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Abstract—Several leading supervised and unsupervised ma-
chine learning algorithms require as input similarities between
objects in a data set. Since the number of pairwise similarities
grows quadratically with the size of the data set, it is compu-
tationally prohibitive to compute all pairwise similarities for
large-scale data sets. The recently introduced methodology of
‘“sparse computation” resolves this issue by computing only
the relevant similarities instead of all pairwise similarities. To
identify the relevant similarities, sparse computation efficiently
projects the data onto a low-dimensional space where a sim-
ilarity is considered relevant if the corresponding objects are
close in this space. The relevant similarities are then computed
in the original space. Sparse computation identifies close pairs
by partitioning the low-dimensional space into grid blocks, and
considering objects close if they fall in the same or adjacent grid
blocks. This guarantees that all pairs of objects that are within
a specified L, distance are identified as well as some pairs that
are within twice this distance. For very large data sets, sparse
computation can have high runtime due to the enumeration
of pairs of adjacent blocks. We propose here new geometric
algorithms that eliminate the need to enumerate adjacent
blocks. Our empirical results on data sets with up to 10 million
objects show that the new algorithms achieve a significant
reduction in runtime. The algorithms have applications in
large-scale computational geometry and (approximate) nearest
neighbor search. Python implementations of the proposed
algorithms are publicly available.

Keywords-Big data; similarity-based machine learning; spar-
sification; sparse computation; computational geometry

I. INTRODUCTION

Machine learning algorithms that use pairwise similarities
such as the k-nearest neighbor algorithm, the supervised nor-
malized cut algorithm [1], and kernel-based support vector
machines [2] are often superior in performance compared
to non-similarity-based algorithms (see e.g. [3]). Pairwise
similarities are able to incorporate non-linear and transitive
relationships in the data set. This transitivity property makes
pairwise similarity particularly robust, because similarities
are captured between pairs of objects that are not directly
compared via a transitive chain of similarities [4].

While the use of pairwise similarities is beneficial, it is
computationally expensive to compute all pairwise similar-
ities. This is because the number of pairwise similarities
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grows quadratically with the number of objects in the data
set. For instance, the complete similarity matrix for a data
set with 500,000 objects has 125 billion entries. If it takes
a microsecond to compute one entry, then it would take
more than a day to compute all entries. In addition, it would
require considerable memory to store all entries.

Nevertheless, to achieve good classification or clustering
accuracy, it is often unnecessary to compute all entries of the
similarity matrix. Recently, a method called sparse computa-
tion [5] was introduced to efficiently identify highly-similar
pairs in large-scale data sets. It was shown that the accuracy
obtained with a sparse similarity matrix is almost identical
to the accuracy obtained with the complete similarity matrix.
See Figure 1 for an illustration.

Most approaches for sparsifying a matrix remove some
entries while preserving specific matrix properties, see e.g.,
[6], [7], [8]. These approaches are not suitable for large-
scale data sets because they require as input the complete
similarity matrix. To enable similarity-based data mining in
large-scale data sets, it is necessary to identify similar pairs
without computing a large number of dissimilar pairs.

In sparse computation the data is first projected onto a
low-dimensional space. This projection is typically done
with a probabilistic version of principal component anal-
ysis. Sparse computation relies on closeness in the low-
dimensional space as a proxy for similarity in the original
space. The low-dimensional space is then subdivided into
grid blocks and only pairs of objects that fall into the same
block or in neighboring blocks are deemed to be similar.
The accepted degree of similarity can be controlled by
varying the dimension of the low-dimensional space or by
varying the grid resolution. Sparse computation has been
used to drastically reduce the runtime of classification [5]
and clustering algorithms [9] with minor and often no loss in
accuracy (see Figure 1). It has also been used to efficiently
compress nearly-identical objects into a single object to
generate a compact representation of the data set with minor
loss of information [10].

For large-scale data sets, the computational bottleneck of
sparse computation is the identification of pairs of adjacent
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Figure 1. Accuracy at selected sparsity levels for the letter recognition

(LER) dataset obtained with three similarity-based classifiers (k-nearest
neighbors, SNC [1], and SVM [2]) on a sparse similarity matrix generated
with sparse computation. Sparsity, reported on a log scale, is measured as
the percentage of matrix entries that are not computed. The runtime of the
algorithms is inversely proportional to the sparsity of the similarity matrix.

blocks in the grid structure. For each non-empty block, it
identifies adjacent blocks and checks whether these blocks
are non-empty. This process is referred to as block enumer-
ation. For large-scale data sets to which sparse computation
is applied with a high grid resolution, the vast majority of
adjacent blocks are empty, but are still checked. Hence, a
large fraction of the computational workload is unnecessary.

