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Abstract

We study the design of capacitated survivable networks using directed p-cycles. A p-cycle is a cycle with at least three arcs,
used for rerouting disrupted flow during edge failures. Survivability of the network is accomplished by reserving sufficient slack
on directed p-cycles so that if an edge fails, its flow can be rerouted along the p-cycles.

We describe a model for designing capacitated survivable networks based on directed p-cycles. We motivate this model by
comparing it with other means of ensuring survivability, and present a mixed-integer programming formulation for it. We derive
valid inequalities for the model based on the minimum capacity requirement between partitions of the nodes and give facet
conditions for them. We discuss the separation for these inequalities and present results of computational experiments for testing
their effectiveness as cutting planes when incorporated in a branch-and-cut algorithm. Our experiments show that the proposed
inequalities reduce the computational effort significantly.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a directed graph, a commodity set (origin, destination, demand triples), and costs for flow and capacity,
the capacitated network design problem (NDP) is to install batches of a capacity unit on the edges of the graph and
route the flow of commodities so that the flow on each arc is no more than the capacity installed and all demands
are met at minimum total cost. NDP is NP-hard even in the case of a single commodity [13]. We refer the reader to
Balakrishnan et al. [6] for a review of the network design problem.

The network design problem becomes significantly more difficult when the network has to be designed so as
to survive failures of its edges. As a simultaneous failure of multiple edges occurs infrequently (at least for the
telecommunication networks we aim to address), here we focus on single-edge failures. Then, a network is said to
be survivable if sufficient capacity exists on the edges of the network so that disrupted flow can be rerouted in the

I Research is supported, in part, by NSF Grant 0070127.
∗ Corresponding author.

E-mail addresses: atamturk@berkeley.edu (A. Atamtürk), drajan@us.ibm.com (D. Rajan).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2007.08.002

http://www.elsevier.com/locate/disopt
mailto:atamturk@berkeley.edu
mailto:drajan@us.ibm.com
http://dx.doi.org/10.1016/j.disopt.2007.08.002


416 A. Atamtürk, D. Rajan / Discrete Optimization 5 (2008) 415–433

event of any edge failure. To do so requires the installation of spare capacity on the network. Various approaches that
attempt to minimize the capacity requirement of survivable networks have been developed. Soriano et al. [36] present
an overview of survivable network design problems and a synthesis of the related literature.

The most capacity-efficient survivable networks can be designed by formulating the problem as a capacitated
network design problem for every failure scenario, linked by common capacity variables across the scenarios
[1,15,24]. Scenario formulations for optimization problems under uncertainty have origins in Dantzig [16]. However,
a serious disadvantage of such scenario models is that the size of their formulation equals the size of the network
design model (NDP) times the number of failure scenarios (number of edges in this case), which renders the approach
impractical even for relatively small networks. Furthermore, an optimal solution to a scenario formulation may call for
rerouting the flow of commodities that are not disrupted by the failure. As it is not practical to manipulate undisrupted
flow while restoring disrupted flows, this approach, which is also referred to as global rerouting (GNP), is not popular
in practice. Xiong and Mason [41] cite fast flow recovery requirement as a reason. Nevertheless, GNP serves an
important purpose as it provides a lower bound on the capacity requirement of a survivable network. Methodologies
implemented in practice usually involve some form of local rerouting, either by enforcing a ring-like topology
(dedicated protection) on the network [2,14,17,35], or by shared local protection schemes [21,23,39], and have higher
capacity requirement compared to GNP.

