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Abstract—Existing fixtures for holding sheet metal parts are 

generally bulky, part-specific, and designed by human trial-and-
error. In this paper, we propose unilateral fixtures, a new class of 
fixtures that addresses these limitations using modular fixturing 
elements that lie almost completely on one side of the part, 
maximizing access on the other side for welding, assembly, or 
inspection. The primary holding elements are cylindrical jaws 
with conical grooves that expand between pairs of part hole 
corners; each grooved jaw provides the equivalent of four point 
contacts and facilitates part alignment during loading. 

We present a two-phase algorithm for designing unilateral 
fixtures. The first phase assumes the part is rigid and uses 2D and 
3D kinematic analysis of form-closure to identify all pairs of 
candidate jaw locations. For this analysis we propose and prove 
three new grasp properties for 2D and 3D grips at concave 
vertices, and a new quality metric based on the sensitivity of part 
orientation to infinitesimal relaxation of jaw position. The first 
phase also sets bounds on jaw cone angles. The second phase 
addresses part deformation with a Finite Element Method (FEM) 
analysis that arranges secondary contacts at part edges and 
interior surfaces.  

For a given sheet-metal part, given as a 2D surface embedded 
in 3D with n concavities and m mesh nodes, the kinematic 
algorithm takes O(n2) time to compute a list of all unilateral 
fixtures ranked by quality, or a report that none exist for that 
part. The FEM deformation analysis arranges r secondary 
contacts considering m part elements in O(m3r).  We have 
implemented both phases of the algorithm and report alignment 
data from experiments with two physical parts. 

 
Index Terms — Assembly, Fixturing, Form-Closure, 

Grasping, Modular Fixturing, Sheet Metal, Welding, 
Workholding. 

I. INTRODUCTION 

HEET metal parts are created by stamping and bending 
planar sheets. To assemble industrial parts such as 

automotive bodies and large appliances, such sheet metal 
panels need to be accurately located and held in place by 
fixtures to permit assembly, welding, or inspection. Existing 
fixturing methods are usually: bulky (limiting access to the 
part), dedicated to each part (requiring a large investment in 
materials), and designed by human intuition (introducing 
delays and suboptimal designs). 
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We propose unilateral fixtures, a new class of fixtures that 
addresses these limitations using modular fixturing elements 
that lie almost completely on one side of the part, maximizing 
access on the other side. The primary holding elements are 
cylindrical jaws with conical grooves that expand between 
pairs of part hole corners; each grooved jaw provides the 
equivalent of four point contacts and facilitates part alignment 
during loading.  We define and give an algorithm that analyzes 
the sheet-metal geometry and automatically designs unilateral 
fixtures. 

 

 
Fig. 1.  2D analysis and 3D unilateral fixture (2 views).  Primary jaws (A) hold 
the 3D sheet metal part in form-closure and secondary jaws (B) minimize 
deformation. 
 

We present a two-phase design procedure for unilateral 
fixtures. The first phase is a geometric algorithm that assumes 
the part is rigid and locates one pair of primary jaws to 
immobilize the rigid part. This phase is purely kinematic in its 
analysis. The second phase adds additional secondary jaws 
using a heuristic Finite Element Method (FEM) procedure to 
reduce deformation to within specified tolerances. 

For the first phrase, we locate pairs of concavities of the part 
where jaws can be placed. For every pair of concavities, we 
apply a set of sufficient conditions to test the part for 
immobility. We show that the 3D sheet metal part is fixtured 
by jaws at these concavities if 2D parts that are projections of 
the 3D sheet metal part on to 2 orthogonal planes containing 
both concavities are fixtured by the projections of the jaws and 
if the conical grooves of the jaws prevent rotation about an 
axis through both concavities. 

To check for fixturing in 2D, we consider the distance 
between the 2D jaws. We show that when the jaws are at 
different concavities, the distance between the jaws needs to be 
at an extremum in order to fixture the part. We have presented 
this part of the work earlier in [8]. We also derive a 2D quality 
metric based on the maximum possible change in the part’s 
orientation when jaw position is relaxed infinitesimally. We 
then extend this quality metric to 3D as a measure of the 
largest component of the change in the 3D sheet metal part’s 
orientation when the distance between the jaws is relaxed 
infinitesimally. 
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We note that one pair of primary contacts suffice to 
immobilize the rigid 3D part as each jaw contacts the part at 4 
points: 2 points in the cross-section, and for each of these, on 
either surface of the part. Thus 2 jaws can provide the 
equivalent of 8 point contacts; while in general, 7 are sufficient 
to immobilize a 3D part. These fixtures are an example of 
minimalist robotics, or RISC, as presented in [5]. 

The fixtures described in this paper also possess a self-
aligning nature, i.e. they align the part into the correct 
orientation as the part is loaded on to the fixture. We perform 
repeated tests on 2 example parts to check the distributions of 
errors in orientations when loaded on numerous fixtures. 

II. RELATED WORK 

Grasping and fixturing both involve holding a part in a way 
that limits its mobility. Bicchi and Kumar [2] and Mason [12] 
provide concise surveys of research on robot grasping. 
Fixturing may further involve a reduced set of components 
such as clamps or locators to create modular fixtures. More 
recent work also covers the aspect of fixturing deformable 
parts. 