In this paper, we introduce a computational geometry
concept called data shifting, which is used to identify pairs of
similar objects in a low-dimensional space much faster than
with state-of-the-art techniques. More precisely, data shifting
enables us to identify, for a set of objects in RY, the set of
close neighbors for each of the objects simultaneously. The
set of “close” neighbors of an object consists of all objects
that are within a specified value of L, distance and possibly
some objects that are within twice this distance. This can be
interpreted as a 2-approximation for the problem of finding
all neighbors within a given L, distance.

We devise two algorithms for identifying close neighbors
that utilize data shifting to relieve the computational bottle-
neck of identifying objects in non-empty adjacent blocks.
Data shifting may also have potential applications in other
contexts, such as in approximate nearest neighbor search.

The first algorithm, called object shifting, shifts the ob-
jects multiple times along different directions within the grid
structure. For each shift, the pairs of objects that fall in the
same block are deemed to be similar. Object shifting avoids
having to explicitly compute adjacent blocks, but the same
pairs of objects may be selected for different shifts. The
second algorithm, called block shifting, partially addresses
this drawback of duplicate pairs by identifying all pairs of
non-empty adjacent blocks by shifting representatives for
non-empty blocks instead of the individual objects. Note
that these two algorithms generate the same pairs as sparse
computation with block enumeration.

We compare the algorithms with block enumeration on
real-world data sets with up to 10 million objects. The

Table I

NOTATION
Symbol Description
n Number of objects
d Number of features
X1,...,&n € R4 Objects
p Number of dimensions in low-dimensional space
k and kK’ Grid resolution
w Pre-specified L distance

results indicate that sparse computation with block shifting
is the overall fastest approach. Sparse computation with
block shifting is consistently faster than the implementation
with block enumeration irrespective of the data set or grid
resolution. The speedup factor increases with increasing
grid resolution and can be up to a factor of five. For very
high grid resolutions, object shifting is sometimes slightly
faster than block shifting. The Python source code for all
three algorithms is publicly available at https://github.com/
hochbaumGroup/sparsecomputation.

Other strategies that determine for each object its most
similar neighbors, without computing the full similarity
matrix first, include (approximate) nearest neighbor search
techniques such as locality sensitive hashing (LSH) [11],
[12] and kd-trees [13]. LSH uses hash functions to map
objects to buckets. Any pair of objects that map to the
same bucket for one of the hash functions is evaluated.
Limited empirical experience [5] with LSH indicates that
a large number of hash functions are needed. This results in
evaluating many pairs and consequently high runtime.

The paper is structured as follows. In Section II, we
discuss existing methods for efficiently finding similar ob-
jects in a data set. In Section III, we present the concept
of data shifting and two geometric algorithms for sparse
computation. In Section IV, we compare the runtime of
sparse computation with block enumeration, object shifting,
and block shifting. In Section V, we conclude the paper and
provide some directions for future research. Throughout the
paper, we use the notation given in Table I.

II. EXISTING METHODS FOR FINDING SIMILAR OBJECTS

The problem of finding highly-similar objects in a data
set is often tackled by performing a series of k-nearest
neighbor searches. The k-nearest neighbor search problem
consists of finding the k objects that are most similar to a
given object. In Sections II-A and II-B, we present two well-
known methods for exact and approximate nearest neighbor
search, respectively. In Section II-C, we discuss the method
of sparse computation that does not rely on nearest neighbor
search and instead directly identifies and returns pairs of
similar objects in a data set.
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A. Kd-trees

