ERRATA AND SIMPLIFICATION FOR HOCHBAUM AND RAO OR 2019

DORIT S. HOCHBAUM* AND XU RAO[†]

Abstract. The purpose of this write-up is to correct an error in a lower bound used in [1], and to show that the corrections required do not affect the results. Another part of this write-up is a simplification and streamlining of the Fully Polynomial Time Approximation Scheme result in the paper.

1. Correcting an error. We recently found an error in the proof of Theorem 6 in [1]. This part of the write-up specifies the modifications required to address this error. The error is that the lower bound of the optimal value V^* was written incorrectly as $\frac{k+1}{2}\sum_{i=1}^n s_i = \frac{k(k+1)}{2}D$ where it should have been $\frac{k+1}{2k}\sum_{i=1}^n s_i = \frac{k+1}{2}D$. This error affects Algorithm 3, which is an ϵ -approximation algorithm. In order to correct it we change the scaling factor in Step 1 of Algorithm 3 from $\epsilon^2 D$ to $\frac{\epsilon^2 D}{k}$. The running time of Algorithm 3 with this adjusted scaling factor is still $O(\frac{n}{\epsilon^{2k}})$ for constant k. Hence, the results of the paper do not change. As an aside, we note that this running time is in fact fixed-parameter tractable for the parameter k.

We now list the changes in lemmas and formulas in Section 4.2 of [1] needed as a result of the modification of the scaling factor:

- 1. The right hand side of the ϵ -relaxed cascading constraints in (ϵ -relaxed RSP) should be changed from $\ell D + \epsilon k D$ to $\ell D + \epsilon D$ for $\ell = 1, ..., k$.
- 2. In Lemma 6, the bound should be changed from $V_k(\mathbf{x}) + \epsilon kD$ to $V_k(\mathbf{x}) + \epsilon D$.
- 3. In Theorem 2, the inequalities should be changed from

$$\epsilon^2 Dg'(\mathbf{x}^{\mathrm{L}}) - \frac{k^2(k+1)D}{2} \cdot \frac{\epsilon}{1-\epsilon} \leq g(\mathbf{x}^{\mathrm{L}}) \leq \epsilon^2 Dg'(\mathbf{x}^{\mathrm{L}}) + \frac{k(k+1)(k+2)D}{6} \cdot \frac{\epsilon}{1-\epsilon}$$

to

$$-\frac{\epsilon^2 D}{k}g'(\mathbf{x}^{\mathrm{L}}) - \frac{k(k+1)D}{2} \cdot \frac{\epsilon}{1-\epsilon} \leq g(\mathbf{x}^{\mathrm{L}}) \leq \frac{\epsilon^2 D}{k}g'(\mathbf{x}^{\mathrm{L}}) + \frac{(k+1)(k+2)D}{6} \cdot \frac{\epsilon}{1-\epsilon}.$$

4. The value of $\delta(\epsilon)$, which appears in Theorem 3, Corollary 1, Theorem 5 and Theorem 6, should be changed from $\delta(\epsilon) = \frac{k(k+1)(2k+1)D}{3} \cdot \frac{\epsilon}{1-\epsilon}$ to $\delta(\epsilon) = \frac{(k+1)(2k+1)D}{3} \cdot \frac{\epsilon}{1-\epsilon}$. Finally, with the updated value $\delta(\epsilon)$ and Lemma 6, in the proof of Theorem 6 the inequality $V(\hat{\mathbf{x}}) \leq V^* + \frac{\delta(\epsilon)}{k} + \epsilon kD$ should be changed to $V(\hat{\mathbf{x}}) \leq V^* + \frac{\delta(\epsilon)}{k} + \epsilon D$. Observe that the new $\delta(\epsilon)$ is 1/k times the original value, and the new second additional term ϵD is 1/k times the original one, ϵkD . Hence, using the corrected lower bound of V^* , which is also 1/k times the one that was used, we get the same bound for the ratio $V(\hat{\mathbf{x}})/V^*$. Therefore, Theorem 6 holds with the correction and the modified scaling factor.

2. A simplification for proving the approximation bound. We present here a streamlined version of Theorem 2, resulting in simplified inequalities and formulas in several lemmas and theorems.

We provide next the new version of Theorem 2 and its proof.