Grasps can be classified as force or form-closure. Form-
closure occurs when any neighboring configuration of the part 
results in collision with an obstacle. Force-closure occurs if 
any external wrench can be resisted by applying suitable forces 
at the contacts [12, 21]. Gripper contacts can be modeled as 
frictional points, frictionless points or soft contacts [24]. [19] 
and [26] prove that 4 and 7 frictionless point contacts are 
necessary to establish form-closure in the plane and in 3D 
respectively and [14] and [11] proved that 4 and 7 point 
contacts suffice. 

Rimon and Burdick [Rimon96, 98] were the first to identify 
and introduce the notion of second order force-closure. 
Immobility is defined to occur if any trajectory results in the 
decrease of distance between the part and at least one obstacle 
it is in contact with. First and Second orders of immobility 
arise due to the truncation of the Taylor expansions of the 
distances at the first and second order terms respectively. [20] 
shows that generic planar parts can be immobilized (second-
order) with three frictionless contacts if they are placed with 
infinite precision. Ponce et al [17] give an algorithm to 
compute such configurations. 

Rimon and Blake [22] give a method to find caging grasps, 
configurations of jaws that constrain parts in a bounded region 
of C-space such that actuating the gripper results in a unique 
final configuration. They consider the opening parameter of 
the jaws as a function of their positions and use stratified 
Morse theory to find caging grasps.  In this paper, we look at 
the distance between the jaws and use the fact that they are at a 
strict extremum to show that the part is immobilized. 

Plut and Bone [15, 16] proposed inside-out and outside-in 
grips using two or more frictionless point contacts at linear or 
curved part edges. They show how to find such grips where the 
distance between contacts is at an extremum. They achieve 
form-closure in 3D using horizontal V-shaped circumferential 
grooves (VCGs).  Our unilateral model minimizes fixture 
profile on one part exterior and generalizes their analysis with 

an exact test for 3D form-closure, a new quality metric, and a 
method for locating secondary contacts based on FEM. 

In fixturing, Hurtado and Melkote [9] study how a fixture’s 
conformability and stability vary with design parameters such 
as number and positions of contacts and geometric properties 
of the fixture elements. They develop two metrics based on 
global and local conformability (based on similarity of shape 
between the part and the circumscribing polyhedron fitting the 
contacts). By minimizing the net complementary energy of the 
fixture and part system, the reactionary forces were evaluated 
at the contacts and used to observe trends of conformability 
and stability as the design parameters varied. Wang [29] 
examines the errors in machined features in relation to the 
errors in locator position and locator surface geometric errors. 
The relation is expressed using a critical configuration matrix 
for the part.  Wang suggests an optimal locator configuration 
based on error sensitivity of multiple features machined on the 
part. Wang and Liu [30] examine fixture design based on part 
curvature at the points of contact. They call their model a full-
kinematic model and it helps design fixtures with 
considerations of location precision. This is achieved since 
they analyze part geometry in greater detail (including part 
curvature). Xiong et al [31] develop a statistical model for 
analysis of geometric variations in assemblies. They model the 
stacking of incremental errors in each assembly station, and 
based on locator errors and geometric errors of individual 
parts, determine the error in position or orientation of the 
feature being analyzed. The predicted errors are used to study 
assembly methods and sequences to choose an optimal 
assembly process. 

An efficient geometric algorithm to compute all placements 
of four frictionless point contacts on a polygonal part that 
ensure form-closure is described by van der Stappen et al [27]. 
Given a set of four edges, they show how to compute critical 
contact placements in constant time. The time complexity of 
their algorithm is bounded by the number of such sets. For the 
specialized case of v-grips, their algorithm runs in an expected 
time of O(n2 log  n) for n vertices. 

A lot of recent work on fixturing deformable and sheet-
metal parts is based on the work of Menassa and De Vries [13] 
where they determine the positions of the primary datum (the 
datum points needed to locate the part in the correct plane) for 
3-2-1 fixturing to minimize deformation. They use a finite 
element model of the part to model the deformation, and 
determine fixture locations by optimizing an objective that is a 
function of the deformations at the nodes. Their work is 
extended by [18] and [4]. [18] designs a fixture for a sheet 
metal part by using an objective function that is a weighted 
sum of the norm of the deformation and the number of fixtures 
in the objective function. They use a remeshing algorithm, but 
do not address properties specific to sheet metal parts such as 
buckling. Cai et al describe an N-2-1 fixturing principle in [4]. 
This is used instead of the conventional 3-2-1 principle to 
reduce deformation of sheet-metal parts. They use N (>=3) 
locators for the primary datum, (i.e. they use N datum points to 
locate the sheet metal part in the correct plane) in their 
fixtures. They model the sheet metal parts using finite 
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elements with quadratic interpolation, constraining nodes in 
contact with the primary datum to only in-plane motion. For a 
known force, linear static models are used to predict 
deformation. To make their algorithm faster, instead of 
remeshing the part for different locator positions, they express 
the constrained displacement at the locator by using a linear 
interpolation of displacement at the adjacent nodes. Fixture 
elements are placed such that compressive forces that cause 
buckling do not occur. In contrast, our two phase approach is a 
hybrid of geometric and FEM methods. 

[28] and [6] study using discretized domains of fixture 
element locations to create fixtures. [28] describes an 
algorithm to obtain an optimal fixture for a domain of discrete 
contacts with 6 locators and one clamp. The optimality is 
obtained by considering localization accuracy and force 
balance at the contacts. [6] proposes a method for fixture 
design for curved workpieces by discretizing the part’s surface 
to obtain contact locations. They start with a random set of 
contacts and randomly iterate contact locations till form-
closure is achieved. The number of iterations is reduced by 
eliminating sets of contacts based on a facet that divides the 
domain of contacts into 2 parts based on the property that the 
contact wrenches need to positively span the wrench space. 
Only half-space defined by the facet is considered. Li et al [10] 
describe a procedure to design fixtures for two sheet metal 
parts that are to be welded to produce a good fit along the 
seam to be welded. The fixtures are designed using a finite 
element model to determine either an optimal fixture or a 
robust fixture. 

