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Submodular optimization supermodular maximization on constraints where the coefficients of the two variables in
Approximation algorithms each constraint are of opposite signs (monotone constraints) is solvable in polynomial time.
Submodular closure The 2-approximability and the polynomial time solvability for monotone constraints hold
Monotone constraints also for multi-sets that contain elements with integer multiplicity greater than 1, except

that the running time is then pseudo-polynomial in that it depends on the range of the
variables. This complexity cannot be improved unless NP=P.

Our results indicate that SM2 problems are not much harder than the respective
linear integer problems on two variables per constraint: For monotone constraints both
problems are polynomial time solvable, and for non-monotone NP-hard problems, both
problems have 2-approximation algorithms. For SM2 problems the factor 2 approximation
is provably best possible, whereas for the respective linear integer problems it has not
been established that the factor 2 is best possible, but this has been conjectured. On the
other hand, for SM2 problems where the two variables constraints’ coefficients form a
totally unimodular constraint matrix, the linear integer optimization problem is solved in
polynomial time, whereas the submodular optimization is proved here to be NP-hard.

The submodular minimization NP-hard problems for which our general purpose 2-
approximation algorithm applies include submodular-vertex cover, submodular-2SAT,
submodular-min satisfiability, submodular-edge deletion for clique, submodular-node
deletion for biclique and others.
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1. Introduction

We demonstrate here that constrained submodular minimization problems, where each constraint has at most two
variables, (SM2), are 2-approximable in polynomial time. This holds if either the constraints have the round-up property,
or if the submodular function is monotone. This approximation factor of 2 for SM2 is provably best possible unless NP=P.
This result is shown here to apply for multi-sets submodular minimization as well. For SM2 with the coefficients of the two
variables in each constraint having opposite signs, monotone constraints, the submodular minimization problem is known
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to be solvable in (strongly) polynomial time. Multi-sets submodular minimization on monotone constraints are shown to
be solvable in pseudopolynomial time that depends on the largest multiplicity of a set, and this running time cannot be
improved (by removing this dependence) unless NP=P.

A nonnegative function f defined on the subsets of a set V is said to be submodular if it satisfies for all X,Y C V,
fX)+ f(Y) = fXNY)+ f(X UY). Asubmodular function f is said to be monotone if f(S) < f(T) foranyS C T. A
binary vector of dimension n = |V|, x = {x;}I_;, is associated with a corresponding subset of V, X = {i € V|x; = 1}. The
vector X is then said to be the characteristic vector of the set X.

The SM2 problem addressed here is

min f(X)
(SM2) subjectto  ayx; + byx; > ¢ forall (i, j) € A
x;e{0,1} foralljeV,

where aj, bjj and ¢; are any real numbers and A is a set of pairs (including singletons, and also allowing multiple copies of the
same pair) defining the constraints. Our main results are that any SM2 problem, with constraints that satisfy the round up
property or with monotone submodular objective function, is 2-approximable in polynomial time and this approximation
factor cannot be improved unless NP=P. A set of constraints satisfies the round up property if any feasible half integer
solution can be rounded up to an integer feasible vector. Vertex cover and all covering constraints satisfy the round up
property, but non-covering problems, such as minimum (weighted) node deletion so remaining graph is a maximum clique,
satisfy the round up property as well. The formulations and discussion of the properties of these and other SM2 problems
are given in Section 3.1.

An inequality constraint in up to two variables, a;x; — b;x; > ¢j is called monotone if a; and b; have the same
signs. (This concept of monotonicity is unrelated to the monotonicity of a submodular function.) The feasible solutions of
monotone constraints form a distributive lattice (a ring family), and submodular minimization over a ring family is known
to be polynomial time solvable. Submodular minimization over a ring family was first shown to be solved in strongly
polynomial time by Groétschel, Lovasz, and Schrijver in [4]. Combinatorial strongly polynomial algorithms were given later
by Schrijver, [21] and by Iwata, Fleischer, and Fujishige [13]. The current fastest strongly polynomial algorithms on a ring
family were devised by Orlin [20], and later by Iwata and Orlin, [15].

In contrast to the polynomial solvability of submodular minimization over monotone constraints, the submodular
minimization (or supermodular maximization) over constraints with totally unimodular constraints matrix is proved here to
be NP-hard. This indicates that monotone constraints form a more significant structure than totally unimodular constraints,
in terms of complexity, for submodular (supermodular) minimization (maximization).

The results here apply also to submodular minimization on multi-sets, (SM2-multi). These are submodular functions
defined on sets containing elements with multiplicity greater than 1. A nonnegative integer vector x € 2" is the characteristic
vector of a multiset X = {(i, q;)|x; = q;}, where (i, g;) € X means that X contains element i g; times, for positive integers
gi. All properties of submodular functions extend to multi-sets, with the generalized definition of containment, X; C X,
meaning that for all (i, q;) € Xy, (i, q;) € X, withq; < gj. The problem of constrained submodular minimization on multi-sets
is then min{f(X)|AX > b, 0 < X < u, x € 2"} for u the vector of upper bounds on the multiplicities of the elements. Let the
upper bound on the multiplicity of element i be u;. The formulation of SM2-multi is then,

min f(X)
(SM2-multi) subject to  ayx; + bjx; > ¢ forall (i,j) € A
0 <x; <u; andinteger, foralljeV.