THEOREM 2.1. For any assignment of large items \mathbf{x}^{L} feasible for (scaled-modified-k-RSP₁), the values of the objective function with original and scaled sizes, $g(\mathbf{x}^{\hat{L}})$ and $g'(\mathbf{x}^{\hat{L}})$ respectively, satisfy,

$$\frac{\epsilon^2 D}{k} \cdot g'(\mathbf{x}^L) - \epsilon k^2 D \leq g(\mathbf{x}^L) \leq \frac{\epsilon^2 D}{k} \cdot g'(\mathbf{x}^L) + \epsilon k^2 D$$

Proof. Let $T = \frac{\epsilon^2 D}{k}$ denote the scaling factor. Recall that $s'_i = \lfloor \frac{s_i}{T} \rfloor$, so $Ts'_i \leq s_i < T(s'_i + 1)$. So for any integer time j,

$$Q_j(\mathbf{x}^{\rm L}) = \sum_{i=1}^{n_{\rm L}} s_i x_{ij}^{\rm L} < T \cdot \sum_{i=1}^{n_{\rm L}} (s_i'+1) x_{ij}^{\rm L} = T \cdot \left(Q_j'(\mathbf{x}^{\rm L}) + \sum_{i=1}^{n_{\rm L}} x_{ij}^{\rm L} \right)$$

^{*}Department of IEOR, Etcheverry Hall, Berkeley, CA. (hochbaum@ieor.berkeley.edu).

[†]Department of IEOR, Etcheverry Hall, Berkeley, CA. (xrao@berkeley.edu).

The second term in the parentheses, $\sum_{i=1}^{n_{\rm L}} x_{ij}^{\rm L}$, must be less tan or equal to the number of large items, which is bounded by $\frac{k}{\epsilon}$. Therefore we derive the following inequality

(2.1)
$$Q_j(\mathbf{x}^{\mathrm{L}}) < T \cdot \left(Q'_j(\mathbf{x}^{\mathrm{L}}) + \frac{k}{\epsilon}\right) = T \cdot Q'_j(\mathbf{x}^{\mathrm{L}}) + \epsilon D \quad \text{for } j = 1, ..., k$$

Using $s_i \geq Ts'_i$ for any *i*, we get

(2.2)
$$Q_j(\mathbf{x}^{\mathrm{L}}) = \sum_{i=1}^{n_{\mathrm{L}}} s_i x_{ij}^{\mathrm{L}} \ge T \cdot \sum_{i=1}^{n_{\mathrm{L}}} s'_i x_{ij}^{\mathrm{L}} = T \cdot Q'_j(\mathbf{x}^{\mathrm{L}}) \quad \text{for } j = 1, ..., k.$$

Recall that the adjusted remainder of time τ is $\bar{R}_{\tau}(\mathbf{x}^{\mathrm{L}}) = \min_{\ell \geq \tau} R_{\ell} = \min_{\ell \geq \tau} \left(\ell D - \sum_{j=1}^{\ell} Q_j(\mathbf{x}^{\mathrm{L}}) \right)$, and that the scaled adjusted remainder of time τ is $\bar{R}'_{\tau}(\mathbf{x}^{\mathrm{L}}) = \min_{\ell \geq \tau} \left(\ell D' - \sum_{j=1}^{\ell} Q'_j(\mathbf{x}^{\mathrm{L}}) \right)$. We derive from inequality (2.1) that for any time τ ,

(2.3)

$$\bar{R}_{\tau}(\mathbf{x}^{\mathrm{L}}) = \min_{\ell \geq \tau} \left(\ell D - \sum_{j=1}^{\ell} Q_{j}(\mathbf{x}^{\mathrm{L}}) \right) \\
\geq \min_{\ell \geq \tau} \left[\ell D - \sum_{j=1}^{\ell} \left(T \cdot Q_{j}'(\mathbf{x}^{\mathrm{L}}) + \epsilon D \right) \right] \\
\geq \min_{\ell \geq \tau} \left[\ell D - T \cdot \sum_{j=1}^{\ell} Q_{j}'(\mathbf{x}^{\mathrm{L}}) \right] - \epsilon k D \\
= T \cdot \bar{R}_{\tau}'(\mathbf{x}^{\mathrm{L}}) - \epsilon k D.$$

