ERRATA AND SIMPLIFICATION FOR HOCHBAUM AND RAO OR 2019

DORIT S. HOCHBAUM* AND XU RAO ${ }^{\dagger}$

Abstract

The purpose of this write-up is to correct an error in a lower bound used in [1], and to show that the corrections required do not affect the results. Another part of this write-up is a simplification and streamlining of the Fully Polynomial Time Approximation Scheme result in the paper.

1. Correcting an error. We recently found an error in the proof of Theorem 6 in [1]. This part of the write-up specifies the modifications required to address this error. The error is that the lower bound of the optimal value V^{*} was written incorrectly as $\frac{k+1}{2} \sum_{i=1}^{n} s_{i}=\frac{k(k+1)}{2} D$ where it should have been $\frac{k+1}{2 k} \sum_{i=1}^{n} s_{i}=\frac{k+1}{2} D$. This error affects Algorithm 3, which is an ϵ-approximation algorithm. In order to correct it we change the scaling factor in Step 1 of Algorithm 3 from $\epsilon^{2} D$ to $\frac{\epsilon^{2} D}{k}$. The running time of Algorithm 3 with this adjusted scaling factor is still $O\left(\frac{n}{\epsilon^{2 k}}\right)$ for constant k. Hence, the results of the paper do not change. As an aside, we note that this running time is in fact fixed-parameter tractable for the parameter k.

We now list the changes in lemmas and formulas in Section 4.2 of [1] needed as a result of the modification of the scaling factor:

1. The right hand side of the ϵ-relaxed cascading constraints in (ϵ-relaxed RSP) should be changed from $\ell D+\epsilon k D$ to $\ell D+\epsilon D$ for $\ell=1, \ldots, k$.
2. In Lemma 6, the bound should be changed from $V_{k}(\mathbf{x})+\epsilon k D$ to $V_{k}(\mathbf{x})+\epsilon D$.
3. In Theorem 2, the inequalities should be changed from

$$
\epsilon^{2} D g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)-\frac{k^{2}(k+1) D}{2} \cdot \frac{\epsilon}{1-\epsilon} \leq g\left(\mathbf{x}^{\mathrm{L}}\right) \leq \epsilon^{2} D g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\frac{k(k+1)(k+2) D}{6} \cdot \frac{\epsilon}{1-\epsilon}
$$

to

$$
\frac{\epsilon^{2} D}{k} g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)-\frac{k(k+1) D}{2} \cdot \frac{\epsilon}{1-\epsilon} \leq g\left(\mathbf{x}^{\mathrm{L}}\right) \leq \frac{\epsilon^{2} D}{k} g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\frac{(k+1)(k+2) D}{6} \cdot \frac{\epsilon}{1-\epsilon}
$$

4. The value of $\delta(\epsilon)$, which appears in Theorem 3, Corollary 1, Theorem 5 and Theorem 6 , should be changed from $\delta(\epsilon)=\frac{k(k+1)(2 k+1) D}{3} \cdot \frac{\epsilon}{1-\epsilon}$ to $\delta(\epsilon)=\frac{(k+1)(2 k+1) D}{3} \cdot \frac{\epsilon}{1-\epsilon}$.
Finally, with the updated value $\delta(\epsilon)$ and Lemma 6 , in the proof of Theorem 6 the inequality $V(\hat{\mathbf{x}}) \leq$ $V^{*}+\frac{\delta(\epsilon)}{k}+\epsilon k D$ should be changed to $V(\hat{\mathbf{x}}) \leq V^{*}+\frac{\delta(\epsilon)}{k}+\epsilon D$. Observe that the new $\delta(\epsilon)$ is $1 / k$ times the original value, and the new second additional term ϵD is $1 / k$ times the original one, $\epsilon k D$. Hence, using the corrected lower bound of V^{*}, which is also $1 / k$ times the one that was used, we get the same bound for the ratio $V(\hat{\mathbf{x}}) / V^{*}$. Therefore, Theorem 6 holds with the correction and the modified scaling factor.
5. A simplification for proving the approximation bound. We present here a streamlined version of Theorem 2, resulting in simplified inequalities and formulas in several lemmas and theorems.