The respective 2-approximations or polynomial time algorithms for multi-sets are shown to be attained in time
polynomial in U = max;—1,.._,u;. The dependence of the run time on U cannot be removed (to, say, logarithmic dependence)
unless NP=P. This is because finding a feasible solution to a monotone integer linear program on constraints with up to two
variables per inequality was shown to be NP-hard, [ 18]. The pseudopolynomial run time of the algorithms for integer linear
optimization on monotone constraints, in [11], and for SM2-multi here, indicate that these two problems are in fact weakly
NP-hard.

1.1. Related research

A prominent example of SM2 is the submodular vertex cover, SM-vertex cover, where the constraint matrix A contains
exactly two 1s per row and b is a vector of 1s.

Approximating SM-vertex cover has been a subject of previous research work. Three different 2-approximation algo-
rithms were devised for the problem: Koufogiannakis and Young [17] devised approximations for SM-“covering” problems
with monotone submodular objective function. Their approach is based on the frequency technique (called maximal dual
feasible technique in [7] Ch. 3). Their algorithm is a 2-approximation for the SM-vertex cover for monotone submodular
objective function. Goel et al. [3] devised a 2-approximation algorithm for SM-vertex cover with monotone submodular
function which involves solving a relaxation with the Ellipsoid method with a separation algorithm equivalent to a
submodular minimization problem. Goel et al. further proved that submodular vertex cover is inapproximable within a factor
better than 2. Iwata and Nagano in [ 14] presented a 2-approximation algorithm for the SM-vertex cover, and addressed the
SM-set cover and the SM-edge cover. Their algorithm does not require the submodular function to be monotone. Iwata and
Nagano's technique relies on using Lovasz extension of submodular minimization to convex minimization.
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1.2. Contributions here

We devise here a unified framework for generating 2-approximation algorithms for all NP-hard SM2 and SM2-multi
problems with constraints that have the round-up property, or, if round-up does not hold, for monotone submodular
functions. Unlike previous results, these algorithms do not require solving a linear programming relaxation or using the
Lovasz extension convex optimization, yet run in strongly polynomial time (Theorem 1). In particular, our algorithm is a
2-approximation algorithm for the SM-vertex cover (without restriction of submodular function’s monotonicity). Other NP-
hard submodular minimization problems for which we derive 2-approximations include the following: the submodular min-
2SAT, minimum node deletion biclique, minimum edge deletion clique, and min SAT. Among these only the SM-min-2SAT
requires monotone submodular objective function.

Our results shed some light on the relationship between submodular minimization and integer linear minimization.
Obviously submodular minimization can only be harder than integer linear minimization. Indeed, as we show in Section 5
Theorem 3, SM-vertex cover on bipartite graphs is an NP-hard problem, whereas the linear vertex cover on bipartite graphs
is polynomial time solvable. This demonstrates that submodular minimization over a totally unimodular constraint matrix,
is NP-hard, and hence strictly harder than the respective integer linear optimization. On the other hand, for two variables
per inequality constraints, submodular minimization is not harder than the respective integer linear optimization in that,
like in the respective linear case, there is a unified 2-approximation polynomial time algorithm for any NP-hard SM2.
That 2-approximation algorithm is a generalization of the unified 2-approximation algorithm, devised in [10], for any NP-
hard integer linear minimization on two variables per inequality constraints. Our results indicate that there is a difference
in the approximability of the submodular versus the linear case: Hochbaum conjectured in [6] that the lower bound on
approximability of the vertex cover problem is 2 —e€. Yet, the tightest lower bound established to date on the approximability
of vertex cover is 1.36 [1], whereas for the submodular monotone analog it is 2 — € [3]. The latter closes the gap between
the lower bound and the factor 2 approximation, conjectured in [6], only for submodular vertex cover but not for linear
vertex cover. Since the vertex cover problem is as general as the entire class of minimization problems on two variables per
inequality (a proof is provided in [8]), it follows that for all NP-hard submodular minimization problems on two variables
per inequality, the polynomial time 2-approximation algorithms presented cannot be improved.

Summary of contributions.

1. We present here the first known polynomial time 2-approximation algorithms for a large family of constrained
submodular minimization problems, SM2 and SM2-multi, with constraints that contain at most two variables per
inequality. We provide a direct and simple proof of the 2-approximability using only the properties of submodular
functions improving on past work for SM-vertex cover. A previous 2-approximation of SM-vertex cover, [ 14], used a
construction based on Lovasz convex extension of submodular functions which involved an “intermediate” convex
formulation that is shown here to be unnecessary.

