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In this paper we study the network design arc set with
variable upper bounds. This set appears as a common
substructure of many network design problems and is
a relaxation of several fundamental mixed-integer sets
studied earlier independently. In particular, the splittable
flow arc set, the unsplittable flow arc set, the single node
fixed-charge flow set, and the binary knapsack set are
facial restrictions of the network design arc set with vari-
able upper bounds. Here we describe families of strong
valid inequalities that cut off all fractional extreme points
of the continuous relaxation of the network design arc
set with variable upper bounds. Interestingly, some of
these inequalities are also new even for the aforemen-
tioned restrictions studied earlier. © 2007 Wiley Periodicals,
Inc. NETWORKS, Vol. 50(1), 17–28 2007
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1. INTRODUCTION

We study the network design arc set with variable upper
bounds defined as

P =
{

x ∈ RN+, y ∈ Z+, z ∈ {0, 1}N :

∑
i∈N

aixi ≤ a0 + y, x ≤ z

}
,

where ai > 0 for i ∈ N and a0 ≥ 0. This set appears as a
common substructure of many network design problems.

For a multicommodity network design problem with either
fixed charges or combinatorial restrictions, xi denotes the
fraction of commodity i with demand ai flowing along an
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arc with capacity a0 + y. The binary variables zi’s are used
for modeling combinatorial restrictions on the paths, such as
cardinality restrictions, disjointness, etc., as well as applica-
ble fixed charges. Alternatively, this model arises also when
a0 + y is used to model a hub capacity with flow and fixed-
charge variables (xi, zi) for each incoming arc i ∈ N into the
hub. We will refer to the following inequality as the capacity
constraint: ∑

i∈N

aixi ≤ a0 + y. (1)

An interesting feature of the set P is that it is a common
relaxation of four fundamental sets that received significant
attention in the literature. As such, P links these four sets that
have been studied independently from each other. The first
set is the splittable flow arc set [18]

Q =
{

x ∈ RN+, y ∈ Z+ :
∑
i∈N

aixi ≤ a0 + y, x ≤ 1

}
,

which is obtained from P by restricting z = 1. The second
relevant set is the unsplittable flow arc set [10]

R =
{

y ∈ Z+, z ∈ {0, 1}N :
∑
i∈N

aizi ≤ a0 + y

}
,

which is obtained from P by restricting x = z. The third set
of interest is the single node fixed-charge flow set [22]

T =
{

x ∈ RN+, z ∈ {0, 1}N :
∑
i∈N

aixi ≤ a0, x ≤ z

}
,

which is obtained from P by restricting y = 0. Finally, the
fourth set is the binary knapsack set [7, 15, 25]

K =
{

z ∈ {0, 1}N :
∑
i∈N

aizi ≤ a0

}
,

which is obtained from P by restricting x = z and y = 0.
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The set Q is the simplest one among these four sets and
an explicit linear description of its convex hull description is
known (see Section 1.1). Optimization over the other sets is
NP-hard and only partial descriptions of the corresponding
convex hulls are known.

Note that the convex hulls of Q, R, T , and K are faces
of the convex hull of P . Thus P has the characteristics of
all these four sets and one can obtain strong inequalities for
them from P . We shall observe in the later sections that the
seemingly unrelated inequalities given independently for Q,
R, T , and K are just special cases of the valid inequalities
for P when they are restricted to the appropriate faces of the
convex hull of P .

In the remainder of this section, we review some of the
basic results known for the related sets Q, R, T , and K so
that we can show the connections between the inequalities for
P and those known for the others. In Section 2, we describe
basic polyhedral properties of P . In Section 3, we give gener-
alizations of the flow cover inequalities forP and discuss their
strength as well as the fractional solutions cut off by them.
In Section 4, we describe strong valid inequalities obtained
through two consecutive applications of the mixed-integer
rounding procedure [20]. It turns out that these inequali-
ties are sufficient to cut off all fractional extreme points of
the continuous relaxation of P . Interestingly, some of the
strong inequalities obtained for P are also new even for the
aforementioned restrictions studied earlier.

Throughout, the convex hull and the continuous relaxation
of a set are denoted by conv(·) and relax(·), respectively. For
v ∈ RN , we define v(S) = ∑

i∈S vi for S ⊆ N . For a ∈ R,
we use (a)+ to denote max{a, 0}. We let â = (�a(N)−a0�)+
and n = |N |. We use ei to denote the ith unit vector, 0 and 1
to denote a vector of zeros and ones, respectively.

1.1. Splittable Flow Arc Set

The splittable flow arc set Q is the relaxation of a mul-
ticommodity flow design problem for a single arc of the
network. The residual capacity inequalities [6, 18]

∑
i∈S

ai(1 − xi) ≥ ρ(η − y), S ⊆ N , (2)

where η = �a(S)−a0� and ρ = a(S)−a0 −�a(S)−a0�, are
valid for Q. For the slightly special case, where a0 = 0,
Magnanti et al. [18] show that adding all residual capac-
ity inequalities to relax(Q) gives a complete description of
conv(Q). Atamtürk and Rajan [6] give a polynomial separa-
tion algorithm for (2). In particular, they show that for a point
(x, y) ∈ relax(Q)\Q, a violated residual capacity inequality
(2) is given by letting S = {i ∈ N : xi > y − �y�}. Although
stated in Ref. [6], a proof for convex hull description is not
presented for Q when a0 	= 0. For completeness, we show
below that the convex hull result for Q follows from Ref. [18].

Proposition 1. Adding the residual capacity inequalities
(2) to relax(Q) gives conv(Q).

Proof. Given Q, define the set

Q0 =
{

x ∈ RN+, x0 ∈ R+, y0 ∈ Z+ :

(�a0� − a0)x0 +
∑
i∈N

aixi ≤ y0, x ≤ 1, x0 ≤ 1

}
.

From Ref. [18] adding the residual capacity inequalities
to relax(Q0) gives conv(Q0). Now X = {(x, x0, y0) ∈
conv(Q0) : x0 = 1} is a face of conv(Q0), and therefore is
integral. This holds true after adding a lower bound y0 ≥ �a0�
on the only integer variable. Then projecting out variable x0

and defining y = y0−�a0� gives conv(Q). Observe that resid-
ual capacity inequality

∑
i∈S ai(1−xi)+(�ai�−a0)(1−x0) ≥

ρ0(η0 − y0) for Q0 with η0 = �a(S) + �a0� − a0� and
ρ0 = a(S) + �a0� − a0 − �a(S) + �a0� − a0� equals (2)
for x0 = 1 and y = y0 − �a0� since η0 = η + �a0� and
ρ0 = ρ. ■

1.2. Single Node Fixed-Charge Flow Set

The first polyhedral study of the single node fixed-charge
flow set T is due to Padberg et al. [22]. Let S ⊆ N be called a
cover if λ = a(S)− a0 > 0. For a cover S, the authors define
the flow cover inequality∑

i∈S

aixi +
∑
i∈S

(ai − λ)+(1 − zi) ≤ a0, (3)

which is facet-defining for conv(T ) if λ < ā = maxi∈S ai. In
the same paper they also show that the augmented flow cover
inequalities

∑
i∈S∪T

aixi +
∑
i∈S

(ai − λ)+(1 − zi)

≤ a0 +
∑
i∈T

(ā − λ)zi, (4)

where T ⊆ {i ∈ N\S : ai ≤ ā} define facets of conv(T )

under the same condition as well. Gu et al. [14] obtain gener-
alizations of (4) through sequence independent lifting of (3).
A complementary class of pack inequalities for T and their
lifting are studied in Refs. [1, 23]. Flow sets with integer
variable upper bounds are studied in Refs. [2, 9, 16].