For modular fixtures, Brost and Goldberg [3] present the 
first complete synthesizing algorithm that guarantees to find a 
fixture, consisting of 3 locators and 1 clamp if one exists. They 
enumerate all such fixtures by choosing candidate fixture 
element positions that are at a distance permitted by the edges 
of the part the elements are in contact with. Rong and Li [23] 
present an interactive Rapid Fixture Design System (RFDS) 
that allows a designer to make use of several databases of 
fixture components, location method, etc. and automates the 
generation of a modular fixture subject to the specifications of 
the user regarding positions and orientations of the 
components. [25] considers the fixturing of a sheet metal 
workpiece using clamps and locators fixed on a base-plate 
with t-slots. The height of the fixture elements are variable, 
and are adjusted to fit the shape of the part. Determining the 
positions of the locators and clamps is formulated as a non-
linear programming problem in terms of the part deformation. 

The unilateral fixturing approach is inspired by Toyota’s 
“Global Body Line” auto assembly system [7]. This system 
fixtures different auto models using a reduced set of hardware 
that includes an “inside locator jig”. We have been unable to 
find any details on analytical models for the GBL system. 

III. PROBLEM STATEMENT 

The input is a model of a sheet metal part sheet metal part:  
a contiguous connected 2D surface with holes whose thickness 
is assumed to be small compared to the dimensions of the 
features on the part. It is defined by a CAD model that consists 

of a list of its edges: both external and internal (holes) in terms 
of spline curves.  For each edge, the side of the edge on which 
the part lies is also specified. A FEM mesh discretizing the 
part as a surface embedded in 3D is also specified. This is a 
triangular or quadrilateral mesh (but other meshes can be used 
in general). The part’s thickness and material properties are 
also specified. Primary jaws consist of 2 coaxial frustums of 
cones joined at their narrow ends which have equal radii 
(called the radius of the jaw). Secondary jaws may either be of 
the same shape as primary jaws, or may be point contacts 
supporting the interior of the part (away from edges). All jaws 
are assumed to be rigid and all contacts are assumed to be 
frictionless. The part is subjected to a set of known external 
wrenches specified as a list describing each wrench vector and 
the node of the part’s mesh where it is applied. For each node, 
the direction of the part’s interior, i.e. the direction in which 
the unilateral fixture may lie, is specified. A tolerance δ is 
specified. This is the maximum deformation (i.e. magnitude of 
displacement from original position) of any point on the part as 
a result of the applied wrenches. 

Input: CAD model of part with FEM mesh (as specified 
above), Young’s modulus and Poisson’s ratio of the part, jaw 
radii, list of applied wrenches, and allowed tolerance δ. 

Output: A list of unilateral fixtures that specify positions 
and orientations of each jaw within the given tolerances and 
bounds on the cone angles of each primary jaw, or a report that 
no solution exists. 

We note here that we present an algorithm only to design 
the fixture itself and not design a loading mechanism for the 
fixture. 

To solve this problem we first establish some preliminary 
results regarding fixturing 2D parts with 2 jaws in section IV. 
These results will then be used in section V where we design 
the location and shape of the first 2 jaws of the 3D fixture 
which we refer to as the primary jaws. A quality metric to 
evaluate any given pair of primary jaws is also presented in 
section V. This is done based on part kinematics only. After 
the kinematic analysis phase, we move on to the second phase 
dealing with application of FEM deformation models to each 
pair of primary jaws that we compute to solve the problem. 
This is discussed in section VI. The entire algorithm is 
presented in section VII. 

IV. KINEMATIC ANALYSIS: 2D V-GRIPS 

A. Problem Definition 
In order to establish fast sufficient conditions for immobility 

in the kinematic analysis phase of our design procedure for 3D 
unilateral fixtures, we need to make use of kinematic results on 
immobility of 2D parts presented in this section. We give 
necessary and sufficient conditions for fixturing a 2D part with 
2 jaws. These conditions will be repeatedly called with 
projections of the 3D sheet metal part on to pairs of orthogonal 
planes as 2D parts. 

We begin by defining v-grips in the plane. Given a planar 
projection of the part, we want to find and rank all available v-
grips. We assume that the projection of the part onto the 
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horizontal plane is rigid and can be defined by a polygonal 
boundary and polygonal holes. All contacts are frictionless. 
We initially assume both jaws have zero radii. 

Let va and vb be two concave vertices. The unordered pair 
<va, vb> is an expanding or contracting v-grip if jaws placed at 
these vertices will provide frictionless form-closure of the part. 
A v-grip is expanding if the jaws move away from each other 
and contracting if the jaws move towards each other to acquire 
the part. 

Input: Vertices of polygons representing part boundary and 
holes, in counter-clockwise order, and jaw radius. 

Output: A list (possibly empty) of all v-grips sorted by 
quality measure. 

B. Test for Form-closure 
The key to our algorithm is a constant-time test for form-

closure. We consider a pair of concave vertices <va, vb>. Let 
vx-1 and vx+1 be the vertices adjacent to vx. Let ux-1 be the unit 
vector from vx to vx-1, and ux+1 the unit vector from vx to vx+1. 
Let uxy be the unit vector from vx to vy. 