2. SM2-multi problems on monotone constraints are shown to be solved in polynomial time that depends on the
multiplicity of the sets for either submodular minimization or supermodular maximization. This complexity cannot
be improved, as the linear version of SM2 on monotone constraints is (weakly) NP-hard.

3. Submodular minimization over constraints with coefficients’ matrix that is totally unimodular is proved to be NP-
hard in Theorem 3. In particular, submodular vertex cover on bipartite graphs is an NP-hard problem. This proof
provides additional evidence to the difficulty of generalizing linear optimization, or approximation, algorithms
to the submodular context. But the closely related problems of bipartite-submodular vertex cover, and bipartite-
supermodular independent set, on bipartite graphs, are shown to be polynomial time solvable. (Bipartite-submodular
and bipartite-supermodular functions are defined in Section 2.)

4, The 2-approximation factor is shown to be best possible approximation factor for all SM2 problems. This follows from
the lower bound proof on the approximability of SM-vertex cover of Goel et al. [3], proving that SM-vertex cover
cannot be approximated in polynomial time within a factor of 2 — ¢, for any € > 0, unless NP=P.

2. Notations and preliminaries

Given an m x n real matrix A®) where each row contains at most two non-zeros, the SM2 problem can be written as
min{f(X)|A®x > b, 0 < x < u, integer} for u; = 1forj = 1,2,...,n. For general positive values of u;s the problem is
called SM2-multi.

An important class of SM2 has the two non-zeros in each row of A?) of opposite signs in which case the constraints are
said to be monotone. SM2 problems on monotone constraints are shown here to be polynomial time solvable.

A feasible SM2 (that has a feasible integer solution) is said to have the round-up property, if for any given feasible half
integral solution vector x> there exists an integer feasible solution x™™ such that x> < x™, We refer to an SM2 with such set
of constraints as round-up-SM2. Notice that the round-up property depends on the constraints only. All covering matrices,
where the inequalities are > constraints and all coefficients are non-negative, have the round-up property. But there are
also non-covering matrices that have the round-up property.

For a directed graph G = (V, A) aset of nodes D C V is said to be closed if all the successors (or predecessors) of the nodes
in D are also in D. In other words, the transitive closure of D, forming all the nodes reachable from nodes of D along a directed
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Table 1

Examples of 2-approximable and polynomial time solvable SM-problems.
SM-problem name Monotone constraints Round-up property Submodular objective f() Aprrox factor
Vertex cover No Yes any 2
Complement of max-clique No Yes any 2
Node-deletion bi-clique No Yes any 2
Min-satisfiability No Yes any 2
Min-2SAT No No monotone 2
SM-closure Yes NA any 1

path in G, is equal to D. We call linear constraints on two variables of the form x < y closure constraints. Closure constraints
are obviously monotone.

A directed graph is said to be a closure graph if all arcs are of infinite capacity. An s, t-graph G; = (V U {s, t}, AUA; UA)
with A, the set of arcs adjacent to source s and A; a set of arcs adjacent to sink t, is called a closure s, t-graph if all finite
capacity arcs are either in A; or A;.

A function f is said to be supermodular if forall X, Y C V,f(X)+f(Y) <f(XNY)+f(XUY).

A function f defined on a bipartite graph G = (V1 U Vs, E) is bipartite-submodular if there exist two submodular functions
f1 and f, defined on V; and V5, respectively, such that, for X; = X NV{, X; =X NV,

fX) = filX1) + La(X2).

A bipartite-supermodular function is defined analogously.
3. Some of the submodular minimization problems solved here

Table 1 lists several SM2 submodular problems for which the algorithmic framework devised here applies. In the table it
is noted, for each problem, whether it has the round-up property or not. Problems that are polynomial time solvable with
the technique here are indicated with an approximation factor of 1.

We now provide the formulations and discussion of properties for each of the problems. The SM-closure problem is
discussed in Section 4.2.

3.1. Formulations of several SM2 problems

Vertex cover. The vertex cover problem is to find a subset of nodes in a graph G = (V, E) so that each edge in E has at least
one endpoint in the subset.

min fX)
(SM-vertex-cover) subjectto  x;+x; > 1 forall [i,j]l€E
X; binary ieV.

The submodular vertex cover problem was shown to have a 2-approximation by Iwata and Nagano, [14] for general
submodular f(). SM-vertex cover obviously has the round-up property and therefore the 2 approximation described here
applies to any general submodular objective function. When the graph G = (V; U V,, E) is bipartite, the SM-vertex-cover
is still NP-hard (Section 5), but for a bipartite-submodular objective, f(X; U X3) = fi(X1) + fo(X3), for X; C V;,i = 1, 2, the
problem is polynomial time solvable.

Complement of maximum clique. The maximum clique problem is a well known optimization problem that is
notoriously hard to approximate, e.g. Hastad, [5]. The problem is to find in a graph the largest set of nodes that forms a
clique—a complete subgraph.