We provide next the new version of Theorem 2 and its proof.
Theorem 2.1. For any assignment of large items \mathbf{x}^{L} feasible for (scaled-modified- k - $R S P_{1}$), the values of the objective function with original and scaled sizes, $g\left(\mathbf{x}^{L}\right)$ and $g^{\prime}\left(\mathbf{x}^{L}\right)$ respectively, satisfy,

$$
\frac{\epsilon^{2} D}{k} \cdot g^{\prime}\left(\mathbf{x}^{L}\right)-\epsilon k^{2} D \leq g\left(\mathbf{x}^{L}\right) \leq \frac{\epsilon^{2} D}{k} \cdot g^{\prime}\left(\mathbf{x}^{L}\right)+\epsilon k^{2} D
$$

Proof. Let $T=\frac{\epsilon^{2} D}{k}$ denote the scaling factor. Recall that $s_{i}^{\prime}=\left\lfloor\frac{s_{i}}{T}\right\rfloor$, so $T s_{i}^{\prime} \leq s_{i}<T\left(s_{i}^{\prime}+1\right)$. So for any integer time j,

$$
Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)=\sum_{i=1}^{n_{\mathrm{L}}} s_{i} x_{i j}^{\mathrm{L}}<T \cdot \sum_{i=1}^{n_{\mathrm{L}}}\left(s_{i}^{\prime}+1\right) x_{i j}^{\mathrm{L}}=T \cdot\left(Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{i=1}^{n_{\mathrm{L}}} x_{i j}^{\mathrm{L}}\right)
$$

[^0]The second term in the parentheses, $\sum_{i=1}^{n_{\mathrm{L}}} x_{i j}^{\mathrm{L}}$, must be less tan or equal to the number of large items, which is bounded by $\frac{k}{\epsilon}$. Therefore we derive the following inequality

$$
\begin{equation*}
Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)<T \cdot\left(Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\frac{k}{\epsilon}\right)=T \cdot Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\epsilon D \quad \text { for } j=1, \ldots, k \tag{2.1}
\end{equation*}
$$

Using $s_{i} \geq T s_{i}^{\prime}$ for any i, we get

$$
\begin{equation*}
Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)=\sum_{i=1}^{n_{\mathrm{L}}} s_{i} x_{i j}^{\mathrm{L}} \geq T \cdot \sum_{i=1}^{n_{\mathrm{L}}} s_{i}^{\prime} x_{i j}^{\mathrm{L}}=T \cdot Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right) \quad \text { for } j=1, \ldots, k \tag{2.2}
\end{equation*}
$$

Recall that the adjusted remainder of time τ is $\bar{R}_{\tau}\left(\mathbf{x}^{\mathrm{L}}\right)=\min _{\ell \geq \tau} R_{\ell}=\min _{\ell \geq \tau}\left(\ell D-\sum_{j=1}^{\ell} Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)\right)$, and that the scaled adjusted remainder of time τ is $\bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)=\min _{\ell \geq \tau}\left(\ell D^{\prime}-\sum_{j=1}^{\ell} Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)\right)$. We derive from inequality (2.1) that for any time τ,

$$
\begin{align*}
\bar{R}_{\tau}\left(\mathbf{x}^{\mathrm{L}}\right) & =\min _{\ell \geq \tau}\left(\ell D-\sum_{j=1}^{\ell} Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)\right) \\
& \geq \min _{\ell \geq \tau}\left[\ell D-\sum_{j=1}^{\ell}\left(T \cdot Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\epsilon D\right)\right] \\
& \geq \min _{\ell \geq \tau}\left[\ell D-T \cdot \sum_{j=1}^{\ell} Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)\right]-\epsilon k D \\
& =T \cdot \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)-\epsilon k D . \tag{2.3}
\end{align*}
$$