We construct normals at va, to both edges bordering va. This 
splits the plane into 4 regions (see figure 2). We number these 
I to IV. We do a similar construction with vb. 

 
Fig. 2. Two normals at a concave vertex partition the plane into 4 regions that 
define v-grips. 
 

Theorem 1: <va, vb> is an expanding v-grip if and only if va 

lies strictly in region I of vertex vb, and vb lies strictly in region 
I of vertex va. 

Theorem 2: <va, vb> is a contracting v-grip if and only if 
either: 

(1) va lies in region IV of vertex vb, and vb lies in region IV 
of vertex va, at least one of them strictly, (or) 

(2) ux.uy = -1 and ux.uab = uy.uab = 0 for at least one set of 
values of (x, y) = (a±1, b±1), and the jaws approach from 
outside the region between the parallel lines (see figure 3). 

C. Proof of Theorem 1 
Let P represent part perimeter parameterized by arclength s. 

Let sa and sb represent the positions of the jaws on P. Following 
[1] and [22], we express the distance between the jaws as 

ℜ→× PP:σ , a function of (sa, sb). The σ(sa, sb) surface is 
positive except when it touches the plane along the diagonal 
sa=sb (where it is 0), as these points represent coincident jaws. 
The sa-sb plane can be partitioned into rectangles whose sides 
are equal in length to the sides of the polygon. In each of these 
regions, the distance function is defined by a quadratic 
expression. 

 
Fig. 3. Typical example of v-grips where the second condition in Theorem 2 
holds. 
 

To prove Theorem 1, we prove that the following 4 
statements are equivalent: 

A: va and vb are concave and they each lie in the other’s 
region I. 

B: σ(sa, vb) is a strict local maximum at sa=va, and σ(va, sb) 
is a strict local maximum at sb=vb. 

C: σ(sa,sb) is a strict local maximum at sa=va and sb=vb. 
D: <va, vb> is an expanding v-grip for the part. 
B⇔A: This is clearly seen since the shortest distance from a 

point to a line is along the normal to the line (figure 4). 

 
Fig. 4. jbva is a strict local maximum (a) or a local minimum (b) for sa in va-1va. 
 

C⇒B follows from the definitions. 
B⇒C: Assume B. Since B⇔A, A is true. 
Therefore, vb lies strictly in region I of va. Hence, there 

exists a small region, say a circle of radius ε (a small length) 
around vb, which also lies completely in region I (figure 5). 

 
Fig. 5. σ(va,sb) is a local maximum of σ(sa,sb) for any sb in the neighborhood of 
vb. 
 

Consider any v’a in P, within ε from va, and v’b in P within 
ε from vb. Since va is in vb’s region I, σ(va, sb) is a local 
maximum at sb=vb. Therefore, vavb > vav’b. Since v’b also lies 
in va’s region I, vav’b > v’av’b. Thus, vavb > v’av’b. Therefore, 
C⇔B. 

C⇒D: Assume C is true and D is false. Since A⇔C, A is 
true. Since σ(va, vb) is a local maximum and D is false, the part 
is not in form-closure. This means that there exists a 
neighboring point in C-space that does not result in collision. 
In other words, the part can be displaced infinitesimally. Since 
C is true, at least one jaw must break contact with the part in 
the new configuration. 

va 

vb 

ε 

va 

vb 

va va va-1 va-1 

jb 
jb 

(a) (b) 

va 

I 

II III 

IV 



Submitted to IEEE Transactions on Robotics and Automation – Special issue on Workholding and Fixturing. 5 

If both jaws break contact, we can move the part along the 
directions ±uab till contact occurs as both vertices are concave 
and hence have an angle of less than 180o

 from the direction of 
the jaws’ approach. As a result, movement in at least one of 
two opposite directions results in contact. From this position, 
we can slide the part along the contact edge moving the vertex 
towards the jaw, till contact occurs with the other jaw or till 
the vertex is at the jaw. Since vavb is a strict maximum, the 
vertex has to be reached. However, since A is true, uab is at 
acute angles to ua-1 and ua+1, and uba is at acute angles to ub-1 

and ub+1. Therefore, when the vertex reaches the jaw, the other 
jaw would collide with the interior of the part: thus the part 
cannot move and is in form-closure. 

 
Fig. 6. The edges are at acute angles to vavb. 

D⇒C: Assume D is true and C is false. Then, σ(va, vb) is 
not a local maximum. Either it is a strict local minimum or it is 
not a strict local extremum. If vavb is a strict local minimum it 
can be shown that <va, vb> is a contracting v-grip, and hence D 
cannot be true. If vavb is not a strict extremum, then by the 
continuity of s, the part can move along the contour {(s1, s2) | 
σ(s1, s2) = σ(va, vb)}. This contradicts D. Therefore C is true. 

Thus, D⇔C, completing the proof for theorem 1. We can 
prove Theorem 2 similarly. The second condition in Theorem 
2 arises due to the limiting case where vertex lies on the 
boundary of region IV. 

Corollary 1: If the second condition in theorem 2 is 
ignored, and all the inequalities are made strict inequalities in 
theorem 2, theorems 1 and 2 give necessary and sufficient 
conditions for first order immobility. 