An equivalent statement of the clique problem is to find the complete subgraph which maximizes the number (or more
generally, sum of weights) of the edges in the subgraph. When the weight of each edge is 1, then there is a clique of size k
if and only if there is a clique on ('2‘) edges. The inapproximability result for the node version extends trivially to this edge
version as well.

The complement of this edge variant of the maximum clique problem is to find a minimum weight of edges to delete so
the remaining subgraph induced on the non-isolated nodes is a clique. We define here the SM-edge deletion for clique. For a
graph G = (V, E), the submodular function f(Z) is defined on the set of variables z; for all edges [i, j] € E. Let x; be a variable
that is 1if node j is in the clique, and 0 otherwise. Let z;; be 1 if edge [i, j] € E is deleted.

min f(2)

subjectto  1—x <z; [i,jl€E
1—-x<z; [i,jleE
xi+x <1 [i,jl¢E
X; binary jeV
zj binary [i,j] € E.

(SM-Clique-edge-delete)
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This formulation has two variables per inequality and therefore it is SM2. This SM2 is of covering-type because a fraction
value of z; can be rounded up, (note that the respective x; and x; may be rounded up or down without affecting the objective
function), and therefore the 2-approximation algorithm applies to any submodular function. The gadget and network for
solving the monotonized SM-Clique-edge-delete problem are given in detail in [9].

Node deletion biclique. Here we consider the submodular minimization of node deletion in a bipartite graph (V; U V5, E)
so that the subgraph induced on the remaining nodes forms a biclique (a complete bipartite graph). This problem is identical
to the submodular vertex cover on a bipartite graph, proved in Section 5 to be NP-hard. The linear version of this problem is
polynomial time solvable, [8]. In the formulation given below x; assumes the value 1 if node i is deleted from the bipartite
graph, and 0 otherwise.

min fX)
(SM-Biclique-node-delete)subject to  x; +x; > 1foredge {i,j} ¢ Eie V;,j eV,
x; € {0, 1} forallj e V; UV,.

Minimum satisfiability. In the problem of minimum satisfiability, MINSAT, we are given a CNF satisfiability formula. The
aim is to find an assignment satisfying the smallest number of clauses, or the smallest weight collection of clauses. The
MINSAT problem was introduced by Kohli et al. [16] and was further studied by Marathe and Ravi [19]. The problem is
NP-hard even if there are only two variables per clause, [16].

The submodular minimum satisfiability SM-MINSAT problem can be formulated as SM2, and thus 2-approximable:
Choose a binary variable y; for each clause C; and a binary variable x; for each literal. Let S*(j) be the set of variables that
appear unnegated and S~ (j) those that are negated in clause . The following formulation of MINSAT has two variables per
inequality and is thus a special case of SM2:

min f(Y)

subjectto  y; > x; fori € S*(j) for clause G
yi > 1—x forie S (j) for clause G
X;, y; binary for all i, j.

(SM-MINSAT)

It is interesting to note that the formulation is monotone when for all clauses C; S*(j) = @ or in all clauses S~(j) = #. (In
the latter case, we need to transform the x variables to X’ with X' = —x.) Indeed in these instances the boolean expression is
uniform and the problem is trivially solved setting all variables to FALSE in the first case, or to TRUE in the latter case.

Although SM-MINSAT is not of covering type, it is nevertheless a round-up SM2, as can be easily verified, and therefore
there is no restriction on f() for the 2-approximation algorithm to apply.

MIN-2SAT. The MIN-2SAT problem is defined for a 2SAT CNF with each clause containing at most two variables. The goal
is to find a truth assignment, satisfying all clauses, with the least weight collection of variables that are set to true. Although
finding a satisfying assignment to a 2SAT can be done in polynomial time (Even et al. [2]), finding a satisfying assignment
that minimizes the number, or the weight, of the true variables is NP-hard.

Let X be the set of true variables, and x; = 1 if the ith variable is set to true, and 0 otherwise.

min fX)
subjectto  x;+x; > 1 for clause (x; V x;)
(SM-MIN-2SAT) X; —x; >0 forclause (x; V X;)
Xi+x <1 forclause (x; V xj)
x; binary foralli=1,...,n.

Each constraint here has up to two variables and thus this problem is in the class SM2. The SM-MIN-2SAT does not have
the round-up property and therefore the resulting 2-approximation algorithm applies for f () monotone submodular function.

Additional problems related to finding maximum biclique - a clique in a bipartite graph - are also formulated in two
variables per inequality, in [8]. For these problems, all the corresponding submodular minimization problems are either
monotone, and thus solved in polynomial time, or have a polynomial time 2-approximation.

4. 2-approximation for SM2 and SM2-multi

We show first, in Section 4.1, that the constraints of a general SM2 and SM2-multi can be transformed to monotone
constraints. This transformation is a relaxation in the sense that any feasible solution to the original constraints is also feasible
for the monotonized constraints, but a feasible solution to the monotonized constraints maps to a fractional solution and
therefore will not satisfy the integrality requirement in the original system of constraints. Although fractional, the feasible
solution to the original problem derived from the monotonized constraints is guaranteed to be an integer multiple of half.