We study a hybrid approach for designing survivable networks as proposed by Grover and Martens [19], in which
cycles of the network are used for shared protection of disrupted flow, but no specific topology (e.g. ring structure)
is imposed on the network. In this approach, one imposes no restriction on no-failure routing, but utilizes specific
failure-flow patterns for rerouting the disrupted flow. Using undirected cycles with at least three edges (p-cycles) as
failure-flow patterns has been shown to be capacity efficient and to achieve fast rerouting times [34,37]. Grover and
Stamatelakis [18] solve the survivable network design problem in a hierarchical fashion, in which they first solve the
network design problem without the survivability requirement and then assign spare capacity on a subset of undirected
p-cycles covering each edge that may fail. The current paper has certain key distinctions from these earlier works. First,
it takes a non-hierarchical approach to ensure survivability. Second, rather than assigning integral spare capacity to
(undirected) p-cycles, we reserve sufficient slack, which may not necessarily be a multiple of the capacity unit, along
directed arcs of the p-cycles. Reserving slack for the flow on a link that may fail rather than covering the capacity of
the link leads to a more capacity-efficient survivable network, because flow that must be rerouted is always less than
or equal to the capacity of the failed link and slacks on working links may also be utilized for rerouting the disrupted
flow. Third, due to the exponentially large number of potential p-cycles available, we employ a column generation
technique to pick the p-cycles to consider survivability.

Rajan and Atamtürk [32] introduce the survivability model studied in the current paper (SNP) and compare SNP
with NDP and GNP computationally. They conclude that while the capacity efficiency of SNP is very close to GNP,
the computational effort required to solve SNP is similar to NDP. This positive conclusion is the main motivation for
the polyhedral study of SNP in the current paper.

Rajan and Atamtürk [33] consider a simpler survivability model (SDC), which is more conservative than SNP in
terms of capacity usage. In Section 2, we explain the distinctions between SNP and SDC, and compare the capacity
requirement for the two in order to emphasize the capacity efficiency of the model studied here. Bienstock and
Muratore [12] and Balakrishnan et al. [8] study capacitated survivability models with global rerouting and give strong
inequalities for them.

Balakrishnan et al. [7] and Magnanti and Raghavan [28] study un-capacitated survivable network design problems
with connectivity requirements and describe strong formulations. Un-capacitated problems mainly differ from
capacitated problems in two ways: each commodity is described in terms of number of edge-disjoint paths required;
each edge, if chosen, can support all the flow on that edge (one can think of the capacity as infinity). Thus, un-
capacitated network design problems are more combinatorial in nature, and are generalized by their capacitated
analogues.

The focus of this paper is a polyhedral study of the SNP model for designing capacitated survivable networks. In
Section 3 we introduce valid inequalities for SNP based on the minimum capacity requirement between partitions of
the nodes and give facet conditions for them. We discuss the separation for these inequalities and incorporate them in a
branch-and-cut algorithm to solve survivable network design problems using directed p-cycles. In Section 4 we present
computational results, which demonstrate that the proposed inequalities reduce computational effort significantly
when used as cuts. We conclude in Section 5 with a few final remarks.
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Fig. 1. A directed p-cycle covers reverse directional arcs and chords.

Notations and assumptions

Let G = (N , E) be an undirected graph with node set N and edge set E . Let F be the set of all ordered pairs (arcs)
from E , that is, F = {(i j), ( j i) : [i j] ∈ E}, where (i j) denotes the arc from node i to node j , and [i j] denotes
the (undirected) edge between nodes i and j . Let G ′

= (N , F) denote the corresponding directed graph. When the
end nodes are not relevant, we use a ∈ F to index the arcs. For I ⊆ F let [I ] := {[a] ∈ E : a ∈ I }. We assume,
if necessary by introducing edges with high capacity cost, that the graph G is complete. Let K be a commodity set,
in which each commodity k ∈ K is specified by the triple (sk, tk, dk) denoting demand dk (a non-negative rational
number) at the destination node tk from the source node sk .

We assume that there is no pre-installed capacity on the network and that capacity is installed in batches of a single
type of facility, e.g., fiber-optic cable, having a fixed capacity. Demands as well as edge capacities are expressed in
units of this basic facility capacity; so demands are often fractional. We consider a version of the problem where
capacity installed on an (undirected) edge can be used to route (directed) flow up to this capacity in both directions,
which is typical in telecommunication networks [11,38]. For a vector v ∈ RX indexed on a set X we define
v〈H〉 :=

∑
i∈H vi for H ⊆ X with v〈∅〉 = 0. For simplicity of notation, we denote a singleton set {a} by a. We

use ε to denote an infinitesimal constant.