A kd-tree represents a data set of n objects with d features
as a binary tree with n nodes, [13]. Each node corresponds
to an object and is associated with one of the d dimensions
of the feature space. A non-leaf node can be interpreted
as a hyperplane that is perpendicular to the associated
dimension and divides the d-dimensional space into two
half-spaces. Objects one the left side of the hyperplane are
represented by the left subtree and objects on the right side
of the hyperplane are represented by the right subtree. The
dimensions are associated to the nodes in a cyclical manner
as one moves down the tree. To construct a balanced kd-
tree, one usually chooses the non-leaf nodes to be the object
that is the median of the objects in the subtree with respect
to the associated dimension. The kd-tree can be used to
efficiently find the k-nearest objects of a given object by
eliminating large parts of the search space. However, in high-
dimensional spaces, nearest neighbor search based on kd-
trees is only slightly faster than a linear search of all objects
because the number of nodes visited increases considerably
with increasing dimensions. Another disadvantage is that
to find all pairs of similar objects, n nearest neighbor
queries are necessary, which results in redundant work when
pairs of objects are mutual neighbors. Retrieving all nearest
neighbors of a data set is referred to as the all-nearest-
neighbors problem in the literature [14].

B. Locality sensitive hashing

Locality sensitive hashing (LSH) is a popular technique
for approximate nearest neighbor search that is much faster
than kd-trees for high-dimensional data sets, [11], [12].
However, it is a randomized algorithm that does not guar-
antee to find the actual nearest neighbors in every case. The
idea of LSH is to use random projections to map high-
dimensional objects to buckets. Since random projections
are distance preserving, similar objects are more likely to be
mapped to the same bucket than dissimilar objects. Given
a query object, LSH uses the random projections to also
map the query object to buckets. Each object from the data
set that mapped to one of these buckets is considered as
a candidate nearest neighbor. An advantage of LSH is that
it provides a probability guarantee that it will return the
actual nearest neighbors. However, to reach a sufficiently
high probability level it is often necessary to use a large
number of random projections which increases the number
of candidates that need to be considered [5]. Moreover, LSH
shares the disadvantage with kd-trees that n nearest neighbor
queries are required to find all pairs of similar objects.

C. Sparse computation

Sparse computation [5] takes as input a data set with
n objects x1,...,x, € R? and d features. The method
consists of the steps: dimension reduction, grid construction
and selection of pairs, and similarity computation.

In the dimension reduction step, the input data is projected
from a d-dimensional space onto a p-dimensional space,
where p < d. The projection is done with a probabilistic
variant of PCA called approximate PCA [5]. Let the data in
the p-dimensional space be normalized, i.e., the values of
each dimension are scaled to the range [0, 1].

In the grid construction and selection of pairs step, the
goal is to select all pairs of objects that have an L., distance
smaller or equal to w in the p-dimensional space. This is
achieved as follows. First, the range of values along each
dimension is subdivided into k = % equally long intervals.
This partitions the p-dimensional space into kP grid blocks.
Parameter k£ denotes the grid resolution. Each object is
then assigned to a single block based on its p coordinates.
Objects which lie exactly on a grid line (horizontally and/or
vertically) are assigned to the upper and/or right grid block.
If the upper and/or right grid block is outside the grid, then
the object is assigned to the lower and/or left block.

Since the largest L, distance within a block is equal to
w = % all pairs of objects that belong to the same block
are selected. In addition, some pairs of objects are within
a distance of w but fall in different blocks. To select those
pairs as well, horizontally, vertically, and diagonally adjacent
blocks need to be considered. Each block has up to 37 — 1
neighbors. We refer to this process as block enumeration.
By selecting all pairs of objects that are assigned to adjacent
blocks, it can be guaranteed that all pairs of objects whose
distance is less than or equal to w are selected. It is possible
that pairs of objects whose L, distance is more than w but
less than 2w are selected as well, whereas objects whose
distance is more than 2w will not be selected.

The total number of selected pairs depends on the grid
resolution k£ and the dimension of the low-dimensional space
p. A higher grid resolution results in smaller blocks and thus
reduces the set of pairs that fall in a block or its adjacent
blocks. Similarly, when the number of dimensions of the
low-dimensional space is increasing, the blocks contain
fewer objects and this reduces the number of pairs selected.

In the similarity computation step, a similarity function is
used to quantify the similarity for each of the pairs selected
in the previous step. The similarity value is computed with
respect to the original d-dimensional space.

The selection of pairs in sparse computation relies on
enumerating (37 — 1)/2 adjacent blocks for each non-empty
block to determine pairs of adjacent non-empty blocks!. This
computation becomes the bottleneck of the method when a)
the number of non-empty blocks is large, and b) most of
the adjacent blocks are empty. Checking empty blocks is
unnecessary and only contributes to the runtime. Conditions
a) and b) are often met when sparse computation is applied
with high grid resolution to a large-scale data set with

For each non-empty block, only half of the adjacent blocks need to be
checked since the adjacency relation is symmetric.