1.3. Unsplittable Flow Arc Set

The unsplittable flow arc set R is studied first by Brock-
müller et al. [10]. For S ⊆ N they define the c-strong
inequalities ∑

i∈S

�ai� zi +
∑

i∈N\S

�ai� zi ≤ cS + y, (5)

where cS = ∑
i∈S �ai� − �a(S) − a0�. A set S ⊆ N is

called maximal c-strong if cS\{i} = cS for all i ∈ S and
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cS∪{i} = cS + 1 for all i ∈ N\S. Brockmüller et al. show
that a c-strong inequality (5) is facet-defining for conv(R) if
and only if S is maximal c-strong. Atamtürk and Rajan [6]
generalize (5) to k-split c-strong inequalities

∑
i∈S

�kai� zi +
∑

i∈N\S

�kai� zi ≤ ck
S + ky, (6)

where ck
S = ∑

i∈S �kai� − �ka(S) − ka0� for a positive
integer k. Other strong inequalities obtained by lifting
binary knapsack cover inequalities for R are described in
Refs. [6, 24].

1.4. Binary Knapsack Set

The binary knapsack set K is the most studied restriction
of P . The basic inequalities for K are the so-called cover
inequalities: A set S ⊆ N is called a cover if λ = a(S)−
b > 0. For a cover S, the cover inequality [7, 15, 25]

∑
i∈S

xi ≤ |S| − 1 (7)

is valid for K. Cover inequalities (7) from minimal covers
define facets of the restriction conv{x ∈ K : xi = 0, i ∈ N\S}
and they cut off all fractional extreme points of relax(K).
These inequalities typically need to be lifted in order to obtain
facet-defining inequalities for conv(K) [8,12,14,21,28,29].

2. BASIC PROPERTIES OF conv(P)

Note that optimizing a linear function over conv(P) is
NP-hard as the binary knapsack polytope conv(K) is a
face of it. We state basic polyhedral properties of conv(P).
Observe that if a(N) ≤ a0, then relax(P) is integral and
therefore conv(P) equals relax(P). This is because when the
capacity constraint (1) is redundant, the remaining constraints
defining P consist of only (variable) bound constraints.
Proofs of the following results in this section can be found in
Ref. [5].

Proposition 2. The polyhedron conv(P) is full-dimen-
sional.

Next are some simple results useful in characterizing the
extreme points of relax(P) and conv(P).

Proposition 3. Let (y, z, x) be an extreme point of relax(P).

1. If y > 0, then
∑

i∈N aixi = a0 + y, and xi, zi ∈ {0, 1} for
all i ∈ N;

2. If 1 > xk > 0 for some k ∈ N, then y = 0, xi, zi ∈ {0, 1}
for all i ∈ N\{k} and zk ∈ {xk , 1}.

Based on Proposition 3, we have the following character-
ization of the extreme points of relax(P).

Corollary 1. The point (y, z, x) is an extreme point of
relax(P) if and only if one of the following two cases holds:

1. There exist S ⊆ T ⊆ N and k ∈ S such that ak ≥ λ =
a(S) − a0 > 0 and

xi =
{

1 if i ∈ S\{k}
0 otherwise

,

zi =
{

1 if i ∈ T\{k}
0 otherwise

, y = 0, and

either xk = zk = 1−λ/ak, or xk = 1−λ/ak and zk = 1.
2. There exist S ⊆ T ⊆ N such that

xi =
{

1 if i ∈ S

0 otherwise
, zi =

{
1 if i ∈ T

0 otherwise
, y = (λ)+.

In Sections 3 and 4 we present valid inequalities that cut
off fractional extreme points of relax(P). We next identify
basic properties of the extreme points of conv(P).

Proposition 4. Let (y, z, x) be an extreme point of conv(P).
If 1 > xk > 0 for some k ∈ N, then

1.
∑

i∈N aixi = a0 + y, and xi ∈ {0, 1} for all i ∈ N\{k};
2. if y > 0, then either akxk < 1 or akxk > ak − 1.

Then we have the following characterization of the
extreme points of conv(P).

Corollary 2. The point (y, z, x) is an extreme point of
conv(P) if and only if one of the following three cases holds:

1. There exist S ⊆ T ⊆ N and k ∈ S such that λ =
a(S) − a0 > 0 and ak ≥ ρ, where ρ = λ − �λ�, and

xi =




1 if i ∈ S\{k}
1 − ρ/ak if i = k

0 otherwise

,

zi =
{

1 if i ∈ T

0 otherwise
, y = �λ� .

2. There exist S ⊆ T ⊆ N and k ∈ N\S such that λ > 0,
ak ≥ 1 − ρ and

xi =




1 if i ∈ S

(1 − ρ)/ak if i = k

0 otherwise

,

zi =
{

1 if i ∈ T ∪ {k}
0 otherwise

, y = �λ� .

3. There exist S ⊆ T ⊆ N such that

xi =
{

1 if i ∈ S

0 otherwise
, zi =

{
1 if i ∈ T

0 otherwise
, y = (�λ�)+.

We next present some basic results on the facets of
conv(P).
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Proposition 5. Trivial facets of conv(P).

1. Inequalities 0 ≤ xk, xk ≤ zk, zk ≤ 1 for all k ∈ N are
facet-defining for conv(P).

2. Inequality 0 ≤ y is facet-defining for conv(P) if and only
if a0 > 0.

3. The capacity inequality (1) is facet-defining for conv(P)

if and only if
i. a(N) − a0 ≥ max{1, maxi∈N ai} if a0 > 0,

ii. either |N | = 1 and a(N) = 1, or |N | > 1 and
a(N) > 1 if a0 = 0.

Proposition 6. For all nontrivial facet-defining inequalities
αx − βz − γ y ≤ δ of conv(P) the following statements are
true:

1. δ ≥ 0, β ≥ 0, and γ > 0;
2. βi + �ai�γ ≥ αi ≥ βi for all i ∈ N;
3. ∃i ∈ N such that αi > βi;
4. a(T) > a0 for T = {i ∈ N : αi > 0}.

3. FLOW COVER INEQUALITIES

In this section we describe valid inequalities for P that are
based on flow the cover inequalities [22] given for the fixed-
charge flow set T . These inequalities are useful for cutting
off a subset of the fractional extreme points of relax(P).