2. Survivable network design with p-cycles

In this section we present the survivability model studied in the paper and highlight its capacity efficiency.
A directed p-cycle is a simple directed cycle of G ′ with at least three arcs. Directed p-cycles are used for rerouting

disrupted flow during edge failures. This is accomplished by reserving sufficient slack on the directed p-cycles of the
network. We will refer to a directed p-cycle simply as p-cycle.

In the survivability model studied in this paper (SNP) a p-cycle is used for rerouting disrupted flow on the reverse
directional arcs for the p-cycle as well as on the chords of the p-cycle. Consider, for instance, the p-cycle with clock-
wise direction, shown with bold arcs in Fig. 1. Since arc (ab) is on the p-cycle, if edge [ab] fails, the flow on arc (ba)

may be rerouted from node b to node a using the p-cycle illustrated in the figure or it may be split and rerouted on a
number of p-cycles containing arc (a, b). If the chord edge [cd] fails, the same p-cycle may be used to reroute the flow
from node c to node d using the upper section of the p-cycle, and the flow from node d to c using the lower section of
the p-cycle. As the example illustrates, p-cycles cover flow on multiple arcs. To ensure survivability, sufficient slack
is reserved for the p-cycles so that for each arc, the sum of reserved slack for all p-cycles that cover the arc is at least
the flow on the arc.

On the other hand, in the SDC model [33] p-cycles do not cover the chords, which makes SDC significantly more
conservative than SNP in terms of capacity usage. After introducing a mathematical formulation for SNP, we will
compare the capacity requirement of the two models.

2.1. Mathematical formulation

Now we present a mathematical formulation for SNP. Let xe ∈ Z+ be the amount of capacity installed on edge
e ∈ E and yk

a ∈ R+ be the amount of flow of commodity k on arc a ∈ F . We use gk
a to denote the cost of unit flow of



418 A. Atamtürk, D. Rajan / Discrete Optimization 5 (2008) 415–433

commodity k ∈ K on arc a and he to denote the cost of unit capacity on edge e. For each node–commodity pair let
bk

i = dk for i = sk , bk
i = −dk for i = tk , and bk

i = 0 for i ∈ N \ {sk, tk
}.

Let C be the set of simple directed cycles of G ′ with at least three arcs (p-cycles). For c ∈ C we let variable zc
denote the slack reserved for p-cycle c. Of crucial note, as slack is reserved to cover flows, it is not required to be
a multiple of the capacity unit; hence, zc is a continuous variable. Let αc

a be 1 if p-cycle c includes arc a, and 0
otherwise. Similarly, let ρc

e be 1 if edge e is a chord of p-cycle c, and 0 otherwise. Using these definitions SNP is
formulated as the following mixed-integer program:

min
∑
a∈F

∑
k∈K

gk
a yk

a +

∑
e∈E

hexe

s.t.:
∑

(i j)∈F

yk
i j −

∑
( j i)∈F

yk
ji = bk

i , ∀i ∈ N , ∀k ∈ K , (1)

(SNP)
∑
k∈K

yk
i j −

∑
c∈C

ρc
[i j]zc −

∑
c∈C

αc
ji zc ≤ 0, ∀(i j) ∈ F, (2)

∑
k∈K

yk
i j +

∑
c∈C

αc
i j zc ≤ x[i j], ∀(i j) ∈ F, (3)

xe ∈ Z+, ∀e ∈ E; zc ∈ R+, ∀c ∈ C; yk
a ∈ R+, ∀a ∈ F, ∀k ∈ K .

Constraints (1) are for flow balance. Constraints (2) ensure that flow on each arc (i j) is no more than the total
slack reserved for p-cycles which cover (i j), i.e., either include arc ( j i) or have chord [i j]. Constraints (3) ensure that
capacity installed on edge [i j] is large enough to accommodate the flow on arc (i j) as well as the total slack reserved
for p-cycles that include (i j).