Next we show, in Section 4.2, that SM2-multi on monotone constraints is equivalent to a problem we call SM-closure
and then solved in (strongly) polynomial time in the size of the problem. The derivation of the equivalent SM-closure is
done with an algorithm which is referred to as binarizing. Although SM2 on monotone constraints, and on binary variables,
is known to be solved in polynomial time (it is submodular minimization over a ring family), the binarizing process converts
the problem to SM-closure and in that highlights the link to the linear objective case, where the monotone problem is set to
be equivalent to the (binary) closure problem, and solved with a minimum cut procedure.



D.S. Hochbaum / Discrete Applied Mathematics 250 (2018) 252-261 257
4.1. Transforming general SM2 and SM2-multi to their monotonized version

General SM2s (and SM2-multi) are transformed to monotone SM2s using a process we refer to as monotonizing. The
monotonizing process is described here for the constraints of general SM2 and SM2-multi: We first duplicate the set of
elements V and their respective characteristic vectors x to x* and x~, so that xj+ assumes values in {0, 1, ..., uy;} and xj’
assumes values in {—u;j, ..., —1, 0}. For given vectors X and x~ the corresponding multisets are

X ={{i,p)lx =pi, i€V}, and
X" ={U,q)lx; =—q;, jeV}.
Each non-monotone inequality a;x; + bjx; > c;j is replaced by the following two inequalities:
ajx — bix; >
— ayx; + byx > .

In case the set of constraints contains, in addition to non-monotone constraints, also a subset of monotone constraints,
. oo , e . o
each monotone inequality aX;i — b,.jxj > cjis replaced by the two inequalities:
A / o+ ”
ax; — bijxj > ¢

! /N
—agX; +byx;” = cj.

.o
It is easy to verify that setting x; = gl zxj is feasible for the original inequalities, and x; = xj+ — X is feasible to the
original inequalities multiplied by 2, 2a;x; + 2b;x; > 2c;.. We refer to the latter as the doubled inequalities.

The objective function is %(f(X*) + f(X7)), and the constraints are the doubled inequalities and the lower and upper
bounds on the variables. The objective function is submodular as a sum of two submodular functions. This formulation is

therefore SM2-multi over monotone constraints.
4.2. A polynomial time algorithm for solving SM2-multi on monotone constraints

As pointed out above, monotone constraints on binary variables form a ring family. For binary variables a monotone
constraint of the form a;x; — bjjx; > ¢;; may imply that the problem is infeasible, or that one of the variables is of fixed value
in any feasible solution. This constraint is of non-trivial interest only if it is equivalent to x; > x;. Namely, that x; = 1implies
that x; = 1. To see this notice that if x; = 0 implies that x; = 1 (this happens when 1 > % > 0) then x; = 1 in any solution
and therefore can be fixed and eliminated. If x; = 1 implies that x; > 1 then x; must be fixed at 0 for any feasible solution.
The constraints of the type x; > x; are closure constraints, known also as partial order constraints.

The set of monotone constraints considered here has general lower and upper bounds on the variables that could be
negative:

(monotone constraints)  a;x; — b;ix; > ¢ V(izj) €A,
¢ <xj<uy; forall jeV.

We show next that a set of monotone constraints is equivalent to a set of closure constraints on binary variables.

The linear optimization (either minimization or maximization) over closure constraints is called the closure problem.
Solving the closure problem is equivalent to solving linear optimization over a ring family, as explained next. Consider first
the maximum weight closure problem where the closure is in terms of successors. Let x; be a binary variable thatis 1if node j
is in the closure, and 0 otherwise. Let w; be the weight of node j. Note that the problem is trivial if all w; are positive (optimal
solution is V), or if all w; are negative (optimal solution is ). The problem formulation for a directed graph G = (V, A) is

(max-closure) max ijxj
jev
subject to X <x V(i,j) €A,
X; binary jeV.

To solve this linear problem we construct an associated s, t closure graph: Consider the partition on V to Vt = {v €
Vlw, > 0}and V™ = {v € V]w, < 0}, and note that both sets are non-empty for non-trivial problems. We add to the graph
anode s and a set of arcs {(s, j)|j € V*}, where arc (s, j) is of capacity wj. Next we add a node ¢ and a set of arcs {(i, t)|i € V~},
where arc (i, t) is of capacity —wj;. All arcs in A are assigned infinite capacity. It is easy to see that the source set S for any
finite capacity s, t-cut (S, T) in this graph is a closed set, and that the minimum capacity cut has a source set of maximum
weight. Respectively, the sink set of the minimum cut T is closed with respect to predecessors, and it is of total minimum
weight. Additional details on the closure problem can be found, e.g. in [12].