This can be proved from 1) first order form-closure is a 
subset of immobility, and 2) center of rotation analysis. For the 
center of rotation analysis, all the configurations excluded by 
making the conditions in theorem 2 stricter can be seen to be 
second order immobility as they give rise to coincident 
normals that cannot cause first order immobility, but cause 
immobility. Also, the remaining configurations are first order 
because the normals cannot coincide and cannot be concurrent 
(as 2 of the 4 points of intersection are at distinct vertices), and 
all centers of rotation are excluded as we know the part is 
immobile. 

Corollary 2: For a non-point jaw with a convex shape, the 
v-grips can be generated by applying the theorems to a 
transformed part generated by doing a Minkowski sum of the 
part’s shape with the jaws’ shape. 

This can be seen as the transformed part gives the locations 
of the jaws’ center that result in collision with the part, and 
thus also the shape of the cross sections of the C-obstacles. 
The curved edges generated by doing the sum can be ignored 
as they correspond to contact with convex vertices, which we 
seek to avoid. 

D. 2D Quality Metric 
We can compare v-grips based on how much the part can 

rotate when the jaws are relaxed infinitesimally. We define a 
measure of the sensitivity of the grip to such infinitesimal 
disturbances. Given a v-grip <va, vb>, let l = σ(va, vb). If the 
distance between the jaws changes by ∆l, let ∆φ be the 
maximum angle the part can rotate. Clearly, ∆φ depends on ∆l. 
We consider the ratio ∆φ/∆l, which for infinitesimal changes 
becomes dφ/dl. We rank parts based on |dφ/dl|: smaller ratios 
correspond to more robust grips. It can be shown that the 
maximum |dφ/dl| occurs when both jaws are in contact with the 
part with one of them at a vertex. 

To derive an expression for |dφ/dl|, we consider one edge at 
an angle φ to vavb. Using the sine rule, 

(l- ∆l)/(sin φ) = l / (sin(φ + ∆φ)) 
If we neglect second order terms, this simplifies to: 

( ) lldld
l

/tan/lim/
0

φφφ =∆∆=
→∆

 

 

∆θ 
l 

l-∆l 

φ 
v a v b 

 
Fig. 7. Deriving an expression for |dφ/dl|. 
 

For all 4 edges, we choose the one with φ closest to 90o, 
which yields the maximum possible change in orientation. For 
this value of φ, the metric will be |tan(φ)/l|. We use this metric 
to rank v-grips. 

V. KINEMATIC ANALYSIS: 3D VG-GRIPS 

A. Problem Definition 
In the first phase of our two-phase design procedure, we 

assume the part is rigid and proceed to design and determine 
the locations of 2 jaws to fixture the 3D sheet metal part. We 
will make use of the results on fixturing 2D parts for this. 

The primary jaws are designed to engage the part at its 
concavities such that the intersections of the frustums in the 
jaws are seated in the plane of the sheet metal part. For the part 
to contact the jaws on the plane of intersection of its frustums, 
the local radius of curvature of the part needs to be large 
compared to the jaws’ radius. If this is not true, contact does 
not occur on the plane, but instead, on the surfaces of the 
individual cones. Therefore, at such candidate jaw locations, 
we assume local planarity of the part and linearity of the edges 
for first order analysis of immobility, since only local shape is 
of importance. We construct tangents at the points of contact. 
We call these tangents the part’s “virtual edges”, and the point 
of intersection of the edges, the corresponding “virtual vertex”. 
If we approximate the part locally using the virtual edges and 
vertices, immobility of the approximation will be equivalent to 
the immobility of the original part up to the first order.  The 
jaws’ positions are described in terms of the virtual vertices. 
Virtual vertices are concave by definition. Given 2 virtual 
vertices va and vb, we call the unordered pair <va, vb> a vg-grip 

va 
vb 

radius: vavb 
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if the part is held in form-closure when the jaws’ grooves 
engage the part at the edges defining va and vb. 

The FEM portion of the input such as the mesh and the 
part’s material properties are irrelevant for this phase. This 
phase can give an output of a list (possibly empty) of vg-grips 
for the part, with bounds on jaw cone angles for each listed vg-
grip, sorted by the quality metric described below. 

B. Candidate Jaw Locations 
As stated above, while contact occurs near vertices for a part 

defined by linear edges, parts with curved edges have virtual 
vertices near which the jaws engage the part. Each virtual 
vertex corresponds to a unique candidate jaw location where a 
jaw may be located to engaging the part at the virtual edges 
corresponding to the vertex. Candidate jaw locations and 
corresponding virtual vertices are identified using the 
algorithm described below. 

The algorithm uses the fact that jaws contact the part at 2 
points only if there is a concave vertex between the points of 
contact or if part of the edge contained between the points of 
contact is concave and has higher curvature than the jaw. 

Step 1: Set list L as list of the part’s concave vertices. Set 
list Lc to an empty list. 

Step 2: Traverse each edge of the part. For each edge, 
numerically identify concave stretches with radius of 
curvature less than jaw radius, and add the end points (with 
higher arc-length) to L.  

Step 3: For each point i in L, traverse the edge starting from 
the point i in the direction of increasing arc-length, 
constructing discs tangential the edge till the disc touches 
the part at 2 points or the entire edge is traversed back up to 
the position of the current element of L. 

If the entire edge was not traversed and if the edge at the 
second point of contact is in plane with the disc, add 
the center to Lc. Replace the current element of L by 
the point of intersection of the tangents. 

Else, delete the current element of L. 

Step 4: Traverse Lc for duplicates and eliminate them and 
the corresponding elements in L. 