The formulation for the network design problem without the survivability requirement (NDP) can be obtained
from the formulation above by simply dropping constraints (2) and the p-cycle variables z. Thus, SNP has only
one additional constraint for each arc compared to NDP. On the other hand, the number of p-cycle variables is
exponential in the number of the arcs. Rajan and Atamtürk [32] give a column generation algorithm for solving
the linear programming (LP) relaxation of SNP. They show that the pricing problem for p-cycle variables isNP-hard
and propose an effective polynomial heuristic to generate p-cycle variables. In Section 4.1, we present a mixed-integer
programming formulation to solve the pricing problem exactly.

2.2. Comparison of the survivability models

Since in the SDC model p-cycles do not cover flow on chords, the formulation of SDC does not contain the
second term in constraints (2). Thus, SDC is a restriction of SNP and, therefore, requires more excess capacity than
SNP. On the other hand GNP, which allows global rerouting of all flows during failures, is a relaxation of SNP and,
consequently, requires less capacity than SDC and SNP. However, it is very difficult to solve as it hasO(|E |) times as
many constraints as NDP.

In order to provide an empirical evidence on the relative capacity efficiency of the survivability models SDC,
SNP, and GNP, in Fig. 2 we summarize computational results on capacity usage from Rajan and Atamtürk [32]
and Rajan and Atamtürk [33]. These results are for randomly generated graphs with 75% edge density and 50%
demand density, which are available on-line at http://ieor.berkeley.edu/˜atamturk/data. Our experiments showed that
the variation across random instances was minimal; here, we present the results for one randomly chosen instance
for each size. The vertical axis of the chart in the figure shows the ratio of the installed capacity for the survivable
model and the capacity of the NDP without the survivability requirement. For example, for a graph with 5 nodes,
SDC requires more than double the capacity to achieve survivability. On the average, SDC requires 80% excess
capacity, whereas SNP requires only about 45% spare capacity. GNP, which provisions the lowest possible capacity
for survivable networks, requires about 30% spare capacity. Thus SNP requires only an additional 12% over the GNP
bound, whereas SDC provisions 38% excess capacity over this lower bound. Finally, we remark that for graphs with
more than 10 nodes it was not possible to solve even the LP relaxation of GNP in an hour with the default CPLEX
solver [32]. Nevertheless, the chart in Fig. 2 clearly demonstrates the capacity-efficiency of SNP, which is the main
motivation for the polyhedral study in this paper.

http://ieor.berkeley.edu/~atamturk/data
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Fig. 2. Comparing the capacity efficiency of the survivability models.

Table 1
Comparison of minimum capacity requirement (m = |[AB]|)

Model NDP GNP SNP SDC

c(dA) ddAe dddAem/(m − 1)e dddAem/(m − 1)e 2ddAe

Reference [26] [8,12] Remark 3 in Section 3.2 [33]

Now we provide further insight into the capacity efficiency of SNP observed empirically in the experiments. The
relative efficiency of the models can be stated in terms of feasible capacity vectors for the models.

Proposition 1. Let X (·) denote the set of feasible integral capacity vectors with respect to a model. Then X (SDC) ⊆

X (SNP) ⊆ X (GNP) ⊆ X (NDP).

For a partitioning (A, B) of N with A 6= ∅ and B 6= ∅, let [AB] denote the set of edges with one end in
A, the other in B, and dA the total demand of nodes in B from the nodes in A, i.e., dA =

∑
k∈K A

dk , where
K A = {k ∈ K : sk

∈ A, tk
6∈ A}, and let c(dA) be the minimum integral capacity required on the edges [AB],

which may be different for each model. Then, for every feasible capacity vector x we have

x〈[AB]〉 ≥ c(dA) (4)

and inequality (4) is tight for the solution minimizing x〈[AB]〉. Although we know from Proposition 1 that c(dA)

for SNP is in between the values for SDC and GNP, Table 1 presents a clearer picture. This table shows the known
values for c(dA) for different models. The minimum integral capacity requirement for SNP over the edges of a given
partition indeed equals the lower bound from GNP. Moreover, as the number of edges m increases, the gap between
the minimum requirement for SNP and SDC becomes larger, whereas the minimum capacity requirement for SNP,
just like GNP, gets closer to NDP.