We comment that in contrast to submodular minimization SM2-multi over closure constraints that is solved in pseu-
dopolynomial time, the convex separable minimum closure problem on integers (non-binary) is solvable in polynomial
time using a parametric cut algorithm as proved in Hochbaum and Queyranne [12].
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We call the submodular minimization over closure constraints, and in binary variables, the SM-closure problem. This
problem is formulated for a submodular function f(X) where X C V as follows:

(SM-closure) min  f(X)
subject to Xi <X V(i j) €A,
X; binary jeV.

Note that SM-closure is interesting, or non-trivial, for non-monotone submodular functions. Solving SM-closure is done with
any algorithm that minimizes a submodular function over a ring family. We show next that any SM2-multi on monotone
constraints is equivalent to an SM-closure problem on a graph on Y u; nodes.

To reduce SM2-multi to SM-closure, we use a process, introduced by Hochbaum and Naor [11], that maps a monotone
constraint in integers a;;x; — b;ix; > ¢;; into an equivalent collection of closure constraints on binary variables. We refer to this
procedure as binarizing. A sketch of the procedure is as follows: The integer variables are first replace by binary variables.
(This step in not required for SM2 where the variables are already binary.) For each elementiandp = ¢; + 1, ..., u; we let

xE” ) = 1onlyifx > p.In particular the variable x; can be written as a summation of binary variables x; = ¢; + ZZ":ZI_ +1x§" )

The following restriction then holds forallp = ¢; 4+ 2, ..., u;: xgp) =1= xgpfl) = 1. Note that XE&') =1
For a monotone constraint a;x; — b;x; > ¢j, let q(p) = qutﬁl. Assuming that q(p) < u; (otherwise update the upper

. : ij - .
bound on x; to be u; := p — 1, and if p — 1 s less than the lower bound on x;, the problem is infeasible), then the monotone
constraints can be equivalently written as follows:

x;p)fxgq(p)) V(i,j)eA forp=1,...,u
xgp)sxgpfl) VieV forp=1,...,u
XPef0,1}  VieVv forp=1,...,u.

The constraints listed are closure constraints in an s, t-graph where for each element i there are up to u; nodes and for
every constraint (i, j) € Ain the original problem there are up to min{u;, u;} arcs. Hence any SM2-multi problem on monotone
constraints is equivalent to a SM-closure problem on a graph with O(}_,, u;) nodes, and is solvable in polynomial time in
the size of the graph. For general range of the variables, this run time is pseudopolynomial and, as discussed in Section 1 it
cannot be improved unless NP=P.

4.3. The 2-approximation algorithm

Given a non-monotone SM2-multi problem, we first monotonize it to generate a SM2-multi on monotone inequalities,
as described in Section 4.1. The next step is to convert the resulting problem to an SM-closure problem on binary variable, as
detailed in Section 4.2. We refer to the resulting SM-closure problem as relaxed SM2 (or SM2-multi). The relaxed SM2-multi
problem is defined on binary variables, represented as nodes, and each inequality of the form y’ < z’ corresponds to an arc
(¥, 2’) in the set of arcs A’. We let the set of binary variables that are generated from x* vectors be denoted by V' and those
that are generated from X~ vectors be V~. Each node in the graph G = (V*+ U V~, A’) indicates that the respective variable
value is at its upper bound. Recall that since the lower bound variable is not in the graph, as the variable value is always
greater or equal to the lower bound, for binary variables in {0, 1} the selection of a node in the graph is equivalent to setting
its value to 1, and for binary variables in {—1, 0} the selection of a node in the graph is equivalent to setting its value to 0. A
node j € V' isin a closed set S implies that the respective binary variable xj+ = 1,and anodei € V™ isin S implies that the
respective binary variable x;” = 0.

We denote by x; = —x;~ forall i € V~ so that X’ is a binary vector taking values in {0, 1}. Let X* = {j € V+|x;r = 1} and
X" ={jeV™ |xj/. = 1}. That is, the vectors x* and X’ are the characteristic vectors of the sets X* and X . Let S* be an optimal
set minimizing the function f() for the (original) SM2 formulation, and let X* be the associated characteristic vector. On the
graph G = (VT UV~ A"), let S** and S*~ be the copies of S* in V* and V~, respectively. Then this is a feasible solution for
the relaxed problem since $** U (V~ \ $*7) is a closed set, and the vectors X** = x* = x* defined on V* and V™ are the
characteristic vectors of S** and S*~. Therefore, setting x; = xf““ + x;* is a feasible solution x for the “doubled” inequality
constraints.

The submodular function f() is defined on subsets of V and therefore the objective function of the SM-closure problem
defined on the constructed graph, g(X™ U X™) = f(XT) + f(X™), is well defined and, f(X*), f(X~) and g(X™ U X™) are
submodular functions.