Flow cover inequalities can be derived by applying the
mixed-integer rounding (MIR) procedure [20] to an appro-
priate relaxation of the set T . We next review the basic idea
behind the MIR inequalities.

Observation 1 ([27]). If x + y ≥ b is a valid inequality for
a mixed-integer set X ⊆ {(x, y) ∈ R+ × Z}, then the MIR
inequality x ≥ r(�b� − y), where r = b − �b� is also valid
for X.

3.1. Capacity Flow Cover Inequalities

We start with a simple application of the MIR procedure
that help us generalize the flow cover inequalities.

Observation 2. Consider a mixed-integer set

Y1 =
{

(x, y) ∈ R+ × ZS+ : x +
∑
i∈S

aiyi ≥ b

}
,

with b ≥ 0 and ai ≥ 0 for all i ∈ S. It is possible to strengthen
the inequality defining Y1 as follows. Let α ≥ max{b, ā}
and ā = maxi∈S ai. First, relax the inequality defining Y1 by
replacing all ai > b by α and divide the relaxed inequality
by α. Then, invoke Observation 1 by treating all yi with ai ≤ b
as continuous to obtain

x +
∑
i∈S

min{ai, b} yi ≥ b.

For S ⊆ N such that λ = a(S)−a0 > 0, relax the capacity
inequality as

a0 + y ≥
∑
i∈S

aixi =
∑
i∈S

ai[1 − (1 − zi) − (zi − xi)]

or equivalently

y +
∑
i∈S

ai(1 − zi) +
∑
i∈S

ai(zi − xi) ≥ λ. (8)

Then by Observation 2, the capacity flow cover inequality

min{1, λ}y +
∑
i∈S

min{ai, λ}(1 − zi)

+
∑
i∈S

ai(zi − xi) ≥ λ (9)

is valid for P . Inequality (9) can also be written as

∑
i∈S

aixi +
∑
i∈S

(ai − λ)+(1 − zi) ≤ a0 + min{1, λ}y. (10)

Remark 1. Observe that for the single node fixed-charge
flow set T , the capacity flow cover inequality (10) reduces to
the flow cover inequality (3) by letting y = 0.

We next identify the conditions under which the capacity
flow cover inequality (10) is facet-defining for conv(P). We
study the cases when a0 = 0 and a0 > 0 separately, as the
polyhedral structure of conv(P) depends on a0.

Proposition 7. Assume a0 > 0. The capacity flow cover
inequality (9) is facet-defining for conv(P) if and only if one
of the following three conditions holds: (i) λ < maxi∈S{ai},
(ii) λ < 1, or (iii) S = N.

Proof. Necessity. If λ ≥ maxi∈S{ai}, λ ≥ 1, and S 	= N ,
then inequality (9) becomes

∑
i∈S aixi ≤ a0 + y, which is

implied by the capacity inequality (1) and xi ≥ 0, i ∈ N\S.
Sufficiency. For a given S ⊆ N , we first write inequality (9)

in canonical form as follows:

min{1, λ}y +
∑

i∈S\S′
(ai − λ)zi −

∑
i∈S

aixi

≥
∑

i∈S\S′
ai − a0 − λ|S\S′|,

where S′ = {i ∈ S : ai ≤ λ}. Let F be the face induced by
inequality (9) and let αy + βz + γ x = δ be satisfied by all
points in F. We will show that any such equality is a multiple
of the inequality that induces the face by generating pairs of
points p′ = (y′, z′, x′), and p′′ = (y′′, z′′, x′′) and using the fact
that α(y′ − y′′) + β(z′ − z′′) + γ (x′ − x′′) = 0 if both points
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are in F. We first construct a point p1 = (y1, z1, x1) ∈ P ∩ F,
where

y1 = 0, z1
i =

{
1 if i ∈ S

0 otherwise
,

x1
i =

{
1 − λ

a(S)
if i ∈ S

0 otherwise
.

Since a0, λ > 0 by assumption, a(S) > λ > 0, and therefore
1 > x1

k > 0 for all k ∈ S.
Let sk = (0, 0, (1/ak)ek). Since 1 > x1

k > 0, there exists
a small enough ε > 0, such that p1 + εsk − εsj ∈ F for all
j, k ∈ S. Therefore, γk = −ak σ̄ for all k ∈ S for some fixed
constant σ̄ > 0.

Next, for all k ∈ S\S′, we construct a point qk =
(yk , zk , xk), where

yk = 0, zk
i =

{
1 if i ∈ S\k

0 otherwise
, xk

i =
{

1 if i ∈ S\k

0 otherwise
.

Using p1, qk ∈ F, we see that βk + (1 − λ/a(S))γk −∑
i∈S\{k}(λ/a(S))γi = 0. Substituting γk = −ak σ̄ for all

k ∈ S and simplifying the equation gives βk = (ak −λ)σ̄ for
all k ∈ S\S′ as desired.

Next, for all k ∈ S′ we construct a point qk = (yk , zk , xk),
where

yk = 0, zk
i =

{
1 if i ∈ S\k

0 otherwise
,

xk
i =

{
1 − λ−ak

a(S)−ak
if i ∈ S\k

0 otherwise
.

Note that a(S\{k}) ≥ λ − ak ≥ 0 for k ∈ S′. Since γ x = λ

for both qk , p1 ∈ F, we have βk = 0 for all k ∈ S′.
Finally, we construct a point p2 = (y2, z2, x2) ∈ F, where

y2 = 1, z2
i =

{
1 if i ∈ S

0 otherwise
,

x2
i =

{
1 − λ

a(S)
+ min{1,λ}

a(S)
if i ∈ S

0 otherwise
.

Using p1, p2 ∈ F, we conclude that α = min{1, λ}σ̄ as
desired.

If S 	= S′, then for all k ∈ S\S′ the slack of the capacity
inequality (1) for point qk is s = ao + y − ∑

i∈N aixi =
ak −λ > 0. If, on the other hand, S = S′, then by assumption,
we have 1 > λ, and for p2 (1) has a slack of s = 1−λ. In either
case, we have a point p ∈ P with slack and we can perturb it
to obtain points p + t1

i , p + t2
i ∈ F, where t1

i = (0, 1, 0) and
t2
i = (0, 1, (s/ai)ei), to show βi = γi = 0 for all i 	∈ S.

Using p1, for instance, we also have δ = ∑
i∈S\S′ ai −a0 −

λ|S\S′|. We have therefore shown that inequality αy + βz +

γ x = δ is a multiple of the original inequality and the points
defined earlier are affinely independent. As (0, 1, 0) ∈ P\F,
F is a maximal proper face of conv(P). ■

Therefore, when a0 > 0 the capacity flow cover inequality
(9) is facet-defining under mild conditions. When a0 = 0,
however, inequality (9) defines a facet only when it reduces
to the capacity inequality (1) or to the surrogate variable upper
bound inequality (11).