And we derive from inequality (2.2) that for any time τ ,

(2.4)
$$\bar{R}_{\tau}(\mathbf{x}^{\mathrm{L}}) = \min_{\ell \ge \tau} \left(\ell D - \sum_{j=1}^{\ell} Q_j(\mathbf{x}^{\mathrm{L}}) \right) \le \min_{\ell \ge \tau} \left(\ell D - T \cdot \sum_{j=1}^{\ell} Q'_j(\mathbf{x}^{\mathrm{L}}) \right) = T \cdot \bar{R}'_{\tau}(\mathbf{x}^{\mathrm{L}})$$

Using the inequalities (2.1) and (2.4), we prove the upper bound on $g(\mathbf{x}^{L})$ as follows:

$$\begin{split} g(\mathbf{x}^{\mathrm{L}}) &= \sum_{j=1}^{k} (k-j+1)Q_{j}(\mathbf{x}^{\mathrm{L}}) + \sum_{\tau=1}^{k} \bar{R}_{\tau}(\mathbf{x}^{\mathrm{L}}) \\ &< \sum_{j=1}^{k} (k-j+1)\left(T \cdot Q_{j}'(\mathbf{x}^{\mathrm{L}}) + \epsilon D\right) + \sum_{\tau=1}^{k} T \cdot \bar{R}_{\tau}'(\mathbf{x}^{\mathrm{L}}) \\ &= T \cdot \left[\sum_{j=1}^{k} (k-j+1)Q_{j}'(\mathbf{x}^{\mathrm{L}}) + \sum_{\tau=1}^{k} \bar{R}_{\tau}'(\mathbf{x}^{\mathrm{L}})\right] + \epsilon D \cdot \sum_{j=1}^{k} (k-j+1) \\ &\leq T \cdot g'(\mathbf{x}^{\mathrm{L}}) + \epsilon k^{2} D. \end{split}$$

The lower bound on $g(\mathbf{x}^{L})$ follows from inequalities (2.2) and (2.3):

$$\begin{split} g(\mathbf{x}^{\mathrm{L}}) &= \sum_{j=1}^{k} (k-j+1)Q_{j}(\mathbf{x}^{\mathrm{L}}) + \sum_{\tau=1}^{k} \bar{R}_{\tau}(\mathbf{x}^{\mathrm{L}}) \\ &\geq \sum_{j=1}^{k} (k-j+1)T \cdot Q_{j}'(\mathbf{x}^{\mathrm{L}}) + \sum_{\tau=1}^{k} \left(T \cdot \bar{R}_{\tau}'(\mathbf{x}^{\mathrm{L}}) - \epsilon kD\right) \\ &= T \cdot \left[\sum_{j=1}^{k} (k-j+1)Q_{j}'(\mathbf{x}^{\mathrm{L}}) + \sum_{\tau=1}^{k} \bar{R}_{\tau}'(\mathbf{x}^{\mathrm{L}})\right] - \epsilon k^{2}D \\ &= T \cdot g'(\mathbf{x}^{\mathrm{L}}) - \epsilon k^{2}D. \end{split}$$

This completes the proof of the statement of the theorem.

Using these new inequalities, the value of $\delta(\epsilon)$, which appears in Theorem 3, Corollary 1, Theorem 5 and Theorem 6, should be changed to $\delta(\epsilon) = 2\epsilon k^2 D$ accordingly. Additionally, we derive in Theorem 6 an upper bound of the ratio $V(\hat{\mathbf{x}})/V^*$ as $1 + \left(\frac{\delta(\epsilon)}{k} + \epsilon D\right)/V^*$. With the new expression of $\delta(\epsilon)$, we can show that:

$$\left(\frac{\delta(\epsilon)}{k} + \epsilon D\right) / V^* \le (2k+1) \epsilon D \cdot \frac{2}{(k+1)D} \le 4\epsilon.$$

Therefore, the ratio $V(\hat{\mathbf{x}})/V^*$ is at most $1 + 4\epsilon = 1 + \epsilon'$ for $\epsilon' = 4\epsilon$.

REFERENCES

 D. S. Hochbaum and X. Rao, The replenishment schedule to minimize peak storage problem: The gap between the continuous and discrete versions of the problem, *Operations Research*, 67 (2019), pp. 13451361.