inputs provided,
characterized by the candidates and the expertise of the reviewers evaluating them. The
separation model is extended to the separation-deviation model in order to optimize not
only the closeness to the pairwise comparisons, but also to the specific scores. These models
were introduced in Hochbaum [36, 37] and Hochbaum and Levin [38].
The separation model differs from existing aggregate ranking models in that it permits the

explicit inclusion of subjective factors. In other words, any form of input from knowledgeable
sources can be incorporated, and each input is associated with any degree of confidence
deemed appropriate. Of course, the degree of confidence assigned can in itself be subjective,
but it can be made according to a specific protocol and set of rules agreed upon in advance.
This allows us to differentiate the importance of different comparisons and calibrate their
impact on the final ranking.
The separation model provides a performance measure that can be used to compare dif-

ferent aggregate rankings. In the literature on obtaining aggregate ranking there is rarely
a performance measure on the quality of the attained consistent ranking. One exception is
Kemeny and Snell’s model (Kemeny and Snell [46]) for aggregate ranking of ordinal rankings
in the form of permutations only. Kemeny and Snell’s model seeks an aggregate ranking
minimizing the number of reversals of the aggregate permutation ranking compared to the
individual permutations. For an ordinal ranking to be consistent there must be no cycles of
preferences. Thus, Kemeny and Snell’s model can be viewed as modifying an input in the
form of a graph with directed arcs, where each arc (i, j) indicates that a reviewer prefers i
to j, by changing the directions of some of the arcs so that the resulting graph is acyclic
and so that the number of changes in arc directions is minimum. This problem is known as
the minimum arc feedback set problem and one of the drawbacks of the model is that it is
NP-hard to solve optimally because the arc feedback set problem is known to be NP-hard.
As an NP-hard problem there has been extensive work on approximation algorithms for the
arc feedback set problem. Whereas for general graphs there are no constant factor approx-
imations known, for tournaments (where each pair is compared by at least one reviewer)
there are good approximation algorithms for the arc feedbacks set problem, e.g., in Ailon
et al. [4].
Both the separation and separation-deviation models are cast here as graph problems, and

are within the inverse problem paradigm. In an inverse problem one is given some problem
parameters that do not satisfy certain necessary conditions, or conflict with observations.
The goal is to modify those parameters subject to a penalty function on the modification, and
so that the total penalty is minimum. In the context of rankings, the outcomes of different
games may be conflicting with respect to any given ranking. For instance, if each team loses
at least once, then a top team that ranks number one has its ranking inconsistent with the
game(s) it has lost. Thus, any aggregate ranking is going to conflict with some inputs, except
for the rare case where each outcome is precisely consistent with one underlying ranking.
Aggregate ranking is, hence, an inverse problem, where the scores of the games played,

and any other form of judgement or input on pairwise comparisons, may be incorporated
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as part of the input. The problem is to come up, with a pairwise comparison for each pair,
that is consistent with some underlying ranking and that deviates as little as possible from
the given inputs. The penalty for deviating from the inputs is measured in terms of penalty
functions that are monotone increasing (or nondecreasing) with the size of the deviation.
These penalty functions are assigned to each input separately, so the penalty of a less reliable
source of comparison can take lower value than a penalty for comparison by a high confidence
source.

1.1. Outline
Key concepts of group decision making and aggregate ranking are illustrated via a list of
scenarios each with its own distinguishing features, in §2. Section 3 discusses how pairwise
comparisons are obtained and used. Consistency of pairwise comparisons is defined and
discussed in §4, both in the context of consistency of pairwise comparisons given as a matrix
and as a property of a graph having all pairwise paths of equal lengths. In §5 we introduce
the inverse equal-paths problem as the graph-form of the separation model. The quality of
the group ranking is then associated with graph properties such as k-connectivity in §6.

Leading alternative approaches are reviewed in §7. The techniques surveyed include the
average weight, several optimization methods, the principal eigenvector and its closely
related analytic hierarchy process (AHP), and the related PageRank technique. These tech-
niques are then compared and contrasted with the models of separation and separation-
deviation. A generalization of the separation to the separation-deviation model is described
in §8. Properties of the separation and separation-deviation models for specific penalty
functions are detailed in §9. We conclude with several remarks in §10.

1.2. Notations, Preliminaries, and the Inverse Equal-Paths Problem
The pairwise comparison preference of i to j stated by reviewer r is denoted by pr

ij . If
reviewer r provides pointwise scores evaluation for object i, this score is denoted by wr

i .
We show here that the inverse equal-paths problem is equivalent to the problem of obtain-

ing a minimum penalty aggregate ranking. To that end, we introduce the relevant graph
notation.
The input to the rank aggregation problem is a nonsimple connected graph G= (V,A),

where for each arc (i, j) ∈A of weight pr
ij there is an arc in the opposite direction (j, i) of

weight −pr
ij . There can be multiple opposing pairs of arcs for each pair of nodes, or none at

all. Another input is a penalty function fpr
ij
( ) for each given arc in the graph.

A feasible solution to the aggregate ranking problem has to be consistent. Thus, a feasible
solution z∗

ij for each pair of nodes i, j must satisfy that for any pair of nodes s, t ∈ V all
the directed paths from s to t in G with the weights z∗ are of the same length. (This is
proved in §5.) A set of weights z∗ is said to be optimal for the inverse equal-paths problem
if among all feasible weight vectors z it minimizes the total sum of the penalty functions∑

(i, j)∈A,r∈Rij
fpr

ij
(zij).

2. Case Studies and Examples of Group Decision and
Aggregate Ranking Scenarios

We discuss here scenarios of group decision making and illustrate several key concepts via
these examples.
The National Science Foundation (NSF) panel review. The National Science Foun-

dation has proposals submitted to each program. The proposals in each program area are
allocated by the director of the division to experts that are invited to serve on the panel.
Those experts see only a subset of the proposals submitted. This is so as not to overbur-
den the reviewers, and because each reviewer can evaluate proposals only in their area of
expertise—typically a subset of the proposals submitted.
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Each member of the panel reviews the assigned proposals and grade each proposal on a
scale from 1 to 5, with 1 meaning “poor” and 5 meaning “excellent.” The panel then meets
face to face in a session (that lasts a day or two) and determines the top-ranking proposals
that will be recommended for funding. Ultimately, the decision depends on the average score
of each proposal. That is, the scores assigned to each proposal are summed and divided by
the number of reviewers of the proposal (although it is almost always the same number of
all proposals, with some minor exceptions.)
This type of group decision making, based on the scores’ average, is called here the

average weight model. The NSF panel review also involves partial lists (also referred to as
incomplete rankings). That means that each reviewer evaluates only a subset of the total
set of proposals. This can bring about potential problems of incomparability. For instance,
it is conceivable that there are two sets of proposals, and each reviewer gets a subset of one
of them. If the two top proposals are one from each set, there is no reviewer that reviewed
both of them. Furthermore, it is possible (though unlikely) than all proposals in one set are
of higher quality than all those in the other set. In that case, any proposal in the better set
should rank higher than the leading proposal in the second set. However, the panel has no
grounds for comparison that would allow making this “correct” ranking decision.
This problem with partial lists is more of an allocation issue—how to allocate the proposal

to reviewers within their area of expertise, and so that there will be basis for comparison
and the scenario above will be avoided. This problem has been studied extensively for
various versions and complexity of the allocation decision in Hochbaum and Levin [39]. Cook
et al. [19] investigated the allocation of the ranking tasks to individuals in the context of
the NSF process and proposed a heuristic algorithm to generate good feasible solutions for
a version of the allocation problem.
Grade point average (GPA). In college and university admissions, one factor deemed

to represent the quality of students is their GPA. Each instructor evaluates a proper subset
of the universal set of students—those attending the instructor’s class. The evaluation is
in the form of grades, and consequently also a corresponding ranking of all students in
each instructor’s class. The ranking of all students based on their collection of grades from
different instructors’ classes is a group ranking problem. The GPA is also an average weights
methodology and it is also a partial list ranking, as is the NSF review process. Because the
instructor evaluates only a subset of the students—those in class, it is likely, and indeed as
always happens with grading on a curve, that students that take a class with good students
will get a lower grade than if they take a class with less successful students. In other words,
the quality of the class, or the list, affects the score. To optimize their GPA, students should
then try to take classes with faculty that are known to give high grades, and/or attempt to
take classes that are easy for them, or where the capabilities of others in class are expected
to be less than theirs. Both phenomena of students optimizing their GPA are indeed rather
commonplace.
Ranking of baseball teams. The determination of the team clinching a playoff berth