G

S AN

b)

Legend:

O Object in low-dimensional space
Non-empty block
- Coordinates that refer to an empty box
=P Coordinates that refer to a non-empty box

—— Selected pair

Figure 2.  Visualization of the block enumeration strategy with k = 4
and p = 2: a) for each non-empty block, four adjacent blocks must be
considered to identify all pairs of adjacent non-empty blocks. The majority
of considered blocks are empty (dotted arrows). b) all pairs of objects that
fall into the same or in neighboring blocks are selected (blue lines)

millions of objects. To illustrate this issue, Figure 2 shows
a two-dimensional projection of a data set that contains
12 objects. With a grid resolution of k& = 4, the two-
dimensional space was partitioned into 16 blocks, six of
which are non-empty. To find the adjacent blocks of the six
non-empty blocks, 24 other blocks (visualized by arrows)
are considered. Only 6 out of these 24 blocks are non-empty
(blue arrows). The plot on the right hand side of Figure 2
highlights all selected pairs by blue lines that connect the
corresponding objects.

III. GEOMETRIC ALGORITHMS FOR SPARSE
COMPUTATION

To address the bottleneck of identifying pairs in adjacent
blocks, we introduce a computational geometry concept
called data shifting. We show how data shifting can be used
to devise two geometric algorithms for sparse computation:
object shifting and block shifting. These algorithms replace
the block enumeration process in the second step of sparse
computation. In Section III-A we introduce the general
concept of data shifting. In Sections III-B and III-C, we
present the object shifting and the block shifting algorithm,
respectively. Finally, in Section III-D, we discuss the runtime
performance of the algorithms.

A. The concept of data shifting

Sparse computation relies on a grid to identify close
pairs of objects in the low-dimensional space. The identified
pairs are all within an L, distance of w and potentially
some within an L., distance of 2w. In contrast to sparse
computation with block enumeration, the low-dimensional

space is partitioned into k’? grid blocks for k' = 5-. Each
grid block is thus twice as large in each dimension. All
objects within a grid block are now within an L, distance of
2w. The grid, however, might still arbitrarily separate objects
that are close by a grid line. Two objects that are within an
L distance of w, but separated by a grid line, are denoted as
border pair. In a two-dimensional grid, there are three types
of border pairs: horizontal border pairs, vertical border pairs,
and diagonal border pairs. In a p-dimensional grid, there are
2P — 1 types of border pairs. Data shifting addresses the
issue of identifying border pairs by shifting the data from
its initial position along a single or multiple axes such that
all border pairs of one type will no longer be separated by a
grid line after the shift. To capture all types of border pairs,
2P — 1 shifts are required. In each shift, the data is shifted
by w along the respective axes. This is sufficient to identify
all close neighbors of an object, since for each neighbor
that is within a distance of w from the object there exist at
least one grid such that they belong to the same grid block.
By efficiently identifying all close neighbors, data shifting
provides a 2-approximation for the problem of identifying,
for each object, the set of neighbors that are within an L
distance of w.

B. Object shifting algorithm

To get exactly the same selection of similar pairs as the
block enumeration strategy with a grid resolution of &, the
object shifting algorithm first partitions the low-dimensional
space into k7 grid blocks for k' = %k . Based on the
concept of data shifting, 2P — 1 directions are determined.
Given p, the directions can be determined by generating
binary representations of width p of the integers [1, ...,
2P — 1]. Each bit corresponds to a dimension and a one
means that the data is shifted along this dimension. For
example, if p = 2, the binary representations are 01, 10,
and 11. The algorithm is called object shifting because all
objects are shifted by % = 2%, in that direction. Based on
the new coordinates, each object is assigned to a single grid
block and all pairs of objects that are assigned to the same
block are selected. Since the same pairs of objects might be
assigned to the same block in different shifts, one needs to
identify and remove duplicate pairs. If the grid resolution
is high and hence the total number of selected pairs is low,
the runtime for identifying and removing redundant pairs
is negligible. However, if the grid resolution is low and
the total number of selected pairs is large, then identifying
and removing redundant pairs can become computationally
expensive. Figure 3 illustrates object shifting algorithm for
our two-dimensional example. The original position of the
data is shown in the top left plot.