Proposition 8. Assume a0 = 0. The capacity flow cover
inequality (9) is facet-defining for conv(P) if and only if
one of the following three conditions holds: (i) |S| = 1 and
a(S) < 1, (ii) S = N and a(S) > 1, or (iii) |N | = 1 and
a(S) = 1.

Proof. Necessity. As a0 = 0 we have λ = a(S). If
a(S) ≤ 1 and |S| > 1, inequality (9) becomes

∑
i∈S aixi ≤

a(S)y, which is implied by individual inequalities ai(xi−y) ≤
0, i ∈ S. If a(S) ≥ 1 and S 	= N , inequality (9) is implied by
the capacity inequality (1) and xi ≥ 0, i ∈ N\S.

Sufficiency. In the first case, inequality (9) reduces to
xk ≤ y, k ∈ N . The following affinely independent points
are clearly on the face: (0, 0, 0); (0, ei, 0) for i ∈ N ; (1, 1, ek);
(1, 1, εei + ek) for i ∈ N\{k}, where 0 < ε ≤ 1 − ak . In the
other cases, inequality (9) is the capacity inequality (1) and
the result follows from Proposition 5. ■

Corollary 3. If a0 = 0 and |N | > 1, then the surrogate
variable upper bound inequality

xi ≤ y (11)

is facet-defining for conv(P) if and only if ai < 1.

We next identify the fractional extreme points of relax(P)

that can be cut off using a capacity flow cover inequality.

Proposition 9. Every fractional extreme point (x, y, z) of
relax(P) with y < 1 is cut off by a capacity flow cover
inequality (9).

Proof. Let p = (x, y, z) be a fractional extreme point of
relax(P). By Corollary 1, if y = 0, there exist S ⊆ N and
k ∈ S such that ak > λ > 0. Then inequality (9) with such S
is violated by p as

∑
i∈S

aixi +
∑
i∈S

(ai − λ)+(1 − zi)

= a0 + (ak − λ)λ/ak > a0 = a0 + min{1, λ}y.

On the other hand, if y > 0, then there exist S ⊆ N such
that y = λ 	∈ Z. If λ < 1, then inequality (9) with such S is
violated by p as

∑
i∈S

aixi +
∑
i∈S

(ai − λ)+(1 − zi)

= a0 + λ > a0 + λ2 = a0 + min{1, λ}y.

■
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3.2. Lifting with Integer Capacity Variable

We next describe valid inequalities obtained by first fixing
the value of the y variable, and then lifting the associated basic
flow cover inequality. If the y variable is fixed to v ∈ Z+, then
the resulting lifted inequality has the form

∑
i∈S

aixi +
∑
i∈S

(ai − r)+(1 − zi) ≤ a0 + v +α(y − v), (12)

where S ⊆ N and r = a(S) − v − a0 > 0.

Proposition 10. Let S ⊆ N be such that r = a(S)−v−a0 >

0 for v ∈ Z+. Then the lifted capacity flow cover inequality
(12) is valid for P if and only if

1. −
(−1) ≤ α if v = 0;
2. −
(−1) ≤ α ≤ 
(1) if v > 0, where 
 is defined as

in (13).

Moreover, (12) defines a facet of conv(P) if α equals one of
its bounds and r < maxi∈S ai.

Proof. Inequality (12) is the flow cover inequality (3)
for the restriction P(v) = {(x, y, z) ∈ P : y = v} of P and
it is valid for P(v) for any α. Then, as shown for lifting with
integer variables in Ref. [26], (12) is valid for P if and only
if α ≤ α ≤ α, where

α = max

{∑
i∈S aixi + ∑

i∈S(ai − r)+(1 − zi) − a0 − v

y − v

: (x, y, z) ∈ P , y > v

}

and

α = min

{
a0 + v − ∑

i∈S aixi − ∑
i∈S(ai − r)+(1 − zi)

v − y

: (x, y, z) ∈ P , y < v

}
,

with α = ∞ if v = 0.
Without loss of generality, suppose S = {1, 2, . . . , |S|}

with a1 ≥ a2 ≥ · · · ≥ a|S|. Let p = max{i ∈ S : ai > λ},
Ai = ∑i

k=1 ak for i ∈ {1, 2, . . . , p}, and A0 = 0. It is shown
in Ref. [14] that the lifting function


(a) = min

{
a0 + v −

∑
i∈S

aixi

+
∑
i∈S

(ai − r)+(1 − zi) : (x, y, z) ∈ P(v − a)

}

can be stated as


(a) =




max{−r, a} if a ≤ 0,

ir if Ai ≤ a ≤ Ai+1 − r,

ir + (a − Ai) if Ai − r ≤ a ≤ Ai,

pr + (a − Ap) if Ap − r ≤ a0 + v,

+∞ if a > a0 + v,

(13)

where i ∈ {0, 1, . . . , p − 1} and that 
 is superadditive on
[0, a0 + v] and (−∞, 0], separately.

Then for v > 0 we have α = mina∈Z,a>0

(a)

a = 
(1),
where the last equation follows from superadditivity of 


over [0, a0 + v]. Similarly, α = − mina∈Z,a<0

(a)

a =
−
(−1). Finally, if r < maxi∈S ai, inequality (12) is facet-
defining for conv(P(v)) and in addition if α ∈ {α, α} <

∞, the lifting is exact; hence, (12) defines a facet for
conv(P). ■

Note that −
(−1) = min{1, r}. Therefore, if we let v =
0, then∑

i∈S

aixi +
∑
i∈S

(ai − r)+(1 − zi) ≤ a0 + min{1, r}y (14)

is valid for conv(P). This inequality is identical to the capac-
ity flow cover inequality (9). Also notice that the facet
sufficient condition of Proposition 10 is more restrictive than
the condition of Proposition 7. Therefore, when v = 0, the
lifted inequalities do not lead to new inequalities.

If v > 0, however, the resulting inequalities are new. First
observe that min{1, r} ≤ 
(1) only if maxi∈S ai ≤ 1. So if
v > 0, then

∑
i∈S

aixi +
∑
i∈S

(ai − r)+(1 − zi)

≤ a0 + v + r(y − v) (15)

as well as

∑
i∈S

aixi +
∑
i∈S

(ai − r)+(1 − zi)

≤ a0 + v + 
(1)(y − v) (16)

are valid for conv(P) provided that maxi∈S ai ≤ 1. Inequal-
ities (15) and (16) are facet-defining provided that r <

maxi∈S ai. They are distinct only if A2 − r < 1.
Recall that every fractional extreme point (x, y, z) of

relax(P) with y < 1 is cut off by a capacity flow cover
inequality (9). We next show that some of the remaining ones
are cut off by the lifted capacity flow cover inequality (15).

Proposition 11. Every fractional extreme point (x, y, z) of
relax(P) with y ≥ 1 is cut off by a lifted capacity flow cover
inequality (15) with v = �y� and S = {i ∈ N : xi > 0}
provided that ai ≤ 1 for all i ∈ S.
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Proof. By Corollary 1, if y ≥ 1 for a fractional extreme
point, then (i) y 	∈ Z+, (ii)

∑
i∈N aixi = a0 + y, and

(iii) xi, zi = 1 ∈ {0, 1} for all i ∈ N . Therefore,

∑
i∈S

aixi +
∑
i∈S

(ai − r)+(1 − zi) = a0 + y

= a0 + v + r > a0 + v + r2 = a0 + v + r(y − v).