in each division is based on the number of wins. In major league baseball there are no ties
allowed, and each team plays exactly the same number of games. This ranking is, then, an
average weight model. However, each team plays games with other teams within its own
division, so the particular division a team belongs to may have a major impact on its possible
chances of advancing to the playoffs. This effect is also that of the partial lists in the GPA
example. Each team plays only teams in the same division. Therefore, if these teams are
strong, the chances of advancing are slimmer compared to a division where the teams are
weak.
Notice that here the “reviewers” are the games. Each game “reviews” a pair of teams and

assigns a score of 1 to the winning team and a score of 0 to the losing team (there are no
ties in baseball).
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College football ranking. In most sports the rankings are based on pairwise rankings
only, which are the outcomes of the games. The principal eigenvector technique has been
applied to this and other similar ranking scenarios, where the reviews are all in the form of
pairwise comparisons of relative strength, or intensity. The principal eigenvector technique is
discussed in more detail in §7.1. As in baseball, each reviewer is a game, and the outcome—
usually a function of the score of the game—is the pairwise comparison.
Ranking of academic papers by citations or webpage ranking. The unique feature

here is that the reviewers and the objects are the same set. This causes substantial problems
of manipulations, primarily with Web pages. PageRank is an algorithm that was supposed
to address this. There will be more on PageRank and its relationship to the principal eigen-
vector technique in the §7 on alternative techniques. Here, each paper “reviews” another
paper by providing a citation.
Conference program committee. In many conferences there is a program committee

reviewing the papers submitted. The list of papers submitted is allocated to individual
reviewers on the program committee, in consideration of their area of expertise and how
it matches the content of the paper. This scenario is analogous to that of the NSF panel,
except that reviewers are asked to not only provide a score, but also a confidence level.
The meaning of confidence level is as an assessment of the reviewer’s own expertise in
regard to the particular paper, or as a measure of the effort investment by the reviewer to
fully investigate the content of the specific paper and relevant literature. Because program
committees’ face-to-face meetings are expensive, committees rarely meet these days, and
the discussion and aggregate ranking is made online. This means that there has to be a
way of quantifying disagreements. One way of pinpointing disagreements is by the spread,
or variance, of the scores.
In this author’s experience, in cases when program committees did meet, much of the

discussion was in the flavor of “if paper 1 is accepted, then certainly paper 2 must be
accepted, for the following reasons . . . .” Or, “if paper 3 is rejected, then for the following
reasons paper 4 must be rejected also.” These pairwise comparisons are difficult to identify
online in the existing system, where only the averages are considered. Furthermore, the
confidence levels that are recorded are not actually used, except when there is a high variance
in the scores. In that latter case, the confidence levels may become part of the discussion
when some of the reviewers (usually those with higher confidence levels) attempt to convince
the others to change the scores.
Student paper competition. In Hochbaum and Moreno-Centeno [41] we analyze two

years of the manufacturing and service operations management (MSOM) student paper
competition to identify the student paper winner in operations management. In the MSOM
competition the judges are each assigned a relatively small number of papers (about four),
compared to the size of the pool submitted. Because every paper must be read by about
four reviewers, the number of judges is very large in these competitions, and roughly of the
same magnitude as the number of papers submitted. This makes the analysis of the results
beyond the average score difficult. With the separation model it was possible to identify
outliers in terms of pairwise comparisons by simply looking at leading penalty terms. Such
outliers had gaps between the scores of two papers that were very different from the gaps
implied by others and from the gap implied by the aggregate ranking.
Countries’ credit risk. In Hochbaum and Moreno-Centeno [40], we considered countries’

credit risks that were rated by different rating agencies. Each of the agencies rated all
countries on the list, making it a full-list scenario. One of the challenges here is that each
agency is using a different scale, which makes even the average score nontrivial to obtain.
However beyond that, we showed in Hochbaum and Moreno-Centeno [40] that the separation
deviation model is capable of generating a “better” aggregate ranking in that it has a smaller
number of reversals, and thus better represents the individual agencies.
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Table 2. Scores by four reviewers for four proposals.

Proposal Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4 Scores’ sum

100,001 4.50 4.00 3.50 12.00
100,002 5.0 4.00 3.75 12.75
100,003 5.0 4.25 3.25 12.25
100,004 5.0 3.00 3.00 11.00

Note. Each proposal is reviewed by the three reviewers.

Customer segmentation. In Hochbaum et al. [43], we studied the segmentation of the
customers of a high-tech company with respect to their proclivity to adopt new technology.
The input data available are the history of the timing of the customers’ purchases of several
products. In this case the judges or reviewers of the customers are the products; and because
each product was bought by a subset of the customers, this is a partial-list case. This type of
analysis is interesting in that not all products are independent. That is, some of the products
are later versions of others. This required some twists in the analysis, which rarely arises
in other group ranking decisions. That is, one assumes that the judges are independent in
their assessments, and there are no models to analyze the existence of coalitions and other
game aspects on the part of the judges.
The individuals in the group that provide their assessments are referred to henceforth

as reviewers. The objects evaluated are called proposals or candidates. This is similar to
the scenario of the NSF review panel. The collection of all proposals is referred to as the
universal set. A ranking is a pairwise comparison that can be provided with magnitude of
the degree of preference, intensity ranking, or in terms of ordinal preferences only, preference
ranking. These are also sometimes referred to as cardinal versus ordinal preferences.
The Netflix prize competition. Netflix announced a prize competition, starting in

October 2006, to predict the review scores that customers will assign to movies. The method-
ology that was to be developed, described on their website,1 was based on information on
review scores provided by customers for movies watched (the training set). This was to be
used to generate a consistent cardinal ranking of all movies for each customer, where the
scores given by other customers could be used to calibrate the scale of each customer and
the public/average perception of the quality of each given movie. This competition, which
ended in September 2009 with the winners improving by more than 10% the accuracy of
the scores compared to the methodology used by Netflix, is a well-publicized illustration of
group decision making and its analogy to data mining.

3. Pairwise Comparisons

3.1. The Importance of Pairwise Comparisons
To see why pairwise comparisons are important, consider a committee reviewing candidates
or proposals as in the NSF panel example. There are four reviewers, four proposals, and
the ranking scores are on a scale of 1–5. Each proposal is evaluated by three of the four
reviewers. This is, then, a case of partial list or incomplete ranking. The total sum of scores is
given for each proposal. According to the sum of scores, the proposal that rates the highest
is 100,002, followed by 100,003 and then 100,001 and finally 100,004. However, considering
the pairwise comparisons, it is evident that all reviewers that have evaluated this pair of
proposals prefer proposal 100,001 to 100,002, and prefer 100,001 to 100,003. Thus, a fair
outcome that represents the views of the reviewers should place proposal 100,001 ahead of
both 100,002 and 100,003.

1Details of the competition are available at http://www.netflixprize.com/leaderboard, accessed July 2010.
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This underscores the shortcomings of the average weight model and the need to take into
consideration not only the pointwise scores, but also to consider pairwise comparisons by the
reviewers. Hochbaum and Moreno-Centeno [40] shows that using the implied pairwise com-
parisons in the separation and separation-deviation models yields a better rating/ranking of
countries’ credit risk in terms of the number of reversals of preferences of the rating agencies,
who serve as “reviewers.”

3.2. The Generation of Pairwise Comparisons Input
The pairwise comparison of i and j expresses the intensity of preference of i to j. Unlike
ordinal ranking that only outputs a permutation and a binary order between each pair,
saying that i is preferred to j, or vice versa, the setup here quantifies the extent that i is
preferred to j. This can be done in either the additive or the multiplicative models, as
presented formally below.
The separation model requires pairwise comparisons as input, but the input reviews may

come as scores, translated to pairwise comparisons. We will consider two types of inputs
that generate comparisons:

1. Implied by pointwise scores. When only pointwise scores are available, the pairwise
comparisons, or intensity of preference by a certain reviewer r, is implied from the pointwise
scores. The implication is that pr

ij = wr
i −wr

j in the additive sense, or pr
ij = wr

i /w
r
j in the

multiplicative sense.
Pointwise scores are used in scenarios such as NSF panel review; a conference program

committee selecting papers to present; student paper competition; country credit risk assess-
ment by agencies; and customer segmentation based on timing of purchases.
2. The input is in the form of pairwise comparisons. This is common in sports competitions

where the winner or the ranking is determined by the outcomes of games, which are pairwise
competitions. Although this is not obvious, the use of PageRank for ranking of academic
papers by citations, and ranking of webpages, also relies on pairwise comparisons only, as
will be shown later. The analytic hierarchy process (AHP), described in §7.3, is unique in
that it requires the reviewers to specify, instead of scores, all intensity pairwise comparisons.