Theorem 1. Let X* C V* and X~ C V-~ be the sets minimizing g() among all feasible pairs of sets for the relaxed SM2-multi.
Let S* be an optimal set minimizing the function f() in the (original) SM2-multi formulation. Then, 2f(S*) > f(XT U X™).
Proof. Let S** and S*~ be the copies of S* in VT and V—, respectively. Then,

2(S*) =fS)+f(5) = gXTUXT) =fX ") +f(X7)
> fXTUXT)+HfXTNXT) = fXTUX).
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The first inequality holds since X* U X~ is an optimal solution to the relaxed SM2-multi. The second inequality follows
from the submodularity of the function f. f(X* UX ™) is the value of our solution where an element is included if either one
of its two copies is in X or in X . The third and last inequality follows since f() takes non-negative values. [

2-approximation for round-up SM2-multi.
Theorem 1 leads immediately to the 2-approximation result for round-up SM2-multi:

Lemma 1. For round-up SM2-multi and a general non-negative submodular objective function f() there is a polynomial time
2-approximation algorithm.

Proof. If for an index j both variables xj+, xj’. are of value 1, then we set the value of x; to be equal to 1. Let Vi={e V|xj+ =
X = 1} be the set of such variables. If both x;*, x;” are of value 0, we let x; = 0,and V° = {j € V|x;" = x; = 0} is the set of
these variables. The set of remaining variables, which have exactly one of xj+, X/ equal to 1 and the other one equal to 0, is

1
called V2.
For round-up SM2-multi, the rounded solution is the set V! U V2 = X+ UX~. From Theorem 1 this is a 2-approximate
solution for SM2-multi. O

We prove next the approximation result for SM problems without the round up property. The rounding in this case is
shown to be guided by a feasible solution found by an algorithm equivalent to finding a truth assignment, if exists, to a 2SAT
expression. A truth assignment for 2SAT, or determining that there is none, can be found using the linear time algorithm
of [2]. To show how to find a feasible solution to a set of constraints in two variables we first demonstrate that a SM2-
multi is equivalent to a respective SM-MIN-2SAT problem. This proof is based on the approach of binarizing first the non-
monotone system. This result is the same as was derived for linear integer programming on constraints with two variables
per inequality, in Hochbaum et al. [10]:

Theorem 2. The set of SM2-multi constraints is equivalent to the constraints of SM-MIN-2SAT on at most nU binary variables
and O(mU) constraints, for U = max;cyu;, in that both have the same sets of feasible solutions.

Proof. For a general constraint of the form, ax; + aix; > ¢, consider the case where both ai; and ay; are positive, and
assume without loss of generality that 0 < ¢, < au; + aiu;. The other cases where one coefficient is negative (and the
constraint is monotone), or both are negative, are similarly “binarized”.

Forevery £ (£ =0, ..., u;), letay, = Ck%f”’“ — 1. For any integer solution X, ay;X; 4 aiX; > ci if and only if for every £
J
(£=0,...,u;— 1), either x; > £ or x; > oy, or, equivalently, either x; > £ + 1 or X; > ay, + 1, which can be written as
Xio+1 + Xjoe+1 = 1.
Obviously, if oxe > uj, then we fix the variable, x; .11 = 0.
If the above transformation is applied to a monotone system of inequalities, then the resulting 2-SAT integer program is

also monotone. More precisely, for a constraint of the form ayx; — aix; > ¢ the set of binarized constraints are all of the
. . . Ly
form x;, > xjq, or the reverse inequality, for some values of p and q. To see that, note that if x; > £ then x; > ’Vﬁ%-‘ = Bre.
1
For this condition to be satisfied xj; < x; g,,, which is a monotone, closure, constraint.
Altogether we have replaced one original constraint on x; and x; by at most u; + 1 constraints on the variables x;; and

Xje. The other cases, corresponding to different sign combinations of ay;, ai, and ci, can be handled in a similar way. This
completes the proof of Theorem 2. O

With Theorem 2, it is sufficient t? show the respective result for SM-MIN-2SAT. It is shown next that thelrounded (up or
down) solution is BU V!, for B € V2. In contrast to round-up SM2-multi, here B may be a strict subset of V2.

Lemma 2. For a submodular monotone function f(), any feasible rounding (up or down) of the variables in Vi yields a 2-
approximate solution for (SM2).

Proof. Since VIUV3 = X+ UX" then for any B C V3 it follows from the monotonicity of function f that, f(V! UB) <
f(X* UX™). From Theorem 1 we conclude that f(V! U B) < 2f(5*) thus demonstrating a polynomial time 2-approximation
algorithm for any SM2 optimization of a monotone submodular function. O

It remains to show that if there exists a feasible solution to SM2-multi then it is possible to find a rounding of the variables
inV?7 that yields a feasible solution to SM2-multi. Furthermore, such a feasible solution, if exists, can be found in polynomial
time, since a feasible solution is derived by identifying a truth assignment to a 2SAT problem. If there is no truth assignment
to the 2SAT problem, then the respective SM2-multi problem is infeasible. Assume that the set of SM2 constraints has a
feasible integer solution denoted by z1, ..., z,.