C. Block shifting

The disadvantage of object shifting is that certain pairs are
selected for multiple shifts. In particular, objects that fall in
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Figure 3.

Visualization of the object shifting algorithm with grid resolution k' = 2 for a data set projected to a p = 2 dimensional space: a) selection

of pairs of objects that fall in the same grid block, b) objects are horizontally shifted by 1/k to capture horizontal border pairs. c) objects are vertically
shifted by 1/k to capture vertical border pairs, d) objects are diagonally shifted to capture diagonal border pairs. Redundant pairs are highlighted in red.

the same sub-block, defined by splitting the blocks in half
in each dimension, will fall in the same block for each shift
and are thus repeated 2P — 1 times. Block shifting addresses
this by replacing them with a single object.

To generate the same pairs as sparse computation with
block enumeration with grid resolution &, the p-dimensional
space is first partitioned with a grid resolution of k into kP
grid blocks and each object is assigned to the corresponding
block. The corresponding pairs for each block are selected.
Instead of identifying the border pairs directly with data
shifting each non-empty block is first replaced with a
representative object at its center. Note that this new data
set consists of objects that are located at multiples of i
along the dimensions. All coordinates are within the range
[5=,1 — 5] and the Lo distance between pairs of objects
that represent adjacent blocks is exactly % Hence, we can
apply the object shifting algorithm described in Section III-B
to the new data set with a grid resolution of k' = %k to find
all pairs of adjacent blocks. Finally, all pairs of objects that
consists of objects in adjacent blocks are selected. Figure 4
illustrates block shifting for our two-dimensional example.

D. Runtime analysis

The runtime of block enumeration, object shifting, and
block shifting depends on the parameters k£ and p and on the
distribution of the objects within the low-dimensional space.
Since all algorithms have the same output, they only differ
with respect to the overhead (unnecessary work performed):
The object/block shifting algorithms may identify pairs of
objects/representatives more than once, and the block enu-
meration algorithm may enumerate empty adjacent blocks.

The overhead of the block enumeration is large when ob-
jects fall into many isolated blocks. This typically occurs for
large k and p. The overhead of object shifting is large when

many objects fall into few adjacent blocks. This typically
occurs for small k£ and p. The overhead of block shifting is
only large when the number of adjacent representatives is
large. This does not occur for small or for large values of &
and p. To obtain a large number of adjacent representatives,
few objects must fall in a large number of adjacent blocks.
Hence, the number of adjacent representatives tends to
initially increase with increasing p and k, but decreases again
once the blocks become isolated. In practice, we observe
that block shifting identifies a pairwise similarity no more
than twice. For more details, see the experimental results in
section IV-C and Figure 6.

IV. COMPUTATIONAL ANALYSIS

We compared the runtime of block enumeration, ob-
ject shifting, and block shifting for different grid reso-
lutions on nine datasets. We evaluated only runtime be-
cause all algorithms generate the same output when the
grid resolutions are chosen accordingly. We implemented
the algorithms and the computational analysis in Python
3.5. The source code is available at https://github.com/
hochbaumGroup/sparsecomputation. The source code of the
computational analysis is available at https://github.com/
quicO/sparse-experiments. In Section IV-A, we describe the
data sets in detail. In Section IV-B, we present the ex-
perimental design, and in Section IV-C, we analyze the
runtimes. Extensive empirical results on how sparse com-
putation and thus the new algorithms affect the accuracy of
(un)supervised learning algorithms are presented in [5], [9].

A. Data sets

The data sets represent various domains including life
sciences, engineering, social sciences and business and have
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Table IT
STATISTICS OF THE DATA SETS (AFTER MODIFICATION)

Abbreviation ~ # of objects  # of unique objects  # of features
NEU 961 961 800
LER 20,000 18,668 16
BOW1 41,361 37,993 33,781
ADU 45,222 45,170 88
cov 581,012 581,012 54
CKR 1,000,000 999,910 2
RLC 5,749,132 5,749,133 16
BOW2 8,544,543 3,087,117 100
RNG 10,000,000 10,000,000 20

sizes ranging from hundreds to millions of objects. Six real-
world data sets were taken from the UC Irvine Machine
Learning Repository [15], two datasets were taken from

previous studies [16], [17], [18], [19], and one real-world
data set was taken from the Neurofinder public benchmark
for calcium imaging [20]. In all datasets, we substituted
categorical features by a binary feature for each category
and removed any duplicate objects. We briefly describe each
data set and mention further modifications that we made.
Statistics about each of the data sets are provided in Table II.