4. Consistency of Pairwise Comparisons Ranking for
a Graph and Matrix Representation

4.1. Defining Consistency
The notion of consistency is critical when pairwise comparisons are the input. The matrix
(pr

ij) is said to be consistent in the additive sense if for every triplet i, j, k we have the
“triangle equality”:

pr
ij + p

r
jk = pr

ik.

Likewise, a comparisons matrix (pr
ij) is said to be consistent in the multiplicative sense if

for every triplet i, j, k we have

pr
ij · pr

jk = pr
ik.

Notice that if pairwise comparisons are generated from pointwise scores, then they satisfy
consistency, by construction. This is not the case in general for inputs in the form of pairwise
comparisons. It is rare, for instance, that sport teams playing each other more than once
will get the exact same outcome in all games. And although it has been reported that people
prefer to rank alternatives with pairwise comparisons (Brandstatter et al. [10]), if a person
is asked to provide all pairwise comparisons between the alternative candidates, the person
is more likely than not to provide comparisons that are inconsistent.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

23
.9

3.
76

.2
00

] 
on

 0
2 

Ja
nu

ar
y 

20
23

, a
t 1

1:
19

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Hochbaum: Separation-Deviation Methodology
124 Tutorials in Operations Research, c© 2010 INFORMS

The multiplicative and additive notions of consistency are analogous: It is easy to trans-
form multiplicative consistency to additive consistency by taking the logs of the intensities,
and vice versa (by taking the exponents). In the graph representation, we use the notion
of consistency in the additive sense, whereas the existing methods, relying on principal
eigenvector, consider the matrix representation and the multiplicative sense of consistency.
We elaborate next on the notion of consistency, which is key in obtaining aggregate

ranking—any solution to the ranking problem must be consistent. Specifically, we relate
consistency to the inverse equal-paths property of a graph.

4.2. Graph and Matrix Representations of Pairwise Comparisons
The concept of consistency of pairwise comparisons applies to both cardinal and ordinal
rankings. The approach here is that of cardinal ranking, rather than ordinal, but it is useful
to contrast consistency in both setups.
The output of an ordinal aggregate ranking is an ordering or permutation of the set

of candidates, and ties may be permitted. Consistency in ordinal ranking is equivalent to
the notion of transitivity: We denote the (weak) order relation signifying that i is ranked
at least as highly as j by i � j. An order relation � is said to be transitive if it satisfies
for all i, j, k: i � j and j � k ⇒ i � k. A collection of pairwise preferences is consistent if
the corresponding order is transitive. More details on ordinal consistency are provided in
Hochbaum and Levin [38].
Intensity rankings provide a cardinal quantifier to the preference. This quantifier is used

either in the additive sense or in the multiplicative sense. When additive, the intensity rep-
resents the extent of the difference between the two proposals. The multiplicative intensity
preference represents the ratio of the strengths of the ranks of the two proposals compared.
The notion of consistency with a matrix representation is in the multiplicative sense. For

complete consistent matrices (aij), for each triple i, j, k, aij ·ajk = aik. This is equivalent to
the existence of a set of weights wi for i= 1, . . . , n so that aij =wi/wj . Such a set of weights,
called a priority vector, is not unique because for any consistent set of weights w1, . . . ,wn and
a scalar c, the set cw1, . . . , cwn is also a priority vector. Therefore, we can arbitrarily choose
w1 = 1 to ensure a unique set of weights corresponding to consistent intensity rankings.

The matrix representation is used in the principal eigenvector technique and in PageRank,
which is a derivative of the principal eigenvector (details in §7), and by Saaty [51, 52] for
the analytic hierarchy process technique. Let the intensity rankings be given in the form of
a matrix A = (aij), where aij is the magnitude of (multiplicative) preference of proposal
i to j. The matrix is complete if all entries are present and generated from full lists, and
partial otherwise.
For A= (aij) a matrix of intensity rankings in the multiplicative sense, the values of all

aijs are positive, and if aij > 1, then i is preferred to j, and if aij < 1, then j is preferred to i.
Therefore, for consistent rankings aij = 1/aji for all i, j. Similarly, for A= (aij) a matrix of
intensity rankings in the additive sense, the value of aij is positive (negative), indicating that
i is preferred to j (j preferred to i) and the magnitude |aij | indicates the intensity of that
preference. Here, aij =−aji for all i, j and the matrix is skew symmetric. Skew symmetry is
a necessary condition for the consistency of a rankings matrix, but not sufficient. Some of the
literature on finding “close” consistent rankings assumes that the (inconsistent) preference
matrix is skew symmetric in that it satisfies this necessary condition.
One important implication of the notion of consistency is that in a consistent rankings

matrix each column and row contain the full information on the entire matrix. For instance,
given the ith column (ai1, ai2, . . . , ain) of a consistent ranking matrix in the multiplicative
sense and setting w1 = 1, one can generate all pairwise rankings as akj = aki · aij = aij/aik.

For an incomplete matrix, we construct the consistent closure by placing for every missing
i, j entry, a value generated from a sequence of entries, (i, k1), (k1, k2), . . . , (kp, j) if such
sequence exists, and let i= k0 and j = kp+1. The value aij is then set to

∏p+1
l=1 akl−1, kl

if the
rankings are expressed in the multiplicative sense, and aij =

∑p+1
l=1 akl−1, kl

if the rankings are
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expressed in the additive sense. If such a sequence does not exist, then the (multiplicative)
matrix does not satisfy the necessary condition of the Perron–Frobenius theorem in that
there are pairs that are incomparable, directly or indirectly, and the equation Ax= λx does
not have a unique positive solution. If there is at least one such sequence for each pair (we
choose one arbitrarily if there is more than one sequence), then this process completes the
matrix. Notice that if for each missing ranking there is only a single sequence of rankings
comparing the two, then the matrix resulting from the completion process is necessarily
consistent.
Suppose the matrix is consistent and the vector of priority weights is w= (wi)ni=1. Then

aij = wi/wj . Summing up over all j, we obtain,
∑n

j=1 aijwj = nwi. Therefore, in matrix
notation the vector of weights w satisfies, Aw= nw. We call this the fixed-point property
of the eigenvector. The vector of weights is w, hence, the eigenvector which consists of
the weights assigned to each proposal or each criterion under the multiplicative model, but
only if the matrix is consistent. Otherwise, the eigenvector forms some approximation of
the preference weights. This is the motivation for the use of the eigenvectors. For another
motivation, see §7.1.

The measure of approximation for a skew-symmetric inconsistent matrix defined by
Saaty [52] is the consistency index (C.I.),

C.I.=
λmax −n

n− 1
, (1)

where λmax is the maximum eigenvalue of the matrix. A matrix is said to be consistent if
and only if C.I. is zero. This is equivalent to the conditions aij · ajk = aik for all i, j, k. This
notion of consistency can only be applied to skew-symmetric matrices, that is, for matrices
that satisfy aij = 1/aji for all i < j.
Although the consistency index is 0 for a consistent matrix, which is a desirable property

of any measure of consistency, it is not known how the resulting priority vector’s ranking
reflects or deviates from the individual reviewers’ rankings, and according to what measure.

The graph representation, G= (V,E), formalizes a ranking or a set of multiple rankings.
The universal set of proposals is the set of nodes V in the graph. Every pairwise comparison
between a pair i and j is represented as an edge [i, j] in E. There is a set of reviewers R
and each reviewer r ∈R reviews a subset of V . The reviewers that provide scores for node i
are in Ri ⊆ R. The score of node i given by reviewer r is wr

i . Rij = Ri ∩Rj is the set of
reviewers the review the pair {i, j}. A reviewer in Rij may provide the implied gap as the
comparison score, or just provide a pairwise comparison score of pr

ij . Not all scores need
to be given and not all pairwise comparisons need to be present. If the set Rij contains
more than one reviewer, then there are multiple pairwise comparisons assigned to [i, j], or
alternatively there are multiple arcs between i and j, each with a separate intensity weight,
and the graph is then a “multigraph.” A graph representation is illustrated in Figure 1.
Given a graph representation of group ranking, each pairwise preference of i and j is given

as weights on the pair of arcs between i and j, with the weight on (i, j) being pr
ij , and the

Figure 1. The graph created for the group ranking problem with a set of reviewers R.

j

i xi

zij = xi – xj

{wr
j}r∈Rj
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ij}r∈Rij

{wr
i}r∈Ri
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weight of (j, i) pr
ji = −pr

ij . Because there could be multiple reviewers for the same pair of
nodes, a necessary condition for the consistency of the graph is that all those agree, or for
each r′, r′′ ∈ Rij , pr

ij = pr′′
ij . Given this necessary condition, in a consistent ranking graph

there is at most a single weight associated with each arc. We next show that a consequence
of the triangle equality is that the problem of group ranking can be presented as the inverse
equal-paths problem.