■

3.3. Augmented Capacity Flow Cover Inequalities

Next we give another application of the MIR proce-
dure that helps us generalize the augmented flow cover
inequalities (4).

Observation 3. Consider a mixed-integer set

Y2 =
{

(x, y) ∈ R+ × ZS∪T+ : x +
∑
i∈S

aiyi −
∑
i∈T

aiyi ≥ b

}
,

with b ≥ 0 and ai ≥ 0 for all i ∈ S∪T. For any α ≥ max{b, ā}
and ā = maxi∈S ai, inequality

x +
∑
i∈S

min{ai, b} yi −
∑
i∈T

φα(ai, b)yi ≥ b, (17)

where φα(a, b) = (b�a/α� + (a − α�a/α� + b)+), is valid
for Y2.

Derivation is similar to that of Observation 2 except that
the variables with negative coefficients must also be treated.
Let ρi = α�ai/α�−ai. When relaxing the inequality defining
Y2, for i ∈ T, if ρi > b we replace −ai with −α�ai/α�. If
ρi ≤ b we rewrite −ai as −α�ai/α�+ρi. As in Observation 2,
we divide the resulting inequality by α and apply the MIR
procedure by (i) treating variable yi, i ∈ S as a continuous
variable if ai < b, and (ii) treating (ρi/α)yi, i ∈ T as a
continuous variable if ρi < b.

We can augment inequality (9) to obtain new valid inequal-
ities that have nonzero coefficient for variables (xi, zi), i ∈
N\S. Let S ⊆ N be such that λ = a(S) − a0 > 0 and
T ⊆ N\S. Now let us relax the capacity constraint (1) as

a0 + y ≥
∑
i∈S

ai[1 − (1 − zi) − (zi − xi)]

or equivalently

[ ∑
i∈S∪T

ai(zi − xi)

]
+

[
y +

∑
i∈S

ai(1 − zi)

]

−
[∑

i∈T

aizi

]
≥ λ. (18)

Then by Observation 3, for α1 = max{1, ā, λ} and ā =
maxi∈S{ai}, inequality

∑
i∈S∪T

ai(zi − xi) + min{1, λ}y +
∑
i∈S

min{ai, λ}(1 − zi)

−
∑
i∈T

φα1(ai, λ)zi ≥ λ (19)

is valid for P . Inequality (19) can also be written as

∑
i∈S∪T

aixi +
∑
i∈S

(ai − λ)+(1 − zi)

−
∑
i∈T

(ai − φα1(ai, λ))zi ≤ a0 + min{1, λ}y. (20)

Under certain conditions the coefficients of zi for i ∈ T coin-
cide with the ones obtained through sequence independent
lifting functions in Ref. [13] and inequality (20) defines a
facet of conv(P) [5].

Similarly, treating variable y as a continuous variable
in inequality (18) and applying Observation 3 with α2 =
max{ā, λ} gives

∑
i∈S∪T

aixi +
∑
i∈S

(ai − λ)+(1 − zi)

−
∑
i∈T

(ai − φα2(ai, λ))zi ≤ a0 + y. (21)

Remark 2. Observe that for the single node fixed-charge
flow set T , inequality (21) reduces to the flow cover inequality
(4) by letting y = 0.

4. MIXED INTEGER ROUNDING INEQUALITIES

In this section we describe new families of valid inequali-
ties based on the application of MIR procedure on other valid
inequalities for P . The first family of inequalities presented
below cut off all fractional extreme points of relax(P). In
addition, all extreme points of conv(P) are extreme points
of the polyhedron obtained by adding these inequalities to
relax(P).

4.1. Capacity Flow-Cover-MIR Inequalities

Let S ⊆ N such that λ = a(S) − a0 > 0. Relaxing the
capacity flow cover inequality (9) by skipping the coefficient
reduction step for i ∈ S′ ⊆ S and increasing the coefficients
of the (1 − zi) terms for i ∈ S\S′, we obtain


y +

∑
i∈S\S′

min{η, �ai�}(1 − zi) +
∑
i∈S′

�ai� (1 − zi)




+
[∑

i∈S

ai(zi − xi) +
∑
i∈S′

ri(1 − zi)

]
≥ λ,
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where η = �λ� and ri = ai − �ai�. Now applying to this
inequality the MIR procedure, we obtain the capacity flow
cover MIR (FC-MIR) inequality:

∑
i∈S

ai(zi − xi) +
∑
i∈S′

ri(1 − zi)

≥ ρ


η − y −

∑
i∈S\S′

min{η, �ai�}(1 − zi)

−
∑
i∈S′

�ai� (1 − zi)


 , (22)

where ρ = λ − �λ�. Notice that as the capacity flow
cover inequality (9) is itself obtained by the MIR procedure,
inequality (22) is the result of two iterative applications of
the MIR procedure.

Remark 3. For the splittable flow arc set Q, inequality (22)
reduces to residual capacity inequality (2) by letting z = 1.

Proposition 12. FC-MIR inequality (22) is facet-defining
for conv(P) if and only if

1. η > λ, i.e., λ 	∈ Z,
2. a(S) > ρ, i.e., either a0 > 0 or η > 1,
3. S′ = {i ∈ S : ai < λ and ri < ρ}.

Proof. Necessity. 1. If η = λ, then (22) is implied by
xi ≤ zi, i ∈ S and zi ≤ 1, i ∈ S′. 2. If a0 = 0 and
η = 1 ≥ ai, then ai = ri ≤ ρ for all i ∈ S. Thus unless
S′ = S, inequality is weak. For S′ = S, inequality becomes∑

i∈S ai(1 − xi) ≥ a(S)(1 − y), which is implied by indi-
vidual capacity flow cover inequalities (9) xi ≤ y, i ∈ S.
3. Let S∗ = {i ∈ S : ai < λ and ri < ρ}. If S′ 	= S∗,
then replacing S′ with S∗ gives a stronger inequality since
ri + ρ�ai� < ρ min{η, �ai�} for i ∈ S∗.

Sufficiency. For a given S ⊆ N , we first write (22) in
canonical form as follows:

ρy +
∑

i∈S\S′

(
ai − ρ min{η, �ai�}

)
zi

+
∑
i∈S′

(
ai − ri − ρ �ai�

)
zi −

∑
i∈S

aixi

≥ ρ


η −

∑
i∈S\S′

min{η, �ai�} −
∑
i∈S′

�ai�

 −

∑
i∈S′

ri

Let F be the face induced by (22) and let αy + βz + γ x = δ

be satisfied by all points in F. We start with constructing a
point p1 = (y1, z1, x1) ∈ F and show that F is not empty:

y1 = η(S), z1
i = x1

i =
{

1 if i ∈ S

0 otherwise
,

where η(S) = �a(S) − a0�. Let tk = (0, ek , 0) and sk =
(0, ek , εek), where ε = (1 − ρ)/ak . Since for all k ∈ N\S,
both p1 and p1 + tk ∈ F, we have βk = 0 for all k ∈ N\S.