The data set Adult (ADU) [21] stems from the census
bureau database and each object represents a person. In the
original data set there is a categorical and a continuous
feature to capture the educational level of the persons.
To avoid double use, we removed the categorical feature.
In addition, we removed all features that contain missing
values.

In the Bag of Words data set (BOW), the objects are



documents from five different sources. The sources are
Enron emails, KOS blog entries, New York Times articles,
NIPS full papers, and PubMed abstracts. A document in
this data set is represented as a bag of words, i.e., a set of
vocabulary words. This representation disregards word order
but keeps word multiplicity. We generated two data sets from
the bag of words data set: BOW1 contains the NIPS full
papers and the Enron emails. For each document in BOW1,
we divide the number of occurrences of each word by the
total number of words in the document to obtain the relative
frequencies. BOW2 contains the New York Times articles
and the PubMed abstracts. For BOW2, we limit the feature
space to the 100 words with the largest absolute difference
in mean relative frequency between the New York Times
articles and the PubMed abstracts. A binary vector indicates
which of those words occur in the respective document.

The data set Checkerboard (CKR) is an artificial data
set that has been used for evaluating large-scale SVM
implementations [18], [19]. Each object represents a point
on a 4 x 4 checkerboard that is characterized by two features
which represent the x- and the y-coordinates. Following [19],
we create a checkerboard data set with 1 million objects
by randomly choosing the x- and y-coordinates of objects
between -2 and 2 according to a uniform distribution.

The data set Covertype (COV) [22] contains cartographic
characteristics of forest cells in northern Colorado. There
are seven different cover types which are labeled 1 to 7.

The data set Letter Recognition (LER) [23] comprises
20,000 objects. Each object corresponds to an image of a
capital letter from the English alphabet.

The data set Neuron (NEU) [20] is a calcium imaging
recording of a neuron, a brain cell. The objects are the pixels
in the recording and the features are the intensity of a pixel
for each of the frames. Sparse computation is used as a
subroutine in a leading algorithm for cell identification in
calcium imaging recordings [24].

In the data set Record Linkage Comparison Patterns
(RLC) [25], the objects are comparison patterns of pairs
of patient records. We substitute the missing values with
value zero and introduce a binary feature to indicate missing
values. The objects can be classified as match or no-match.

The data set Ringnorm (RNG) is an artificial data set that
has been used in [16] and [17]. The objects are points in
a 20-dimensional space and belong to one of two Gaussian
distributions. Following the procedure of [17], we generate
a Ringnorm data set instance with 10 million objects.

B. Experimental design

We compared the runtime of sparse computation with
block enumeration, object shifting, and block shifting on the
nine data sets for different grid resolutions k. For large data
sets, it was impossible to construct the complete similarity
matrix due to memory limitations of our machine. The grid
resolutions used for each of the data sets are described in

Table IIT
GRID RESOLUTIONS REPORTED FOR EACH DATA SET

Abbreviation Grid resolution k&
NEU 4, 10, 20, 50, 100, 200
LER 4, 10, 20, 50, 100, 200
BOW1 4, 10, 20, 50, 100, 200, 500, 1000, 2000
ADU 4, 10, 20, 50, 100, 200, 500, 1000, 2000
cov 50, 100, 200, 500, 1000, 2000
CKR 100, 200, 500, 1000, 2000
RLC 200, 500, 1000, 2000, 4000, 10000
BOW2 200, 500, 1000, 2000, 4000, 10000
RNG 200, 500, 1000, 2000, 4000, 10000

Table III. We chose the number of dimensions p of the low-
dimensional space to be 3 for all data sets except for CKR
for which we chose 2 because it only has two features. For
the dimension reduction step, we used approximate PCA [5]
which is much faster than exact PCA as it reduces the size of
the original data set by sampling a small fraction of objects
and features. Here we set the sampling fraction for objects
to one percent and the sampling fraction for features to five
percent unless the number of features is less than 150 in
which case all features were used. Only the NEU and BOW1
datasets have more than 150 features.

We ran each combination of algorithm, data set, and grid
resolution five times and recorded the mean runtime and
the standard deviation across all five runs. In addition, we
recorded various statistics that affect the runtime of the
algorithms. The computational analysis was performed on
a workstation with Intel Xeon CPUs (model E5-2667 v2)
with clock speed 3.30 GHz and 256 GB of RAM.