5. The Inverse Equal-Paths Problem and the Separation Model

5.1. Motivation
In the literature on consistent aggregate rankings, few of the proposed models present a
performance measure on the quality of the attained consistent ranking. One exception that
relates to permutations only in ordinal rankings is Kemeny and Snell’s model (Kemeny
and Snell [46]). This model seeks an optimal group ranking that minimizes the number of
reversed preferences. Therefore, if in one reviewer’s permutation i is preferred to j, but
in the aggregate ranking permutation j is preferred to i, then this counts as one reversal.
This model, however, has a number of drawbacks: it does not accommodate partial lists,
it does not differentiate between reviewers, and it is computationally prohibitive to solve
(NP-hard). Although ordinal rankings play an important role in voting and elections, an
added challenge is Arrow’s fundamental “impossibility” theorem (Arrow [8]), stating that no
voting scheme can guarantee five natural fairness properties: universal domain, transitivity,
unanimity, independence with respect to irrelevant alternatives referred to here as rank
reversal, and nondictatorship.
The separation model can be thought of as a cardinal analog of the Kemeny–Snell model.

Instead of minimizing the number of reversals, it minimizes the magnitude of the reversals.
And in further generalization, the separation model minimizes a convex function of the
magnitude of all the reversals. Although this is a different model from that of Kemeny and
Snell, it has been shown to deliver, in practice, good results on the Kemeny–Snell objective
function; see Hochbaum and Moreno-Centeno [40], and Hochbaum et al. [43].

5.2. The Inverse Equal-Paths Problem
The inverse equal-paths problem (IEP) was introduced by Hochbaum [37] on a directed
graph with arc weights. The problem is to modify the weights of the arcs so that all paths
between each pair of nodes will be of equal lengths (total sum of weights along the path),
and the penalty for the deviation from the given arcs’ lengths is minimum.
The inverse equal-paths problem is within the inverse problem paradigm, which is as

follows: Given observations and parameter values that do not conform with physical or
feasibility requirements, adjust the parameter values so as to satisfy the requirements. The
adjustment is made so as to minimize the cost of the adjustment in the form of penalty
functions. A prominent application is to find the inverse shortest-paths that conform with
the reading of the speed of seismic waves. There one seeks a minimum penalty for deviation
from existing estimates on lengths of arcs so as to conform to the observation that a shortest
path is of a given length, or of a given sequence of nodes. Variants of this inverse shortest
paths problem were studied by Burton and Toint [13, 14], Zhang et al. [57], Ahuja and
Orlin [1], Cui and Hochbaum [20], and Hochbaum [35].
The input to the inverse equal-paths problem is a nonsimple connected graph G= (V,A)

where for each pair (i, j) there is a set of arcs Rij ⊂A, so that for r ∈Rij there is an arc of
weight pr

ij from i to j.
Another input is a set of penalty functions fr

ij( ) for each arc (i, j)∈A and r ∈Rij .
A feasible solution to the inverse equal-paths problem is a set of weights p∗

ij for all pairs
i, j ∈ V , satisfying that for any pair of nodes s, t∈ V all the directed paths from s to t (and
from t to s) with arc weights p∗ are of the same length.
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Arc weights are said to be skew symmetric if for each arc from i to j of weight pr
ij there

is an arc from j to i with weight −pr
ij . Note that for any feasible solution, the set of weights

must be skew symmetric. The reason is that the length of a path from a node to itself is 0, so
pii = 0. It follows that all cycles in the graph are of length 0, and in particular, pij +pji = 0.
Thus, in a feasible solution the weights are skew symmertic.
An arc-weight vector p∗ is optimal if among all possible weight vectors p it minimizes the

total sum of the penalty functions
∑

(i, j)∈A,r∈Rij
fr

ij(pij − pr
ij).

We emphasize that any feasible weight vector assigns weights to all possible edges (and
each edge corresponds to two arcs in opposite directions and one the negative of the other).
That is, the feasible vector is that of the weights of a complete graph.
We claim that for any feasible weight vector the triangle inequality is satisfied. To see this,

notice that for a feasible weight vector p, for any pair of nodes i, j all the paths between
them are of equal length. In particular, all 2-edge paths are of equal length, and equal to the
length of the 1-edge path [i, j]. Therefore, for any path [i, k, j], pik +pkj = pij . Therefore, the
requirement that weights satisfy the triangle equality is a special case of the requirement
that weights satisfy the equal paths.
The inverse is true as well. That is, if the edge weights satisfy the triangle equality, then

all paths are of equal lengths, as shown in the next lemma.

Lemma 5.1. The triangle equality is satisfied for all triplets in a graph with skew-
symmetric weights if and only if all paths between every pair of nodes are of equal length.

Proof. The discussion above demonstrated the if direction. The proof for the only if
direction works by induction on the number of edges in the path between two nodes, say
s and t. The triangle equality means that all paths of length 2, 2-edge paths, are of equal
length to that of the 1-edge path, or the weight of the 1 edge, pst. Assume that the lengths
of all paths of k edges between each pair of nodes are equal to the lengths of all paths of
length q between the two nodes for any q ≤ k. In particular, for q = 1 their length is equal
to the weight of the edge between the two nodes pst. We now prove that the lengths of all
k+1-edge paths is equal to pst as well. To do that, we take the first two edges in a k+1 path,
[s, i1, i2], and replace them by the edge [s, i2], which is necessarily of the same weight (by
the inductive assumption). This “short-cutting” results in a k-edge path between s and t,
which by the induction is equal in length to pst.

The inductive process is demonstrated in Figure 2, where repeated short-cutting in a
6-edge path [s,1,2,3,4,5, t] is shown to be equal to the weight of the edge between s and t.
In that figure, the weights on the edges correspond to the weights of the arcs from i to j
for i < j. (In the opposite direction, from j to i, j > i the weight is the negative of that
quantity.) The 6-edge path is replaced by an equal-length 5-edge path [s,2,3,4,5, t]. �

We conclude that the two properties are equivalent: equal paths are equivalent to the
triangle equality.
We next show that if in a graph the arc weights satisfy the triangle equality, then there

exists a set of potentials, or node weights, wi, so that for every i, j, pij =wi −wj .

Lemma 5.2. For p a set of arc weights so that the graph G has all equal paths between
each pair, if and only if there exists a set of values (potentials) xj, for all j ∈ V , such that
xi −xj = pij.

Proof. If there exists a set of node potentials xj so that each arc (i, j) weight is
xi −xj , then the distance between a pair of nodes s and t along a path [s, i1, i2, . . . , ik, t] is
(xi1 −xs)+ (xi2 −xi1)+ · · ·+(xt −xk) = xt −xs. Therefore, all paths between each pair of
nodes are of equal length.
For the converse, we let w1 = 0 and wi equal to the length of any arbitrarily selected path

from node 1 to node i (it does not matter which path, because they are all of equal length).
Therefore, the length of the path [i, j], which is the weight of this arc (in the direction from
i to j) is wi −wj =wi −w1+w1 −wj or the length of the path [i,1, j]. �
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Figure 2. The triangle equality “short-cutting” in the proof of Lemma 5.1.
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5.3. The Equivalence of the Separation Model and IEP
The input to the separation model is a collection of pairwise comparisons by reviewers in
the set R. As before, we let Rij be the set of reviewers who evaluated, and compared,
both i and j. We then use the graph representation as in Figure 1. Here, for each intensity
preference pr

ij there is a corresponding arc in the opposite direction with weight pr
ji =−pr

ij .
That is, the input weights are skew symmetric. The graph has to be connected or else the
ranking can be determined in each connected component separately.
We seek a consistent aggregate ranking. Thus, any feasible solution is in the form of

pairwise intensity preference weights that satisfy the triangle equality. From Lemma 5.1 those
weights must satisfy the equal-paths property for any pair of nodes (proposals). Therefore,
the requirement of equal lengths of the paths is equivalent to the requirement of consistency.
Let the consistent aggregate ranking’s preference intensity for pair i, j be denoted by zij .
For each reviewer r in Rij the difference, or distance, between the reviewer’s inten-

sity of preference pr
ij and zij is zij − pr

ij . This difference is assigned a penalty function
fr

ij((zij − pr
ij), which is selected so as to reflect the confidence one has in reviewer’s r

assessment of the pair i, j. Therefore, for high confidence in the reviewer’s assessment
of this particular pair, this function will grow faster for larger values as compared to a
reviewer with less confidence. The function fr

ij typically takes the value 0 for an argument
of 0 (0 difference or distance). It is allowed to be nonsymmetric for positive and negative
arguments.
Let the penalty function for the pair (i, j) be Fij(zij) where this function is the sum of

penalties for all reviewers that assessed the pair i, j: Fij(zij) =
∑

r∈Rij
fr

ij(zij − pr
ij).