Let the optimal solution to the monotonized constraints problem be m;" and m; . The first quantity, mi*, is the number of

variables X** that belong to X . Recall that because of the constraints X** > x"*"*  there will be a consecutive sequence
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of variables xng that are equalto 1,forp =0, 1, .. ., g; followed by a sequence of Os. Hence, m,-+ = q;. Similarly, m;” = q; is
the largest index p such that xi(p =1
Fori=1,...,nletm = %(mi+ — m; ). We define the following solution vector, denoted by £ = (¢4, ..., £,), where for
i=1,...,n:
min{m;", —-m;}  ifz < min{m;", —m;},

=1z if min{m;", —m;"} <z < max{m;", —m; },
max{m;", —m;}  ifz > max{m;", —m;}.

i

We now prove that the vector £ is feasible:
Lemma 3. The vector £ is a feasible solution to the given SM2-multi problem.

Proof. Let ax; 4+ bx; > c be an inequality where a and b are nonnegative. We check all possible cases. If ¢; is equal to z;
or min{m,-+, —m; }, and ¢; is equal to z; or min{mf, —mj_}, then clearly, a¢; + b¢; > az; + bz; > c . Suppose ¢; > z; and
(= max{mj*, —m;"}. By construction, we know that am! — bm >c and —am; + bmj+ >c.
If¢; > —m;, then, af; + b¢; > —am; + bmj+ > c . Otherwise, at; 4+ b¢; > am;” — bm; >c.
The last case is when ¢; = max{mi*, —m; },and ¢; = max{mj*, —mj’}. In this case,

ali + bl; > amfr - bmj‘ > c . The other types of inequalities are handled similarly. O

The feasibility of the vector £ for the set of constraints implies the following.

Corollary 1. There exists a “rounding” to a set W satisfying
XtNX"cwcXtux.

+

Corollary 2. If m{" = m; then w; = m{” = m;".

5. Submodular minimization over totally unimodular constraints
5.1. The SM-vertex cover on bipartite graphs is NP-hard

Iwata and Nagano prove that Switching Submodular Function Minimization (SSFM) is NP-hard, [ 14], even for f strictly
monotone. Let V and V’ both consist of n elements, with element i € V corresponding to element i’ € V', and a subset
X C V corresponding to X’ C V'. Let a submodular function f be defined on subsets of V U V’. The problem SSFM is to find
a bi-partition of V, (X U Y) that minimizes f(X U Y’). The proof that the SM vertex cover on bipartite graph is NP-hard is by
reduction from SSFM' : Given an instance of SSFM with a strictly monotone submodular function f. Construct a bipartite
graph on the sets of nodes V and V’, with one edge between eachi € V and i’ € V’. An optimal vertex cover in this graph
includes exactly one of each pair of i and i’. The set selected in V is X and its complement - the set selected in V' - is Y’. This
selection gives the optimal value of f(X U Y’). This reduction is obviously approximation preserving.

Since the constraint matrix of bipartite vertex cover is totally unimodular, we conclude as follows.

Theorem 3. SM minimization over a totally unimodular constraints matrix is NP-hard.

5.2. The bipartite-submodular vertex cover on bipartite graph

To generate the intuition for the relationship between bipartite-submodular vertex cover and SM-closure consider first
the vertex cover and closure problems on a bipartite graph G = (V; U V,, E). We replace the set of edges E by a set of arcs
directed from V; to V5. Given a feasible closed set S (w.r.t. successors), then (V; \ S) U (V, N S) is a feasible vertex cover. Vice
versa, given a feasible vertex cover D, then (V; \ D) U (V, N D) s a closed set (w.r.t. successors) in G.

For a bipartite graph G = (V; U V5, E) the bipartite-submodular vertex cover is to minimize f(D) = fiy(DNV7)+f,(DNV;)
for D a vertex cover. Since D is a vertex cover, then (V; \ D) U (V, N D) is a closed set in G. Since f; is submodular, then
f'(D) = f1(Vy \ D) is submodular as well, and so is g(D) = f’(D) + f>(D). Since the minimum submodular closure problem
minpcy,ur,&(D) is solved in strongly polynomial time, then so is the bipartite-submodular vertex cover. The analogous
argument proves that the bipartite-supermodular independent set problem is also solved in strongly polynomial time.

1 This is to thank Asaf Levin for devising this reduction.
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6. Conclusions

We demonstrate here a unified technique to generate best possible 2-approximation algorithms for a family of con-
strained submodular optimization with two variables per inequality that are NP-hard. The results hold also for submodular
minimization over multi-sets. This settles, for the first time, the approximation and complexity status of a number of
submodular minimization problems including SM-2SAT, SM-min satisfiability, SM-edge deletion for clique and SM-node
deletion for biclique. In this sense these submodular minimization problems have similar complexity to the respective
linear integer minimization. We also establish that the problem of submodular vertex cover on bipartite graphs or over
a totally unimodular constraint matrix is NP-hard. This demonstrates that submodular minimization is harder than the
respective linear integer minimization, where the minimization (or maximization) over a totally unimodular constraint
matrix is polynomial time solvable.
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