Step 5: Return the list l as the list of candidate locations and 
Lc as the list of centers. 

 

C. Sufficient Test 
As shown in Figure 8, we define a coordinate system such 

that the direction of the x axis is taken from va to vb. In a 
projection perpendicular to the x axis, the z axis is defined as 
the bisector of the acute angle between the projections of jaw 
axes. When jaw axes projections are parallel, the z axis is 
defined at 45o to the jaws’ axes. The y axis is perpendicular to 
the x and z axes using the right hand rule. Let the points of 
contact have position vectors ra1, ra2, rb1 and rb2. Let the 
vectors aa and ab be the axes of the jaws with positive z 
components and the centers of the intersections of the cones be 
ca and cb. (The subscripts a and b denote the jaws at vertices va 

and vb.) We define qa1 as: ex×((ra1-va)-(ra1-va.ex)ex) = ex×(ra1-
va), and similarly qb1, qa2 and qb2. 

Theorem 3: Assuming that the part is rigid, immobility is 
achieved if all of the following are satisfied: 

(a) The projection of the part and jaws on the x-y plane is 
an expanding 2D v-grip. 

(b) The projection of the part and jaws on the x-z plane is 
an expanding 2D v-grip. 

(c) The angle between qa1 and the inward normal to at 
least one of the cones at ra1 is less than 90o, and the 
angle between -qa1 and at least one of the inward 
normals at ra1 is less than 90o. And similarly for qa2, 
qb1, qb2. 

 

z 

 
(a)                                      (b) 

Fig. 8. (a) The x axis is chosen along the line connecting the vertices va and vb. 
(b) In a projection perpendicular to the x axis, the z axis is chosen as the 
bisector of the acute angle between the jaws’ axes’ projections. 
 

D. Proof of Theorem 3 
The distance between the jaws is defined as the x 

component of the distance between the centers of the cones’ 
intersections. We will show that any small displacement of the 
part requires a decrease in distance between the jaws if one jaw 
is fixed and the other is allowed to translate. Hence, since the 
jaws are fixed, the part will be in form-closure. 

Consider any small displacement of the part. This can be 
denoted as the sum of 3 translations and 3 rotations (along and 
about the x, y and z axes). We show that as the part is subject 
to each of these components of displacement while keeping the 
distance between them at the local maximum of the possible 
distances, the distance between them decreases. 

From condition (c) in Theorem 3, any rotation of the part 
about the x axis should result in a decrease of distance between 
the jaws. This is because the vectors qxi, x=a, b; i=1, 2, give 
the direction of the instantaneous velocities of each contact. 
Hence, if a jaw stays in the same position, it collides with the 
part, i.e. it has to move either towards or away from the vertex. 
It cannot move towards the vertex because of the following 
reason: if we scale down the part and the jaw about the vertex, 
such that the distance between the scaled jaw and the vertex is 
equal to the distance between the vertex and the jaw after the 
rotation, the scaled jaw would collide with the part after an 
identical rotation (since the conditions are scale-independent). 
Since a smaller jaw would collide with the part in such a 
position, the original bigger jaw will also collide with the part, 
since the vertex and edges of the part do not change on scaling. 
Hence, each jaw is pushed away from the vertex. 

First order form-closure is robust in the sense that 
immobility is guaranteed allowing for small changes in part 

x 
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geometry. Since none of the axes are perpendicular to the 
planes of intersections of each jaw’s cones, conditions (a) and 
(b) of Theorem 3 ensure that the projections of the part on the 
x-y and x-z planes are in form-closure after an infinitesimal 
rotation of the part about the x axis. We note that the distance 
between the vertices does not change as a result of rotation 
about the x axis. Since the distance between the vertices 
remains the same due to such a rotation and since the edges are 
linear and the vertices concave, it follows from Theorem 1 that 
the distance between the jaws decreases. 

Condition (a) also implies that translation along the x or y 
axes, and rotation about the z axis will result in further 
increase in the distance between the jaws. Condition (b) 
implies that any further translation along x or z axes and 
rotation about the y axis leads to another increase in distance. 
Thus, any displacement of the part results in a displacement of 
the jaws, hence proving that form-closure is achieved if the 
jaws are fixed. 

E. Bounds on Cone Angles 
Conditions (a) and (b) in theorem 3 are independent of the 

cone shapes for a given jaw radius. Hence, bounds on the cone 
angles that satisfy Theorem 3 are determined only by the 
condition (c). In the worst case, ±qxi, x=a, b, are tangential to 
the cones for at least 1 value of i=1, 2. Hence, if we project 
±qxi to the plane containing rxi and ax, the acute angles 
between the projections and ±ax give a candidate lower bound 
for the half cone angle for the upper cone. For instance, the 
lower bound is chosen as the higher of candidate bounds 
obtained from qx1 and qx2. For the 3D sheet metal part example 
shown in figure 1, the bounds for the half cone angles for the 4 
cones were 18o, 21o, 18o, and 26o. 