A weight vector p∗ is optimal, if among all feasible weight vectors z it minimizes the total
sum of the penalty functions

∑
(i, j)∈AFij(zij).

The following is a valid formulation of the inverse equal-paths problem (IEP):

(IEP) min
∑
i<j

Fij(zij)

subject to xi −xj = zij for i < j,

x1 = 0,

lj ≤ xj ≤ uj j = 1, . . . , n.

Including in the formulation a set of variables, xj , for the node potentials, or priority
weights, is redundant, but has the advantage that the properties of the problem become
transparent. We use here the anchoring of x1 = 0, as otherwise, for any feasible vector x,
the vector x+constant is feasible as well, and has the same objective value as that implied
by x. The upper- and lower-bound constraints can be generated as for C =maxr, (i, j) p

r
ij ,

−nC ≤ xj ≤ nC. We thus let lj = −nC and uj = nC for all j = 1, . . . , n. In the aggregate
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ranking problem it would be reasonable to require a set of weights with some finite resolution.
A set of integer weights in the interval [−n,n] is sufficient to guarantee that there are
enough distinct ranks to assign to each node (or team). Therefore, we add the integrality
requirement and replace the lower- and upper-bound constraints on x by

−n≤ xj ≤ n xj integer, for all j ∈ V.
In case of rank ties, one might want to increase the resolution of the weights. This is easily
obtained by scaling the bounds by 1/ε for ε the required grid accuracy. Changes in values
of ε do not affect the optimal solution greatly. Indeed, the proximity theorem of Hochbaum
and Shanthikumar [42] guarantees that in this case, an optimal solution in integers for one
resolution level is close enough to an optimal solution on a finer grid.
The IEP optimization problem has the fixed-point property. That is, if the input intensity

preferences are consistent with some underlying ranking, then the optimal solution will be
that underlying ranking, because the penalty functions are all zero for this ranking.

5.4. Algorithms for the Inverse Equal-Paths Problem
We note that the constraint matrix of IEP is totally unimodular because the coefficients
of xi form a matrix where each row has one 1 and one −1, and the coefficients of the zij

variables form an identity matrix. Hochbaum and Shanthikumar [42] proved that minimizing
an objective function that is separable convex on a totally unimodular constraint matrix
is polynomial time solvable in integers, or on any ε-grid. Furthermore, the convex IEP is a
special case of convex dual of minimum-cost network flow studied in Ahuja et al. [2].
We summarize below the complexity and algorithms for solving IEP. Here, U =

maxj{uj − lj}, and T (n,m) is the running time required to solve the minimum s, t-cut
problem on a graph with n nodes and m arcs.

1. For F ( ) convex functions the problem IEP is solvable in polynomial time. An algorithm
that runs in logU calls to a minimum cut procedure with complexity O(logU · T (n2,mn))
is reported in Ahuja et al. [3]. Another, more efficient algorithm for this problem runs in
O(mn logn lognU); and Ahuja et al. [2]. Both these algorithms have been devised for the
more general problem of the convex dual of minimum-cost network flow (DMNCF).
2. For Fij(zij) = a+ij max{zij ,0} + a−

ij max{−zij ,0} (that is, Fij( ) are linear for positive
deviation and for negative deviation), the algorithm reported in Hochbaum [34] has com-
plexity of O(T (n,m)+n logU), which is the best possible.
3. For F ( ) arbitrary functions the problem is NP-hard—it can be shown to be only harder

than the multiway cut problem, which is known to be NP-hard. This case is known more
commonly as the metric labeling problem and the functions F ( ) are usually δ functions
equal to 0 if the argument is 0, and a positive constant otherwise. For these problems there
is a large body of research on approximation algorithms; e.g., see Kleinberg and Tardos [48].

For IEP since U =O(n), the run times of the polynomial algorithms for the convex case
are all strongly polynomial.

6. The Ranking Graph and the Properties of
the Aggregate Ranking

The ranking graph G= (V,E) is the collection of pairwise comparisons for the pairs [i, j]∈E
that are provided as the input by the reviewers. (Recall that each pairwise comparison [i, j]
is converted into two skew-symmetric arcs in the directed graph set for the (IEP) problem.)
As noted above, the ranking graph may be a multigraph indicating that there can be multiple
pairwise comparisons for the same pair of candidates. We discuss here the links between the
graph properties and the aggregate ranking.
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If the ranking graph is simple, i.e., there is at most one edge between each pair, the
problem of aggregate ranking is to find a consistent ranking that is as “similar” as possible
to the input comparisons, or violates those inputs as little as possible.
If, however, the ranking graph contains at most one path between each pair of nodes, then

it is an acyclic undirected graph, or a forest. In that case, there is a unique aggregate ranking
in each connected component of the forest. However, candidates that reside in different
components are not comparable because there is no input on comparing any node in one
component with nodes in the other component. These concepts are illustrated in Figure 3.
The ranking graph on nodes 1–12 is not connected, with the set 1–5 disconnected from the set
6–12. So the nodes {1,2,3,4,5} are not comparable to any of the nodes {6,7,8,9,10,11,12}.
Also, the set of nodes 1–12 forms a tree (an acyclic component).
The concept of deduced ranking is to deduce the relative ranking of a pair of candidates

indirectly from the comparisons along a sequence of pairs connecting the two respective
nodes. The relative ranking of nodes i and j can be deduced, even if there is no edge
between them in the ranking graph, if there is a sequence of edges [i, i1], [i1, i2], . . . , [ik, j]
for k ≥ 1. The ranking of a direct pairwise comparison can be viewed as such a sequence
for k = 1. Thus, the ranking of the pair is deduced from any path in the ranking graph
connecting the pair of nodes. If there are multiple paths connecting the same pair, then the
deduced ranking may not be unique, and the respective ranking graph does not satisfy the
equal-paths property.
The set E of input pairwise comparisons affects the quality of the ranking as follows:

1. If not connected, then there are incomparable nodes or objects.
2. If the shortest path between two nodes is too long (e.g., >5), then the deduced ranking

is not robust and highly speculative. In the graph in Figure 3 the comparison between
node 12 and 8, using a path of four edges, is less reliable than the comparison between, e.g.,
8 and 7, which have been directly compared.
3. The greater the number of paths between each pair of nodes—the connectivity of the

graph is the number k so that each pair of nodes have at least k edge-disjoint paths between
them—the more robust the ranking. This is so because there are several “opinions” rendered
on the pairwise comparison between the pair, increasing the confidence in the resulting
comparison. In Figure 3, nodes 1 and 5 have four paths between them: [1,2,3,4,5]; [1,2,3,5];
[1,3,5]; [1,3,4,5]. (Note that only two of these paths are edge disjoint: [1,2,3,4,5] and
[1,3,5].) Therefore, we consider the ultimate aggregate ranking comparison between these
two nodes to be more reliable as compared to a ranking graph where there is only one path
(say, of length 4) between the two nodes we wish to compare (e.g., between nodes 8 and 12
in Figure 3). In graph terms, we state that the higher the connectivity of the graph, the
more robust the ultimate ranking.

In some cases, the form of the ranking graph E is determined in advance. This happens in
scheduling of sports competitions. In NSF review panels, this is determined by the director’s

Figure 3. A ranking graph with two components.
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allocation of review tasks to reviewers. This allocation decision is going to have an impact
on the robustness of the outcome. Cook et al. [19] investigated the allocation problem
and proposed a heuristic algorithm to generate good feasible solutions for a version of the
allocation problem. Hochbaum and Levin [39] studied the complexity of such allocation
problems with various desired properties. Most of these problems are NP-hard, and for some
of them there are approximation algorithms proposed in Hochbaum and Levin [39].
PageRank is a heuristic for the principal eigenvector. One major issue is that convergence

cannot be attained unless the aperiodicity requirement is satisfied. Aperiodicity means that
between every pair there are paths of any length l except for a finite number of paths.
Therefore, if the graph is two opposing arcs between two nodes, then this requirement is not
satisfied. Or, if the graph is a directed cycle (Hamiltonian), then it is strongly connected
but does not satisfy the aperiodicity requirement.