Similarly, p1 + tk and p1 + sk ∈ F implies that γk = 0 for all
k ∈ N\S.

Next, we construct p2 = (y2, z2, x2) ∈ F, where

y2 = η(S) − 1, z2
i =

{
1 if i ∈ S

0 otherwise
,

x2
i =

{
1 − ρ

a(S)
if i ∈ S

0 otherwise
.

Note that 1 > x2
i > 0 for all i ∈ S. Let tk = (0, 0, (1/ak)ek).

For each i, j ∈ S and for a small enough ε > 0, both p2 and
p2 + εti − εtj ∈ F, and therefore for some σ̄ ∈ R we have
γk = −ak σ̄ for all k ∈ S. Furthermore, p1, p2 ∈ F implies
that α = ρσ̄ .

We next observe that for any u, v ∈ R, if we let u =
�u�−1+ ru, v = �v�−1+ rv and u+v = �u + v�−1+ ruv,
with 1 ≥ ru, rv, ruv > 0, we have

(i) either ru + rv > 1 ⇔ �u + v� = �u� + �v� ⇔ ruv =
ru + rv − 1 ≤ min{ru, rv},

(ii) or ru +rv ≤ 1 ⇔ �u + v� = �u�+�v�−1 ⇔ ruv = ru +rv >

max{ru, rv}.

Let lk = (min{η(S), �ak�}, ek , ek). Since rk ≥ ρ for all
k ∈ S\S′, we have η(S\k) = η(S) − �ak� ≤ η(S) −
min{η(S), �ak�} and therefore p1−lk ∈ P. Using p1, p1−lk ∈
F, we obtain the equation min{η(S), �ak�}α + βk + γk = 0
implying βk = (ak − ρ min{η(S), �ak�})σ̄ for all k ∈ S\S′.

Finally, for all k ∈ S′ we construct a point qk = (yk , zk , xk),
where

yk = η(S) − �ak� − 1, zk
i =

{
1 if i ∈ S\k

0 otherwise
,

xk
i =

{
1 − ρ−rk

a(S\k)
if i ∈ S\k

0 otherwise
.

Note that rk < ρ for all k ∈ S′, implying η(S\k) =
η(S) − �ak� and r(S\k) = ρ − rk . Therefore,

∑
i∈S

aix
k
i = a(S\k)

(
1 − ρ − rk

a(S\k)

)
= a(S\k) − r(S\k)

and qk ∈ P. Since both p2, qk ∈ F, we have

0 = �ak� ρσ̄ + βk − a(S)σ̄

(
1 − ρ

a(S)

)

+ a(S\k)σ̄

(
1 − ρ − rk

a(S\k)

)

= �ak� ρσ̄ + βk − a(S)σ̄ + ρσ̄ + a(S\k)σ̄ − ρσ̄ + rk σ̄

= �ak� ρσ̄ + βk − ak σ̄ + rk σ̄

implying βk = (
ak − rk −ρ �ak�

)
σ̄ for all k ∈ S′, as desired.

We have therefore shown that inequality αy+βz+γ x = δ

is a multiple of the original inequality, and the points defined
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earlier are affinely independent. As (â + 1, 1, 1) ∈ P\F, F is
a maximal proper face of conv(P). ■

Observe that if λ ≤ 1, we have η = 1 and ρ = λ. Then by
Proposition 12 facet-defining inequalities (22) satisfy ai <

λ < 1 for all i ∈ S′, in which case they are equivalent to
capacity flow cover inequalities (9). Therefore, inequalities
(22) are of particular interest if λ > 1 as they differ from
inequalities (9) in that case.

Moreover, recall the lifted capacity flow cover inequal-
ity (15) with v ∈ Z+ and r = a(S) − v − a0 > 0, which is
valid and facet-defining provided that r ≤ ai ≤ 1 for all i ∈ S.
Notice that, under this condition, (i) v = �a(S) − a0� = η−1,
(ii) r = ρ, and (iii) ri = ai for all i ∈ S. In this case FC-MIR
inequality (22) becomes

∑
i∈S

ai(zi − xi) +
∑
i∈S′

ai(1 − zi)

≥ r(v + 1) − ry − r
∑

i∈S\S′
(1 − zi)

or, equivalently,

∑
i∈S

ai +
∑
i∈S

ai(zi − 1) −
∑
i∈S

aixi

+
∑
i∈S

min{r, ai}(1 − zi) ≥ rv + r − ry,

which is identical to inequality (15) as v + a0 = a(S) − r.
Therefore, facet-defining lifted capacity flow cover inequal-
ities form a subclass of FC-MIR inequalities.

We next show that all fractional extreme points of relax(P)

violate an FC-MIR inequality.

Proposition 13. Every fractional extreme point of relax(P)

is cut off by an FC-MIR inequality (22).

Proof. Let p = (x, y, z) be a fractional extreme point of
relax(P). By Corollary 1, if y = 0, there exist S ⊆ N and
k ∈ S such that ak > λ > 0. Consider the inequality (22)
with such S and S′ = ∅ and let rhs denote its right-hand side
value for this point. This inequality is violated by p as∑

i∈S

ai(zi − xi) = 0 < ρη(1 − λ/ak) = rhs.

On the other hand, if y > 0, there exist S ⊆ N such that
y = λ 	∈ Z. Then inequality (22) with such S and S′ = ∅
violates (x, y, z) as∑

i∈S

ai(zi − xi) = 0 < ρ(η − λ) = rhs.

■

The following proposition complements Proposition 13.

Proposition 14. If the capacity inequality (1) is facet-
defining for conv(P), then all extreme points of conv(P)

are extreme points of the polyhedron obtained by adding

all FC-MIR inequalities (22) and surrogate variable upper
bound inequalities (11) to relax(P).

Proof. Consider the extreme points defined in Corol-
lary 2. Any point in the first case is the intersection of the
following 2n+1 facets: capacity inequality (1), MIR inequal-
ity (22) with S, xi ≥ 0 for i ∈ N\S, xi ≤ zi for i ∈ S\{k}
(xi = zi = 1), zi ≤ 1 for i ∈ T , xi ≤ zi for i ∈ N\T
(xi = zi = 0). We may assume that ak > ρ, since otherwise
case 1 reduces to case 3. Then FC-MIR inequality (22) is
facet-defining because when a0 = 0, the property ak > ρ

implies that a(S) > 1.
Any point in the second case is the intersection of the

following 2n + 1 facets: capacity inequality (1), FC-MIR
inequality (22) with S, xi ≥ 0 for i ∈ N\(S ∪ {k}), xi ≤ zi

for i ∈ S (xi = zi = 1), zi ≤ 1 for i ∈ T ∪ {k}, xi ≤ zi

for i ∈ N\(T ∪ {k}) (xi = zi = 0). In this case, if FC-
MIR inequality (22) is not facet-defining (i.e., a0 = 0 and
a(S) < 1), it is replaced with the surrogate variable upper
bound inequality (11) for some i ∈ S, which is facet-defining
as ai < 1.