F. 3D Quality Metric 
We propose as an intuitive fixture quality metric the 

maximum change in orientation along any of the coordinate 
axes due to an infinitesimal relaxation of the jaws. This is 
based on the metric described in section IV for 2D v-grips. It is 
quantified by |dθ/dl|, l being the distance between the jaws, 
and θ the orientation. For the y and z components, this reduces 
to the metric obtained from the 2D v-grip metrics. For rotation 
about the x axis, this is not the case. We find an approximate 
value for |dθ/dl| by assuming that the contacts lie on the 
vertices of the v-groove in the projection of the jaws on a plane 
perpendicular the plane containing the contacts and the edges. 
Since the contacts on the jaw projection hold the jaw in a v-
grip, we know that distance between the contacts increases by 
qa∆θ, where qa is the quality metric for this v-grip. Hence, if 
the original distance between the centers of jaw a and the 
vertex is da, the distance after rotation is da(1+ qa∆θ/|ra1-ra2|). 
Thus, the metric for rotation about the x axis simplifies to  
(|ra1-ra2|/da qa + |rb1-rb2|/db qb). The quality of the vg-grip is the 
maximum of the metrics for all 3 rotations. 

VI. PART DEFORMATION 

Once the first phase is completed, we get a list of pairs of 
jaws that can fixture the rigid sheet metal part. For each of 

these, we introduce a deformation model that is the second 
phase of our analysis. We use the deformation model to add 
more jaws (if necessary) to reduce deformations to within the 
tolerance using the algorithm described in section VII. 

To model part deformation we use FEM, based on the given 
FEM mesh.  We have used quadrilateral elements in our 
implementation, but this can be generalized to other meshes 
too. Rigid jaws constrain the positions of the nodes on which 
they lie.  By the nature of the expanding vg-grip, the forces 
exerted by each jaw on the part are directed away from each 
other. All jaws added in the second phase will also not create 
compressive forces that cause buckling. Also, since any jaw 
that is added to the fixture can constrain the part only if the 
jaw does not lose contact with the part as it deforms, all new 
jaws are conical jaws placed at part edges or surface support 
jaws away from the edges where deflection is towards the 
sheet metal part’s interior direction on which the unilateral 
fixture lies. 

VII. ALGORITHM 

Based on sections IV through VI, we describe below our 
two-phase unilateral fixture design algorithm for sheet metal 
parts: 

(Phase I: Kinematic analysis) 
Step 1: Set list of fixtures Lf to be empty. 
Step 2: Generate a list of all virtual vertices. Store this as 

(v1, v2, v3, …) 
Step 3: For each unordered pair of vertices <vi, vj>, apply 

Theorem 1 to determine if <vi, vj> is a vg-grip. 
(Phase II: Deformation model) 
Step 4: For each vg-grip <vi, vj>, with primary jaws at vi and 

vj: 
i.Define E = the set of candidate edge nodes and F = 

set of candidate face nodes as all mesh nodes of the 
part’s perimeter and interior respectively. 

ii.Traverse E and remove nodes j if either: 
a. Jaw at j and primary jaws collide, or 
b. Jaw at j and any primary jaw cause the part to 

buckle (the pair exerts a compressive force). 
iii.With the current set of jaws, compute the deformation 

of the part at each node. 
iv.Determine the maximum deformation d. 
v.If this d < δ, add the current fixture to Lf and go to 

step 5. 
vi.If E and F are empty, proceed to next vg-grip from 

step i. 
vii.Let maximum deformation for all jaws in E and F 

occurs at node i. If i is an edge node, place a conical 
jaw at the candidate node. Else, if the deformation at i 
is towards the interior of the assembly, place a point 
contact at i. with maximum deformation normal to the 
part (call it node i). 

viii.If i is in E, then from E remove node i and all nodes j 
such that either: 
a. Jaws at i and j collide, or 
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b. Jaws at i and j cause the part to buckle (they exert a 
compressive force). 

Else, remove i from F. 
ix.Go to step iv. 

Step 5: For each fixture, compute bounds on cone angles 
and store them in Lf. 

Step 6: Return Lf, the list of acceptable fixtures and bounds 
on cone angles. 

The algorithm generates a natural actuation order. However, 
this need not be the best order in which to actuate each jaw. 

VIII. COMPLEXITY AND IMPLEMENTATION 

Recall that the polygonal part is described by n vertices. For 
the polygonal part, we find k ≤ n concave vertices flanked by 
straight edges in O(n) time. We then consider each pair of 
concave vertices, checking the conditions in Theorems 1 and 2 
in constant time. The result is a set of up to k2 v-grips. Thus, all 
v-grips are  found in O(n + k2) time. Computing the quality 
metric takes constant time for each v-grip and sorting requires 
O(k2 log k) time as there are at most k2 v-grips. We 
implemented the algorithm in Visual BASIC. 

On a Pentium II 266 MHz PC running on Windows NT 4.0, 
the program execution time was under 0.02 seconds for a part 
with 30 vertices and 10 concave vertices, while interpreting. A 
Java implementation is available for online testing at 
http://alpha.ieor.berkeley.edu/vgrip. 

For a sheet metal part, given n virtual vertices, there are at 
most O(n2) pairs of candidate jaw locations. For each pair, the 
algorithm is applied in constant time. Hence phase I runs in 
O(n2) time. 

In phase II, if the FEM mesh has m nodes, at most m 
secondary jaws are needed as deformations are at maxima at 
the mesh nodes. Hence, for r jaws, the algorithm runs in 
O(m3r) time for each vg-grip. 

Figure 9 shows an example of the first 2 iterations (figures 
9(a) and 9(b)) for an example part. For a tolerance of 1mm, the 
fixture is shown in figure 9(c). All 4 FEM iterations together 
required 1.3 seconds. More examples are shown in figure 9(d). 