7. Alternative Approaches for Aggregate Ranking with
Pairwise Comparisons

We review here, in some detail, several leading aggregate ranking approaches, including those
that rely on the principal eigenvector, the analytic hierarchy process (AHP), PageRank, and
several optimization approaches.

7.1. The Principal Eigenvector Technique
The principal eigenvector technique has been known to apply to ranking since the 1950s.
This method is reviewed, e.g., in a study by Keener [45] addressing the rankings of football
teams. Consider intensity rankings that quantify by how much team i is stronger than team
j by a positive number aij—a multiplicative intensity preference. (There is a great deal of
research on how to determine the values of aij as a function of the score of a game, and
Keener’s study proposes one mapping between the score of the game and the value of aij .)
Let ni be the number of games played by team i. Then, ri, the ultimate ranking of team i,
is reasonably presumed to be proportional to the calibrated rank,

1
ni

n∑
j=1

aijrj .

Thus, ri = (1/λ)
∑n

j=1(aij/ni)rj , or Ar= λr for A= (aij/ni). The solution to this system
of equations is the principal eigenvector.
The Perron–Frobenius theorem states that for a nonnegative nontrivial matrix A there

exists a nonnegative eigenvector r corresponding to a unique eigenvalue λ. If A is irreducible,
then r is strictly positive, unique, and simple, and λ is the largest eigenvalue. The notion of
irreducibility has an algebraic definition. We cast it as a property of the ranking graph: recall
the concept of deduced ranking and connectivity of the graph. If the graph is connected,
then there is a path between every pair of nodes and one can deduce the relative ranking
of each pair, indirectly, from the outcomes of a sequence of games played. The concept of
irreducibility is equivalent to having all pairs of teams comparable by deduced ranking. In
graph terms this means that there is a path between each pair of nodes—namely, the graph
is connected.
Some properties of the principal eigenvector method are as follows:

1. Unlike the weight-averaging algorithm, the eigenvector method takes into consideration
not only the count of how many times one object is stronger than others, but also to which
objects it is compared. Therefore, winning against a strong team counts more than winning
against a weak one.
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2. “Missing games” correspond to entries in the matrix, because the matrix must be full.
The standard approach is to include such games as a draw. These draws, however, tend
to skew the overall ranking. There has recently been a substantial body of research (e.g.,
Jagabathula and Shah [44]) looking into recovery of rankings from partial information, and
seeking minimum-rank complete matrices that agree with the given partial information.
3. All games contribute uniformly to the aggregate ranking, and no subjective evaluation

of a score of a game can be included. This is also a feature in the total weight-sorting
algorithm used for webpage ranking or for academic citation ranking, both of which do not
differentiate between citations of between pointers. Therefore, a negative citation stating
that a result in a related paper is wrong counts the same as a citation referring to a paper
as seminal. On webpages there are sometimes pointers that companies are buying in order
to increase their webpage rank, and these pointers are often unrelated to the content of the
webpage. However, principal eigenvector method, as well as other existing models, does not
discriminate between citations as per their quality and significance.
4. If there are multiple games between teams, it is not clear how to measure the aggregate

effect of the games that have different, and often contradictory, outcomes. In a simple
example, if one team wins against the other in one game, and loses in a second game, then
the often-used average counts the same as if the two teams played a game resulting in a
draw, or not having played at all.
5. Solving for the principal eigenvector is equivalent to finding the roots of a polynomial

(of degree n). As such, it cannot be performed in strongly polynomial time (see Renegar
[49] and Hochbaum [33]).

The partial-list, or missing games, aspect is a major detriment to the use of the principal
eigenvector. To quote from Fainmesser et al. [26],

Why is there more controversy in the ranking of NCAA college football teams than there is in
the ranking of other sports’ teams? Unlike other sport leagues, in which the champion is either
determined by a playoff system or a structure in which all teams play each other (European
Soccer Leagues for example), in NCAA college football, teams typically play only 12–13 games
and yet, there are 120 teams in (the premier) Division I–A NCAA college football.

That is, the explanation for the difficulty and controversy surrounding the ranking is that
it is a “partial list” and the “schedule,” or the allocation of the games, plays an impor-
tant role. The respective graph tends to be of low connectivity. This partial-list problem is
particularly exacerbated because of the use of the principal eigenvector technique, which is
designed for a full-list comparison matrix.

7.2. The Markov Chain Technique
In terms of computing requirement, finding the principal eigenvector w∗ is not practical for
moderate to large values of n. Instead, it is common to compute it using the power method
(Vargas [56]): For a given initial assessment of ranks w0 (typically, initializing with all ranks
are equal to 1), this is a recursive procedure based on

lim
k→∞

Akw0

|Akw0| =w
∗. (2)

The advantage of the use of this recursion is that it is inherently distributed and localized.
Each iteration is implemented by following a walk from each node i to node j with probability
aij/

∑n
p=1 aip. The count of the number of visits to each node after a number of iterations is

an estimate of the relative rank weight. The drawbacks include several technical requirements
on convergence conditions that often are not satisfied.
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7.3. About AHP
The analytic hierarchy process (AHP) was developed by Saaty [51, 52] in the late 1970s, and
has become a leading approach to multicriteria decision making. For this reason we sketch
it briefly.
AHP relies on the principal eigenvector technique in a hierarchical manner. The decision

problem is modeled as a hierarchy of criteria, subcriteria, and alternatives. The method
features a decomposition of the problem to a hierarchy of simpler components, extracting
experts’ judgements and then synthesizing those judgements. After the hierarchy is con-
structed, the decision maker assesses the intensities in a pairwise comparison matrix. Thus,
given n alternatives, the decision maker provides n × (n − 1) pairwise comparisons that
assess the relative importance of every alternative to each of the others. The backbone of the
technique is the generation of the priority vector as the eigenvector of the matrix A= (aij)
at each level of the hierarchy.

7.4. The Google PageRank Algorithm
The Google PageRank algorithm is a finite approximation of the limit (2) using a small
number of iterations. The following recursive formula that is used for Google PageRank can
be shown to approximate in the limit the principal eigenvector of the respective matrix if
d= 0:

Gi = (1− d)
∑

(j, i)∈A

Gj

kj
+
d

N
,

where N is the number of objects in the universe, Gi is the google number or strength of
object i, kj is the out-degree of node j, and d is a parameter.
The ranking of academic papers based on citation count has raised some interest and

criticism recently (Chen et al. [17], Buchanan [12]). Citation ranking of academic papers
are determined by the citation count of a paper. Setting a citation of article i to j as an
arc (i, j) is a graph G= (V,A) with a node corresponding to each academic paper, this is
equivalent to ranking each paper by its in-degree. Chen et al. [17] and Buchanan [12] point
out that the traditional citation count brings about results that are contradictory to the
perceived importance of certain papers. In their study, Chen et al. give some examples. One
is a 1929 paper by Slater that ranks 1,853rd in terms of citation count, although there is
a universal agreement among physicists that the “Slater determinant” introduced in that
paper is a fundamental concept that is considered classic, and therefore the citation count
rank undervalues Slater’s paper.
Chen et al. instead used the “Google PageRank Algorithm,” noting that the ranking

model of webpages is analogous to the academic citations model, where pointing to a web-
page is equivalent to a citation. Chen et al. [17] computed the rank of Slater’s paper with
Google PageRank and showed it turns out 10th. This, and the improved rank of other “clas-
sic” papers, served as evidence that Google rank is a better measure of impact than the
traditional citation count.
In using the PageRank algorithm, the interpretation of linking to another website or citing

another paper is equivalent to a sports team “losing a game” to that site or to the other
paper, which is a drawback of the principal eigenvector technique. We note that Kleinberg’s
HITS method (Kleinberg [47]), provides a dual but separate role to each candidate, both
as a reviewer (authority) and as an object to be evaluated, which solves this issue (albeit
introducing some other difficulties).