C. Experimental results

The mean and standard deviations of the runtimes of the
different algorithms are reported in Figure 5 and for the
largest three data sets in Table IV. Sparse computation with
block enumeration performs well at low grid resolutions,
but gets slow when applied with high grid resolutions. In
contrast, sparse computation with object shifting performs
poorly at low grid resolutions because there is a large
number of pairs consisting of objects that fall into the same
sub-block and are selected for each shift. Sparse computation
with object shifting performs well when the grid resolution
is high. At these grid resolutions, few objects fall in the
same sub-block and fewer duplicate pairs are selected.

Sparse computation with block shifting combines the
properties of sparse computation with block enumeration
and object shifting and provides (near-) best runtime across
data sets and grid resolutions. Although outperformed by
object shifting at extremely high grid resolutions, it does
not suffer from the pitfalls that affect block enumeration
and object shifting. By replacing each sub-block by a
single representative, it significantly reduces the number
of duplicate pairs. This results in faster runtimes for low
grid resolutions when each block typically contains multiple
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Figure 5. Mean runtimes, measured in log scale, across data sets for sparse computation with block enumeration, object shifting, and block shifting. The

error bars indicate the standard deviation of the runtimes. Grid resolution is measured with respect to sparse computation with block enumeration.

Table IV
MEAN RUNTIME FOR RLC, BOW2, AND RNG FOR SELECTED GRID RESOLUTIONS

Dataset
Algorithm RLC BOW2 RNG
k = 500 k = 2000 k = 10000 k = 500 k = 2000 k = 10000 k = 500 k = 2000 k = 10000
Block enumeration 150 + 6 172 £ 2 173+ 1 9 + 4 98 + 3 91 + 2 296 + 18 313 £ 12 316 £ 5
Object shifting 185 £+ 22 5+5 33 + 0.07 155 £ 23 23 + 0.2 18 £+ 0.04 2466 £+ 122 137 £ 15 62 + 2
Block shifting 88 + 11 42 +2 31 +02 74 + 0.6 26 + 0.2 21 + 0.1 276 + 30 135 + 10 61 +5

objects. Figure 6 shows that block shifting identifies only
few duplicate pairs for low grid resolutions. For all datasets
block shifting identifies, on average, a pair no more than
twice independent of the grid resolution.

An interesting insight can be gained from the CKR data
set: although object shifting generates more duplicate pairs
than block shifting, it is still slightly faster for very high
grid resolutions. This is most likely due to the overhead
resulting from generating the representatives and mapping
representatives to objects. In the CKR data set, the objects
are uniformly spread, which means that at a grid resolution
of k = 1,000, there are 1 million blocks (p = 2), that are
mostly non-empty. Since there are only 1 million objects,

each block contains a single object in expectation. Therefore,
block shifting gains little by replacing the objects in each
block by a representative but still incurs the overhead.

The computational effort required by sparse computation
also depends on the number of dimensions p of the low-
dimensional space. For example, the number of (adjacent)
blocks, and the number of required shifts for object shifting
and block shifting grow exponentially in p. To explore the
impact of the dimension of the low-dimensional space on
runtime, we applied the different algorithms to the COV
data set with p = 2, 3, and 4. As shown in Figure 7,
the runtime of sparse computation with block enumeration
increases steadily as p is increased even though the number
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of selected pairs decreases with increasing grid resolution.
Sparse computation with object shifting and block shifting
scales much better with increasing values of p.

V. CONCLUSIONS

We introduced a new computational geometry concept
called data shifting that allows to efficiently find pairs
of similar objects in a low-dimensional space. Proximity
of objects is recognized by performing multiple shifts of
the data. Two new algorithms are devised that use data
shifting to speed up sparse computation which is a recently
introduced technique for finding similar objects also in high-
dimensional space. Based on real-world data sets with up to
10 million objects, we demonstrate that sparse computation
with block shifting provides overall the best runtime per-
formance across grid resolutions for data sets of up to 10
million objects. Python implementations of all algorithms
are publicly available at https://github.com/hochbaumGroup/
sparsecomputation. Promising directions for future research
include the application of the proposed data shifting concept
in other contexts such as approximate nearest neighbor
search and grid-based clustering.
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