Finally, any point in the third case is the intersection of
the facets defined by either y ≥ 0 or FC-MIR inequality (22)
with S, and xi ≥ 0 for i ∈ N\S, xi ≤ zi for i ∈ S (xi = zi = 1),
zi ≤ 1 for i ∈ T , xi ≤ zi for i ∈ N\T (xi = zi = 0). ■

If the capacity inequality (1) is not facet-defining, then
replacing it with the stronger capacity flow cover inequality
(10) with S = N in the first two cases again gives necessary
2n + 1 facets.

4.2. MIR Inequalities

For S ⊆ N such that λ = a(S) − a0 > 0 and T ⊆ N\S,
let us relax the capacity constraint as follows:

a0 + y ≥
∑
i∈S

aixi +
∑
i∈T

aixi (23)

=
∑
i∈S

ai[1 − (1 − zi) − (zi − xi)]

−
∑
i∈T

ai[(zi − xi) + zi]. (24)

Let S′ ⊆ S and T ′ ⊆ T . We next relax inequality (24) as
follows: (i) for i ∈ S′, we split the coefficient of (1 − zi) into
�ai� and ri; (ii) for i ∈ S\S′, we round up the coefficient of
(1−zi); (iii) for i ∈ T ′, we rewrite the coefficient of zi as �ai�
and (ri −1), and (iv) for i ∈ T\T ′, we relax the coefficient of
xi to �ai� and add and subtract (ai −�ai�)zi to the inequality.
Thus the resulting inequality is


y +

∑
i∈S\S′

�ai� (1 − zi) +
∑
i∈S′

�ai� (1 − zi)

−
∑

i∈T\T ′
�ai� zi −

∑
i∈T ′

�ai� zi
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+

 ∑

i∈S∪T ′
ai(zi − xi) +

∑
i∈T\T ′

�ai�(zi − xi)

+
∑
i∈S′

ri(1 − zi) +
∑
i∈T ′

(1 − ri)zi


 ≥ λ. (25)

Applying the MIR procedure to (25) we obtain the valid
inequality

∑
i∈S∪T ′

ai(zi − xi) +
∑

i∈T\T ′
�ai�(zi − xi)

+
∑
i∈S′

ri(1 − zi) +
∑
i∈T ′

(1 − ri)zi

≥ ρ


η − y −

∑
i∈S\S′

�ai� (1 − zi) −
∑
i∈S′

�ai� (1 − zi)

+
∑
i∈T ′

�ai� zi +
∑

i∈T\T ′
�ai� zi


 . (26)

Proposition 15. An MIR inequality (26) is facet-defining
for conv(P) if

1. η > λ, i.e., λ 	∈ Z,
2. a(S) > ρ, i.e., either a0 > 0 or η > 1,
3. S ⊆ {i ∈ N : ai ≤ η},
4. S′ = {i ∈ S : ri < ρ},
5. T = T ′ ⊆ {i ∈ T : (1 − ri) < ρ}.

Proof. We first rewrite inequality (26) as follows:

ρy +
∑

i∈S\S′
(ai − ρ�ai�)zi +

∑
i∈S′

(ai − ri − ρ�ai�)zi

+
∑

i∈T\T ′
(ai − ρ�ai�)zi

+
∑
i∈T ′

(ai + 1 − ri − ρ�ai�)zi −
∑

i∈S∪T

aixi

≥ ρ


η −

∑
i∈S\S′

�ai� −
∑
i∈S′

�ai�

 −

∑
i∈S′

ri.

For a given S ⊆ N , let F be the face induced by the valid
inequality and assume that all p ∈ F satisfy the equality
αy+βz +γ x = δ. From the proof of Proposition 12 we have
α, βi, γi for all i ∈ N\T as desired.

Let k ∈ T ′. Recall that, rk + ρ > 1 and therefore
η(S + k) = η(S) + �ak�. Consider p̄1 = p1 + ( �ak� − 1,
ek , �ak�−1+(1−ρ)

ak
ek

)
, and note that �ak� − 1 + (1 − ρ) < ak .

Since p1, p̄1 ∈ F, we have (�ak�−1)ρσ̄ +βk + �ak�−ρ
ak

γk = 0.

Let tk = (0, 0, (1/ak)ek) and i ∈ S. We have p̄1, p̄1 +
εtk − εti ∈ F for a small enough ε > 0, and therefore
γk = −ak σ̄ . Furthermore, when combined with above, we
have βk = (�ak�−ρ)σ̄ − (�ak�−1)ρσ̄ = (1−ρ) �ak� σ̄ , as
desired. ■

Remark 4. For the unsplittable flow arc set R by letting
x = z, the MIR inequalities (26) with T = N\S reduce to

∑
i∈S′

ri(1 − zi) +
∑
i∈T ′

(1 − ri)zi

≥ ρ


η − y −

∑
i∈S\S′

�ai� (1 − zi) −
∑
i∈S′

�ai� (1 − zi)

+
∑
i∈T ′

�ai� zi +
∑

i∈N\(S∪T ′)

�ai� zi


 . (27)

Observe if x = z, inequalities (26) with T = N\S dominate
all others with T � N\S; hence T = N\S in inequality (27).

Furthermore, if S′ = T ′ = ∅, inequality (27) reduces to
the c-strong inequality (5). Recall that a c-strong inequality
is facet-defining for conv(R) only if S is maximal c-strong
only if ri ≥ ρ for all i ∈ S and ri ≤ 1 − ρ for all
i ∈ N\S. Thus if S is not maximal c-strong, inequality (27)
with S′ = {i ∈ S : ri < ρ} and T ′ = {i ∈ T : (1 − ri) < ρ}
dominates the corresponding c-strong inequality.

The following example illustrates the strength of (27) for
conv(R). Let

R = {
y ∈ Z+, z ∈ {0, 1}5 : 1x1 + 0.5x2 + 0.75x3

+ 0.75x4 + 0.75x5 ≤ y
}
.

For S = {1, 2}, which is not maximal c-strong, the c-strong
inequality (5) is

x1 + x2 ≤ y, (28)

whereas the 2-split c-strong inequality (6) is

2x1 + x2 + x3 + x4 + x5 ≤ 2y. (29)

Inequality (27) with S = {1, 2}, S′ = ∅, and T ′ = {3, 4, 5}
(λ = 1.5, η = 2, ρ = 0.5)

0.25x3 + 0.25x4 + 0.25x5

≥ 0.5(2 − y − (1 − x1) − (1 − x2)), (30)

which can also be stated as

x1 + x2 + 0.5x3 + 0.5x4 + 0.5x5 ≤ y

dominates both (28) and (29). It is easily checked that (30)
is facet-defining for conv(R).