7.5. Finding “Close” Consistent Rankings with
Optimization Techniques

Several approaches other than the eigenvector method have been proposed in the literature
to generate a consistent matrix that is in some sense “close” to the given matrix. Most of
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these are based on minimizing some measure of distance of the generated consistent matrix
from the given matrix. Regression-based approaches that assume the aijs to be random
variables with known distribution centered around a consistent comparison matrix have
been proposed (see Hochbaum and Levin [38] for a review and formal treatment of these
methods). Least squares and logarithmic least-squares regression are the most popular of
these techniques, and Saaty and Vargas [54] give a comparison of these methods to the
eigenvector method. Techniques based on linear programming (Chandran et al. [16], Ali
et al. [6]) have also been proposed.
We show that all of these models are a special case of the separation model, IEP.
The model of Saaty and Vargas [54] employs the least-squares method to determine the

values of the weights that form a consistent ranking that closely approximates a given
inconsistent ranking matrix (aij). Their objective function is to minimize the proximity
measured by

∑n
i=1

∑n
j=1(logaij − logwi+logwj)2. Replacing logwi − logwj by xi −xj or zij

as in the separation model, this is the separation problem where Fij(zij) = (zij − logaij)2.
As proved in Hochbaum and Moreno-Centeno [40], if logaij is derived from a difference
of score weights, then this uniform quadratic separation problem for full list, or complete
matrix, is the same as the simple weight averaging. More details on that are given in §9.
Chandran et al. [16] presented an alternative linear programming approach to the model of

Saaty and Vargas for the problem of identifying weights of consistent rankings at minimum
error. In their formulation the objective is to minimize the deviation error as absolute
value,

∑
i<j |xi −xj − logaij |, where xi represents the logarithm of the weight of proposal i.

Defining both of these optimization problems on the variables xi representing the weight
of i, and zij representing the resulting optimal additive ranking, the objective functions are∑n

i=1
∑n

j=1(logaij − zij)2 and
∑

i<j |zij − logaij |, respectively. This optimization is then
subject to consistency constraints of the form:

xi −xj = zij . (3)

In the context of group ranking, Ali et al. [6] explored a scenario where L reviewers provide
rankings only, and no proposal weights. The intensity ranking of reviewer l is given as an
skew-symmetric matrix of intensity values (pl

ij), l = 1, . . . ,L. The weights implied by each
ranking are not given explicitly.
Ali et al. posed the chosen group intensity ranking as intensity numbers zij that satisfy

for each pair 1 ≤ i≤ n− 2 and k = i+ 2, . . . , n, zik =
∑k−1

j=1 zj, j+1. This latter condition is
obviously equivalent to the consistency constraints with some underlying weights vector x
and zij = xi −xj . The objective function they choose is to minimize the sum of the absolute
deviation of zij from the intensity of preferences of all L reviewers,

∑
i<j

∑L
l=1 |pl

ij − zij |.
The formulation used by Ali et al. [6] assumes that intensity values are integers in the
range [−h,h]. It is also implicitly assumed that individual reviewers’ rankings form skew-
symmetric matrices that are consistent. The formulation of the problem by Ali, Cook, and
Kressis is referred to here as (ACK) (after the initials of the authors).

(ACK) min
∑
i<j

L∑
l=1

|pl
ij − zij |

subject to zik −
k−1∑
j=i

zj, j+1 = 0 for i= 1, . . . , n− 2, i+2≤ k≤ n,

1−h≤ zij ≤ h− 1 zi, j integer, for all i, j.

Ali et al. showed how to solve the (ACK) problem with a linear programming routine.
They noted the total unimodularity of the constraint matrix but did not make any use of
this fact to achieve computational efficiency.
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The separation model is in fact a generalization of (ACK). Furthermore, the models
introduced in Saaty and Vargas [54], Ali et al. [6], and Chandran et al. [16] are all special
cases of (IEP), as detailed next: For the problem (ACK) of finding group rankings close to
the L individuals’ rankings, we let each reviewer provide a ranking matrix (pl

ij). This ranking
matrix is assumed to be consistent; thus, there are underlying weights wl

i corresponding to
each ranking so that (pl

ij) =w
l
i −wl

j and wl
1 = 0.

We now generate an L×nmatrix where the lth column represents the complete rankings of
reviewer l expressed as pairwise comparisons to proposal l. If the number of proposals is less
than the number of reviewers, L>n, then reviewer l expresses the preferences as compared
to proposal l(mod n− 1) where the proposals are numbered 0,1, . . . , n− 1. Therefore, the
lth column has ail = wl

i −wl
l. Now, the matrix (aij) is not consistent if the reviewers are

not in full agreement, so finding overall “close” consistent rankings is equivalent to finding
weights xi so that aij = xi −xj .
To model the problem, we let the variable xi be the weight consistent with the group

ranking that is to be assigned to proposal i, and x1 = 0. We normalize the values of the
rankings by dividing each value of pl

ij byM , forM =maxi, j, l |pl
ij |. With n proposals, integer

intensities and setting x1 = 0, it is thus sufficient to choose xi as an integer in the range
[−n,n].
We generalize the deviation measuring objective function by using any convex function

Fij(zij). Such functions min
∑

i<j Fij(zij) include the case of the absolute deviation function
of Ali et al. [6], Fij(zij) =

∑L
l=1 |wl

i −wl
j − zij |. An alternative choice of Fij( ) could be the

quadratic convex function
∑L

l=1α
l
ij(p

l
ij − zij)2, where the coefficients αl

ij reflect the weight,
and thus the confidence, in the ranking of reviewer l for the pair ij, and replacing the
term pl

ij by wl
i −wl

j . If some reviewers’ rankings are not necessarily consistent, then such
weights cannot be assumed to exist, and an appropriate objective function depends on both
pl

ij and zij , such as the function Fij(zij) =
∑L

l=1 |pl
ij − zij | of (ACK).

The problem of reaching group rankings with quadratic function penalties, as in Saaty
and Vargas [54], is a special case of (IEP) where for xi representing logwi, the quadratic
objective function is, Fij(zij) = (logaij − zij)2. This link between the models of Saaty and
Vargas and of Ali et al. has not been previously observed, and neither has the recognition of
the existence of such efficient algorithms for the problem. The problem studied by Chandran
et al. [16] is identical to that studied by Ali et al. [6] when one replaces the individual
rankings pl

ij by a column of aij in the matrix.
The optimal objective value of (IEP) provides a measure of how far a consistent ranking

can be from the given inconsistent ranking according to the closeness measure deemed
appropriate—the objective function. In this sense, this is a more explicit consistency index
than C.I., which is not associated with any specific interpretation of distance corresponding
to the C.I. value.

8. Separation-Deviation Model
Having reviewers provide both weights (scores) and comparisons seems to be redundant,
because the set of weights can be translated to a comparison and vice versa. Nevertheless,
reviewers might be inconsistent in their own evaluations, and submitting both weights and
comparisons permits assignment of levels of confidence separately to the weights and to
the pairwise rankings. This extra information can serve the role of capturing more robustly
the evaluations of the reviewers than is possible with weights alone or rankings alone.
We demonstrate here that this problem is linked to the image segmentation problem, and
thus algorithms for that problem apply directly to the group ranking with weights and
comparisons.
In the procedure considered here, the output of the review process consists of both weights

and intensity comparisons (in the additive model). It is plausible that the comparisons of
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individual reviewers will be consistent with the individual’s weights, i.e., (pl
ij) = wl

i − wl
j ,

but it is not mandatory according to our model. Also, all reviewers might be advised to
anchor their rankings by setting wl