In conclusion, SNP is a highly capacity-efficient model for designing survivable capacitated networks, even though
it allows rerouting of only disrupted flow.

3. Partition inequalities for SNP

In this section we introduce partition inequalities for SNP. Partition inequalities are known to improve the linear
programming (LP) relaxations of NDP significantly [3,4,11,20,25]; however, their separation problem is NP-hard
[10]. Magnanti et al. [26] introduce partition inequalities for NDP in terms of the integral capacity variables and
Magnanti et al. [27] extend them to the case with two capacity types. Barahona [9] presents a cutting-plane algorithm
based on the partition inequalities. Bienstock and Günlük [11], Chopra et al. [13] generalize these inequalities further
to include non-zero coefficients for the continuous flow variables.

Balakrishnan et al. [8] and Bienstock and Muratore [12] derive partition inequalities for survivability models with
global rerouting (GNP), and Rajan and Atamtürk [33] for SDC. Many partition inequalities for NDP and SDC can be
derived as strengthened metric inequalities [22,30] that incorporate the respective survivability restrictions [31]. For a
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review of partition inequalities for NDP, and recent work on tight metric inequalities for NDP, we refer the reader to
Avella et al. [5].

Let (A, B) be a partition of the nodes such that A 6= ∅ and B 6= ∅, and let G ′

A = (A, FA), G ′

B = (B, FB)

be the induced subgraphs defined by A and B. Let AB be the arcs directed from A to B, and B A be the arcs
directed from B to A. We let m := |AB| and use C to denote the set of p-cycles that cross the partition. Let
K A := {k ∈ K : sk

∈ A, tk
6∈ A}, K B := {k ∈ K : sk

∈ B, tk
6∈ B}, and K ′

:= K \ K A \ K B . Also
define dA =

∑
k∈K A

dk , dB :=
∑

k∈K B
dk , y A

a :=
∑

k∈K A
yk

a , and yB
a :=

∑
k∈K B

yk
a . Without loss of generality, we

assume that dA ≥ dB .
For any I ⊆ AB, we define I as the set of arcs oriented in the reverse direction of the arcs in I and Î = I ∪ I . So,

in particular, AB = B A and ÂB = AB ∪ B A.

Definition 1. For arc a ∈ AB let Ca be the set of all p-cycles that cover arc a. In other words,

Ca
:= {c ∈ C : αc

a + ρc
[a]

= 1}.

Observe that any p-cycle in Ca necessarily crosses the partition (A, B) and does not include arc a.

Definition 2. For arc a ∈ AB and I ⊆ AB and let Ca
I be the set of p-cycles that cover arc a and cross the partition

from A to B using only arcs in I . In other words,

Ca
I := {c ∈ Ca

: αc
b = 0 for b ∈ AB \ I }.

The intuition behind considering partitions for SNP can be explained as follows: For an arc a ∈ AB, consider the
failure of edge [a]. Survivability by SNP requires the sum of undisrupted flow from A to B and total slack reserved
for p-cycles covering arc a to be at least the sum of demand of commodities K A. In other words,

y A
〈AB \ a〉 + z〈Ca

〉 ≥ dA. (5)

Inequality (5) follows directly from constraints (1) and (2) and it is the main observation that leads to the polyhedral
results in the paper. Next we review the mixed-integer rounding (MIR) argument used in the validity proofs.

Lemma 1 ([29,40]). For x ∈ Z, y ∈ R constraints y + x ≥ b and y ≥ 0 imply the mixed-integer rounding inequality

y + (b − bbc)x ≥ (b − bbc)dbe.

In the following two subsections we derive two classes of partition inequalities for SNP. These inequalities contain
non-zero coefficients for the flow as well as p-cycle variables in addition to the capacity variables. Important special
cases and separation issues are discussed afterwards.

3.1. P-cycle flow partition inequalities

The first class of inequalities for SNP is a variation of (5) using capacity variables. Throughout let η := ddAe and
r := dA − bdAc.