4.3. Scaled MIR Inequalities

For S ⊆ N such that λ = a(S) − a0 > 0 and T ⊆ N\S,
let us relax the capacity constraint as (24) and multiply the
inequality with µ > 0 to obtain

µa0 + µy =
∑
i∈S

µai[1 − (1 − zi) − (zi − xi)]

−
∑
i∈T

µai[(zi − xi) + zi]. (31)
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For S′ ⊆ S and T ′ ⊆ T applying the same type of relax-
ation as in Section 4.2, we obtain the intermediate valid
inequality


�µ�y +

∑
i∈S\S′

�µai�(1 − zi) +
∑
i∈S′

�µai�(1 − zi)

−
∑

i∈T\T ′
�µai�zi −

∑
i∈T ′

�µai�zi




+
[ ∑

i∈S∪T

µai(zi − xi) +
∑
i∈S′

r̄i(1 − zi) +
∑
i∈T ′

(1 − r̄i)zi

]

≥ µλ, (32)

where r̄i = µai − �µai� for i ∈ N . Now applying the MIR
procedure to (32) we obtain the scaled MIR inequality

∑
i∈S∪T

µai(zi − xi) +
∑
i∈S′

r̄i(1 − zi) +
∑
i∈T ′

(1 − r̄i)zi

≥ ρ̄


η̄ − �µ�y −

∑
i∈S\S′

�µai�(1 − zi) −
∑
i∈S′

�µai�(1 − zi)

+
∑
i∈T ′

�µai�zi +
∑

i∈T\T ′
�µai�zi


 , (33)

where η̄ = �µλ� and ρ̄ = µλ − �µλ�.
By simple comparison, one sees that choosing S′ = {i ∈

S : r̄i < ρ̄} and T ′ = {i ∈ T : (1 − r̄i) < ρ̄} in (33) leads to
the strongest inequalities as inequalities for all other choices
for S′ and T ′ are implied by these and 0 ≤ z ≤ 1.

Moreover, if µ − �µ� < ρ̄, one can obtain a stronger
inequality by not relaxing the term µy in inequality (31) to
�µ�y, but instead writing it as �µ�y + (µ − �µ�)y so that in
the MIR procedure, the first part can be treated as an integer
variable and the second part as a continuous variable. We do
not write the resulting inequality explicitly to avoid repetition.

Remark 5. If 1 ≤ λ, the capacity flow cover inequality
(9) can be obtained by taking µ ≥ {1, ā, λ} in inequality
(33), where ā = maxi∈S{ai}. If 1 > λ, then the strengthened
version (mentioned in the earlier paragraph) of inequality
(33) gives the capacity flow cover inequality.

Clearly inequality (33) also subsumes the MIR inequality
(26) by taking µ = 1 and therefore it forms a superclass of
all inequalities discussed in this paper except the FC-MIR
inequality (22). When �ai� > η for some i ∈ S, the resulting
FC-MIR inequality is different from (33).

We next show that scaled MIR inequalities (33) reduce to
some well-known inequalities for the unsplittable flow set R
and the binary knapsack set K.

Remark 6. For the unsplittable flow set R by letting x = z,
µ = k ∈ Z, S′ = T ′ = ∅, and T = N\S, inequality (33)
reduces to

0 ≥ �kλ� − ky −
∑
i∈S

�kai�(1 − zi) +
∑

i∈N\S

�kai�zi.

This is the k-split c-strong inequality (6), which is shown
to be facet-defining for conv(R) in Ref. [6] under certain
conditions. Then from the observation earlier, if S′ = {i ∈
S : r̄i < ρ̄} and T ′ = {i ∈ T : (1 − r̄i) < ρ̄}, inequality

∑
i∈S′

r̄i(1 − zi) +
∑
i∈T ′

(1 − r̄i)zi

≥ ρ̄


�kλ� − ky −

∑
i∈S\S′

�kai�(1 − zi) −
∑
i∈S′

�kai�(1 − zi)

+
∑
i∈T ′

�kai�zi +
∑

i∈N\(S∪T ′)

�kai�zi




dominates the k-split c-strong inequality.

Remark 7. For the binary knapsack set K by letting x = z
and y = 0, inequality (32) reduces to

∑
i∈S′

r̄i(1 − zi) +
∑
i∈T ′

(1 − r̄i)zi

≥ ρ̄


η̄ −

∑
i∈S\S′

�µai�(1 − zi) −
∑
i∈S′

�µai�(1 − zi)

+
∑
i∈T ′

�µai�zi +
∑

i∈T\T ′
�µai�zi


 . (34)

For S ⊆ N such that ā = maxi∈S ai ≥ λ, letting T = ∅ and
µ = 1/ā, we obtain η̄ = 1, ρ̄ = λ/ā, and consequently

∑
i∈S′

ai(1 − zi) ≥ λ


1 −

∑
i∈S\S′

(1 − zi)


 ,

where S′ = {i ∈ S : ai < λ}. Therefore, for a minimal
cover S, i.e., for S such that ai ≥ λ for all i ∈ S, this inequality
reduces to the the knapsack cover inequality∑

i∈S

zi ≤ |S| − 1.

Then for a minimal cover S, inequality (34) gives the lifted
knapsack cover inequality

∑
i∈T ′

(ā − ai + �ai/ā�ā)zi

≥ λ


1 −

∑
i∈S

(1 − zi) +
∑
i∈T ′

�ai/ā�zi +
∑

i∈T\T ′
�ai/ā�zi


 ,
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or equivalently

∑
i∈S

zi +
∑
i∈T

φā(ai, λ)

λ
zi ≤ |S| − 1,

where φα(a, b) = (b�a/α� + (a − α�a/α� + b)+). Since
φ(·, λ) ≥ 0, the strongest inequality is obtained by letting
T = N\S. This is the lifted knapsack cover inequality with
MIR lifting function [3, 4, 17].

5. CONCLUDING REMARKS

We studied the polyhedral structure of the network design
arc set with variable upper bounds. This set is a common
substructure of formulations of network design problems
with multicommodity fixed charges and/or combinatorial
restrictions.

Several fundamental sets studied earlier independently are
facial restrictions of its convex hull. Therefore, valid inequal-
ities for the network design arc set with variable upper bounds
generalize the inequalities known for these sets. In this study
we identified facets that cut off all fractional extreme points of
the continuous relaxation of the network design arc set with
variable upper bounds. Interestingly, some of these facets are
new for the earlier studied restrictions as well.

We do not have any computational experience with the
new inequalities yet. However, their special cases for the
restrictions mentioned in the introduction have shown to be
computationally effective in earlier studies. For computa-
tional evidence we refer the reader to Gu et al. [11] for lifted
0–1 knapsack cover inequalities, to Gu et al. [13] for lifted
flow cover inequalities, to Atamtürk and Rajan [6] for resid-
ual capacity inequalities, to Brockmüller et al. [10] for
c-strong inequalities, and to Atamtürk and Rajan [6] for
k-split c-strong inequalities.
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