And we derive from inequality (2.2) that for any time τ,

$$
\begin{equation*}
\bar{R}_{\tau}\left(\mathbf{x}^{\mathrm{L}}\right)=\min _{\ell \geq \tau}\left(\ell D-\sum_{j=1}^{\ell} Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)\right) \leq \min _{\ell \geq \tau}\left(\ell D-T \cdot \sum_{j=1}^{\ell} Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)\right)=T \cdot \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right) \tag{2.4}
\end{equation*}
$$

Using the inequalities (2.1) and (2.4), we prove the upper bound on $g\left(\mathbf{x}^{\mathrm{L}}\right)$ as follows:

$$
\begin{aligned}
g\left(\mathbf{x}^{\mathrm{L}}\right) & =\sum_{j=1}^{k}(k-j+1) Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{\tau=1}^{k} \bar{R}_{\tau}\left(\mathbf{x}^{\mathrm{L}}\right) \\
& <\sum_{j=1}^{k}(k-j+1)\left(T \cdot Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\epsilon D\right)+\sum_{\tau=1}^{k} T \cdot \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right) \\
& =T \cdot\left[\sum_{j=1}^{k}(k-j+1) Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{\tau=1}^{k} \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)\right]+\epsilon D \cdot \sum_{j=1}^{k}(k-j+1) \\
& \leq T \cdot g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\epsilon k^{2} D .
\end{aligned}
$$

The lower bound on $g\left(\mathbf{x}^{\mathrm{L}}\right)$ follows from inequalities (2.2) and (2.3):

$$
\begin{aligned}
g\left(\mathbf{x}^{\mathrm{L}}\right) & =\sum_{j=1}^{k}(k-j+1) Q_{j}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{\tau=1}^{k} \bar{R}_{\tau}\left(\mathbf{x}^{\mathrm{L}}\right) \\
& \geq \sum_{j=1}^{k}(k-j+1) T \cdot Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{\tau=1}^{k}\left(T \cdot \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)-\epsilon k D\right) \\
& =T \cdot\left[\sum_{j=1}^{k}(k-j+1) Q_{j}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)+\sum_{\tau=1}^{k} \bar{R}_{\tau}^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)\right]-\epsilon k^{2} D \\
& =T \cdot g^{\prime}\left(\mathbf{x}^{\mathrm{L}}\right)-\epsilon k^{2} D
\end{aligned}
$$

This completes the proof of the statement of the theorem.
Using these new inequalities, the value of $\delta(\epsilon)$, which appears in Theorem 3, Corollary 1 , Theorem 5 and Theorem 6, should be changed to $\delta(\epsilon)=2 \epsilon k^{2} D$ accordingly. Additionally, we derive in Theorem 6 an upper bound of the ratio $V(\hat{\mathbf{x}}) / V^{*}$ as $1+\left(\frac{\delta(\epsilon)}{k}+\epsilon D\right) / V^{*}$. With the new expression of $\delta(\epsilon)$, we can show that:

$$
\left(\frac{\delta(\epsilon)}{k}+\epsilon D\right) / V^{*} \leq(2 k+1) \epsilon D \cdot \frac{2}{(k+1) D} \leq 4 \epsilon
$$

Therefore, the ratio $V(\hat{\mathbf{x}}) / V^{*}$ is at most $1+4 \epsilon=1+\epsilon^{\prime}$ for $\epsilon^{\prime}=4 \epsilon$.

REFERENCES

[1] D. S. Hochbaum and X. Rao, The replenishment schedule to minimize peak storage problem: The gap between the continuous and discrete versions of the problem, Operations Research, 67 (2019), pp. 13451361.

[^0]: *Department of IEOR, Etcheverry Hall, Berkeley, CA. (hochbaum@ieor.berkeley.edu).
 ${ }^{\dagger}$ Department of IEOR, Etcheverry Hall, Berkeley, CA. (xrao@berkeley.edu).