IX. EXPERIMENTS 

To test the precision in orientation of parts loaded on the 
fixtures, we consider two physical parts: a glue gun held by 2 
jaws and an automotive part held by 3 jaws. We built 2 
fixtures to hold these parts and conducted repeated trials and 
observed the orientation of the loaded part. Since the jaws 
engage the part at precise features of the part, the orientation is 
more significant than the position in terms of contribution to 
errors in the positions of datum points. 

A. Glue gun 
The first set of experiments was for a plastic, one foot long, 

glue gun part held by 2 jaws with radii 0.5 inches each. The 
jaws moved at a speed of 0.01 inches/second. The part was 
mounted on a set of bearings on a Plexiglas surface. Three 
calibrated video cameras and a laser beam mounted on the part 
were used to record the positions and orientations of the part 

for the fixtures shown in Figure 10(a) and (b), before and after 
the grip. The jaws moved at a speed of 0.1 inches/second. One 
hundred trials at random initial orientations were carried out 
for each fixture. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9. Deformed and undeformed meshes for first 2 iterations of Phase II. 
Final fixture (c) required 4 iterations. More example parts and the 
corresponding jaw locations and meshes are shown in (d). 
 

Figure 10(c) is a photograph of the apparatus used to test the 
v-grips and figure 10(d) shows a histogram of the orientation 
error distributions for the 2 v-grips. For the first, the error 
ranged from -0.22 to +0.09 degrees. The mean error magnitude 
was 0.083 degrees and the standard deviation was 0.083 
degrees too. For the second v-grip, the error ranged from -0.20 
to +0.09 degrees. The mean magnitude and the standard 
deviation were 0.08 and 0.07 degrees respectively. 
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There was a high correlation between the signs 
(positive/negative) of starting and ending orientations for the 
first v-grip, and a lesser correlation for the second. 

The main sources of error identified are the friction between 
the part and the jaws and the rounded edges of the part (non-
prismatic part) that result in the jaws lifting the part off the 
plane. 

 
(a)              (b) 

 
(c) 

0

5

10

15

20

25

30

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Error (degrees)

F
re

qu
en

cy
   

  

 
(d) 

Fig. 10. Using the apparatus shown in (c), trials with v-grips (a) and (b) 
yielded the error distributions for shown in (d) with sampling intervals of 
0.03o. The continuous line corresponds to grip (a) and the broken line is grip 
(b). 

B. Unilateral Fixtures 
We constructed a prototype of a unilateral fixture for an 

automotive part. The prototype consisted of two parts: the 
loading jig and the fixture. The loading jig consists of supports 
on which the part can be placed prior to actuation of the 
fixture’s jaws. Once the fixture’s jaws are actuated to grip the 
part and the part is acquired, the fixture is separated from the 
loading jig. 

The prototype was constructed for an automotive part made 
of chrome-plated steel and about 8” long. The prototype 
makes use of 2 Plexiglas base-plates, one each for the loading 
jig and the fixture. The loading jig consisted of 3 point-
contacts and the fixture consisted of one fixed jaw and 2 jaws 
actuated by solenoids. The jaws move along dovetail tracks 
when actuated. The base-plate of the fixture can be mounted 
on top of the base-plate for the loading jig and can be lifted off 
after the jaws are actuated. To measure the orientation of the 
part, a laser beam is reflected off a mirror mounted on the part 
and position of the reflected beam on a reflected beam is 
recorded. In order to minimize the sensitivity of the 
observations to the part’s positions and maximize sensitivity 
to orientations, the part and the surface where the beam is 
observed need to be made as close to perpendicular to the 
reflected beam as possible. 

Fifty trials each were carried out with the prototype for 
simultaneous actuations of the movable jaws and both 
sequences of actuation of the jaws one at a time. Error in 
orientation was determined using laser beams reflected by the 
part. Figure 11(a) and (b) show the prototype and figure 11(c) 
shows the resulting histograms of the orientation error. 

Actuating the jaw A in figure 11 before jaw B resulted in 
higher precision. However, the actuation force required was 
much more than that when both were actuated simultaneously. 
Also, the initial range of allowable orientations (or capture 
region) was higher for simultaneous actuation. 3 outliers for 
actuating jaw B first and 2 for actuating jaw A first have been 
eliminated from the histogram since the part was not within 
the capture region resulting in the part not being acquired 
properly. 

X. EXTENSIONS AND FUTURE WORK 

Future work will consist of finding a locator strategy for 
mating parts during welding. Sheet metal parts need to be 
positioned with appropriate gaps for the welding process and 
the deformation due to warping after welding needs to be 
minimized. We will also look into using multiple primary 
locators so as to not restrict jaw locations too much. We will 
also consider other types of modular jaws. In parallel, we will 
also look at other aspects of design like designing the part for 
manufacturability, especially in terms of placing precise 
locator holes in the part that aid in fixturing it. 

We are also looking into using the fixture as a curing fixture 
to bond two sheet metal parts using adhesives along the 
perimeter. This requires control of the gap between the 
fixtures. We are also working on algorithms for designing 
loading jigs for the fixtures. 
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Fig. 11. Unilateral fixture prototype shown in (a) and (b) has 2 CE contacts A 
and B actuated by solenoids D and E. C is a SE contact. F, G and H are LS 
contacts. Trials with the prototype yielded the error distributions for shown in 
(c) with sampling intervals of 0.1o. The jaws at the left and at the right are the 
CE contacts. The continuous line corresponds to simultaneous actuation, the 
dashed line corresponds to actuating the right jaw first, and the dotted line 
corresponds to activating the right jaw first. 
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