1 = 0, but this is not required. If any single weight is set
to 0, and a difference of one level in pairwise comparison is quantified as 1, then the range
for the weights is in the interval [−n,n]. The reviewers are permitted, however, to also use
noninteger differences in ranks.
The problem is to assign both weights and comparisons so as to minimize a deviation

function that has two components. One component is the deviation cost for the penalty of
choosing a weight that deviates from the weights selected by the reviewers. The deviation
cost function can take into account the confidence level in the weights assigned by individual
reviewers, giving a higher penalty for deviating from higher confidence weight. The second
component is the separation costs that determine a comparison consistent with the weights.
That is, proposal i is ranked higher than proposal j if the final weight assigned is higher
for i than for j. The separation cost is the cost for the final group comparison of deviating
from the comparison of each of the reviewers.
The terminology of “separation” and “deviation” costs borrows from the context of the

problem of image segmentation and error correction (see Hochbaum [34]), which is shown
to be related to the group ranking problem. In the image segmentation setup a transmitted
image is degraded by noise. The assumption is that a “correct” image tends to have areas of
uniform color. The goal is to reset the values of the colors of the pixels so as to minimize the
penalty for the deviation from the observed colors, and furthermore, so that the discontinuity
in terms of separation of colors between adjacent pixels is as small as possible. Thus, the
aim is to modify the given color values as little as possible while penalizing changes in
color between neighboring pixels. The penalty function therefore has two components: the
deviation cost that accounts for modifying the color assignment of each pixel, and the
separation cost that penalizes pairwise discontinuities in color assignment for each pair of
neighboring pixels.
Representing the image segmentation problem, as a graph problem, we let the pixels be

nodes in a graph and the pairwise neighborhood relation be indicated by edges between
neighboring pixels. Each pairwise adjacency relation {i, j} is replaced by a pair of two
opposing arcs (i, j) and (j, i), each carrying a capacity representing the penalty function for
the case that the color of j is greater than the color of i and vice versa. The set of directed
arcs representing the adjacency (or neighborhood) relation is denoted by A. We denote the
set of neighbors of i, or those nodes that have pairwise relation with i, by N(i). Thus, the
problem is defined on a graph G= (V,A). Each node j has the observed value gj associated
with it. The problem is to assign an integer value xj , selected from a spectrum of K colors,
to each node j so as to minimize the penalty function. For gi the color of pixel i, G( )
the deviation cost function, and F ( ) the separation cost function, the problem’s objective
function is

min
ui≥xi≥li

{∑
i∈V

Gi(gi, xi)+
∑
i∈V

∑
j∈N(i)

Fij(xi −xj)
}
.

The image segmentation problem is equivalent to the group ranking problem except that
it is a “single value” problem, in the sense that the problem instance is given with one value
for the weight (pixel color) and one specific function for the separation determined by the
absolute value of the weight difference. In the group ranking problem there are multiple
values assigned to each node, one for each reviewer, and multiple values assigned to each
pair, one for each reviewer that has ranked the pair.
Our formalization of the group ranking problem as a graph problem is described schemat-

ically in Figure 1. Each proposal is a node in the graph, and each pairwise comparison of
proposals i and j is a pair of opposing arcs between i and j. Each node i has a set of review-
ers Ri that have provided weights wl

i, l ∈Ri. The weights for node i take values in the range
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Figure 4. The graph for the group decision problem.

j XjXi

Sij
{w (k)}k∈Ri

i

Sji

i {w (k)}k∈Rjj

[−n,n]. Each pair of nodes i, j has a set of reviewers in Ri ∩Rj providing relative ranking.
In Figure 4 we let Sij be the set of reviewers that prefer i to j and Sji be the set of reviewers
preferring j to i. Obviously, Sij ∪ Sji =Ri ∩Rj =Rij . For r ∈ Sij , pr

ij ≥ 0 and for r ∈ Sji,
pr

ij ≤ 0. The separation penalty function for the pair i, j is Fij(zij) =
∑

r∈Rij
F r(zij − pr

ij).
For zij =max{0, xi − xj} and zji =max{0, xj − xi} and G( ) denoting the deviation cost

function and F ( ) denoting the separation cost function, then the group ranking formulation
is referred to as (SD) (standing for separation deviation):

(SD) min
{∑

j∈V

Gj((wl
i)l∈Ri , xj)+

∑
i, j∈V

Fij(zij)
}

subject to xi −xj ≤ zij for all i, j,

xj −xi ≤ zji for all i, j,

n≥ xj ≥ −n j = 1, . . . , n,

zji, zij ≥ 0, (i, j)∈E.
Using the algorithms devised in Hochbaum [34] for the image segmentation problem, we

note that the case when the functions Fij( ) are linear is relevant to the group ranking, with,
e.g., F r

ij(zij) = |zij − pij |.
Theorem 8.1. (a) If Gj( ) are convex and Fij(zij) = eijzij are linear, then (SD) is solv-

able in time O(mn logn2/m).
(b) If Gj( ) and Fij( ) are convex, then (SD) is solvable in strongly polynomial time,

O(mn logn2/m logn).
(c) If Gj( ) are arbitrary nonlinear functions and Fij( ) convex, then the problem is solved

in the time required to find a minimum s, t-cut in a graph on n2 nodes and mn2 arcs,
O(mn3 logn2/m).

Proof. The solution method follows the procedures used by Hochbaum for the image
segmentation problem in Hochbaum [34]. The algorithms there are stated for the range
of the variables xi in [−U,U ]. The running times here are deduced from those by
setting n=U .
(a) The running time of the algorithm in this case is the same as the running time

required to solve the parametric minimum cut on a respective graph of same size, i.e.,
O(mn log(n2/m)).
(b) If both functions Gj( ) and Fij( ) are convex, then the problem is an instance of the

convex dual of minimum-cost network flow (DMCNF). Using the algorithm of Ahuja et al. [2]
we can solve this problem in complexity O(mn log(n2/m) logn).
(c) If Gj( ) are arbitrary nonlinear functions and Fij( ) are convex functions, then

the problem is solvable by a minimum cut on a graph on n2 nodes and mn2 arcs,
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O(mn3 logn2/m); see Ahuja et al. [3]. This case is of interest, e.g., when the appropriate
measure is to penalize any deviation from the weight given regardless of the magnitude of
the deviation.

9. Properties of the Separation and Separation-Deviation
Models for Specific Penalty Functions

Hochbaum and Moreno-Centeno [40] studied the properties of the separation and separation-
deviation models. These were applied to the problem of aggregating the countries’ credit risk
ratings by three different agencies. Because all countries were rated by all three agencies,
this is a case of full-list ranking. Also, the inputs by the agencies were in the form of ratings,
that is scores, rather than pairwise comparisons. Letting the score given to country i by
agency r be wr

i , the implied additive pairwise comparison is set to pr
ij =w

r
i −wr

j .
In particular, Hochbaum and Moreno-Centeno [40] consider two cases of penalty functions.

One type is the absolute value function. That is, for qr
ij representing the weight of the

confidence in reviewer r for pairwise comparison of [i, j], fr
ij = qr

ij |zij − (wr
i − wr

j )|. The
second type is the uniform quadratic penalty function where fr

ij = (zij − (wr
i −wr

j ))
2. Here,

the uniformity relates to having all penalty functions the same for all reviewers. That is,
the confidence in all reviewers is the same.
There are several interesting results concerning the choice of the penalty (or distance)

functions for the full-list cases described in Hochbaum and Moreno-Centeno [40]:

1. The absolute value separation model is immune to manipulation by a minority. Here a
minority is a subset of reviewers with total confidence weights less than that of the comple-
ment of the subset. For the separation deviation model, a minority has a total confidence
weight of both separation and deviation less than the respective total for the complement.
The following table (Table 3) illustrates how a simple majority of two reviewers dominates
the outcome aggregate ranking, even if another reviewer uses scores that are exponentially
beyond their scale. The separation model is thus not sensitive to the choice of the scale,
only to the ranking of the majority of reviewers.
2. The uniform quadratic separation, or separation deviation model, has F =

∑
i<j Fij ,

where Fij =
∑

r∈R(zij −wr
i +w

r
j )
2. (The model is somewhat more general with each reviewer

having his/her own weight that is applied uniformly to all terms of penalty related to that
reviewer.) It was shown in Hochbaum and Moreno-Centeno [40] that the model with the
uniform quadratic objective function has the same output as the average weight model.
Therefore, it is, for instance, not immune to manipulation by a majority as in Table 3.
3. Although the separation model is not designed to solve the problem of minimizing

reversals, the objective set up by Kemeny and Snell [46] (which the reader would recall, is
NP-hard), the experimental results reported in Hochbaum and Moreno-Centeno [40] demon-
strate that the number of reversals is lesser in the separation deviation model as compared
to the average weight model.

Table 3. Manipulating outcome with average weight ranking.

Candidate Reviewer 1 Reviewer 2 Reviewer 3 Average Sep model

1 0 0 100,000,000 33,333,333.33 0
2 1 1 1,000,000 333,334.00 1
3 2 2 10,000 3,334.67 2
4 3 3 100 35.33 3
5 4 4 1 3.00 4
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10. Conclusions
In this paper we demonstrate the importance of the use of pairwise comparisons for aggregate
ranking. Although there are a number of models for aggregate ranking, they all can be viewed
as related to either the principal eigenvector technique or to optimization. It is demonstrated
here that the separation model and the separation-deviation models capture and generalize
the known optimization models for aggregate ranking. For the convex penalty functions,
these models are useful alternatives to the eigenvector approach and, in comparison, offer
several advantages, such as flexibility in assigning the reliability of each pairwise comparison,
and in the ability to use efficient combinatorial algorithms to solve the resulting aggregate
ranking problem.
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