Proposition 2. For partition (A, B), arc a ∈ AB, and arc set I ⊆ AB \ a, the p-cycle flow partition inequality

y A
〈I 〉 + z〈Ca

I 〉 + r x〈[AB \ I \ a]〉 ≥ rη (6)

is valid for SNP.

Proof. As a 6∈ I , by separating terms we rewrite (5) as

y A
〈I 〉 + z〈Ca

I 〉 + y A
〈AB \ I \ a〉 + z〈Ca

\ Ca
I 〉 ≥ dA. (7)

Since every p-cycle in Ca
\ Ca

I includes an arc in AB \ I \ a, we have

z〈Ca
\ Ca

I 〉 ≤

∑
c∈Ca\Ca

I

∑
b∈AB\I\a

αc
bzc ≤

∑
b∈AB\I\a

(∑
c∈C

αc
bzc

)
. (8)
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Due to constraints (3) the total capacity installed on edges [AB \ I \ a] (namely x〈[AB \ I \ a]〉) is at least the flow
y A

〈AB \ I \ a〉 and the total slack reserved for p-cycles using arcs AB \ I \ a, the last term in (8). Then, we can relax
inequality (7) as

y A
〈I 〉 + z〈Ca

I 〉 + x〈[AB \ I \ a]〉 ≥ dA. (9)

Applying mixed-integer rounding in Lemma 1 to inequalities (9) and y A
〈I 〉 + z〈Ca

I 〉 ≥ 0, we obtain the p-cycle flow
partition inequality (6). �

Remark 1. Observe that if I = AB \ a, then the p-cycle flow partition inequality (6) is dominated by (5) as
Ca

= Ca
AB\a and dA ≥ rη.

Let us denote the convex hull of feasible solutions to SNP as conv(SNP). Next we show that p-cycle flow partition
inequalities induce facets for conv(SNP).

Theorem 1. For any non-empty partition (A, B) of G, arc (i j) ∈ AB, and arc set I ( AB \ (i j), the p-cycle flow
partition inequality (6) is facet-defining for conv(SNP) if |M1

∪ M2
| ≤ η for all disjoint matchings M1, M2 in

[AB \ I \ (i j)], r > 0, and |A| 6= 2, |B| 6= 2.

Proof. Consider the face F of conv(SNP) induced by (6), i.e.,

F =

{
(x, y, z) ∈ conv(SNP) : y A

〈I 〉 + z〈Ci j
I 〉 + r x〈[AB \ I \ (i j)]〉 = rη

}
.

In order to prove that F is a maximal proper face, i.e., a facet, we will employ a common technique in polyhedral
combinatorics that shows that any hyperplane containing F is equivalent to

y A
〈I 〉 + z〈Ci j

I 〉 + r x〈[AB \ I \ (i j)]〉 = rη (10)

up to multiplication by a scalar and addition of multiples of the equality constraints (1), implying that there are enough
affinely-independent points in F to define the coefficients of (10).

Then consider a hyperplane defined on (x, y, z) as∑
a∈F

∑
k∈K

πk
a yk

a +

∑
e∈E

βexe +

∑
c∈C

κczc = γ. (11)

Let Y := AB \ (i j). For each commodity k, consider a spanning arborescence with arc set Tk rooted at the source
node sk of commodity k such that Tk ∩ Ŷ = ∅. Observe that this implies Tk must include either arc (i j) or arc ( j i). By
adding appropriate multiples of (1) to (11) (for commodity k) for all nodes in depth-first order of Tk , we can eliminate
the coefficients of the flow variables corresponding to arcs in Tk in (11). Hence, we may assume, without loss of
generality, that πk

a = 0, ∀a ∈ Tk, ∀k ∈ K in (11).
The following definitions are needed for the proof: Let C̃ be the set of p-cycles that cross the partition exactly once

among the arcs in Ŷ , and are Hamiltonian cycles on the graph G ′. Since any cycle crosses a partition an even number
of times, this requires that any p-cycle in C̃ must use either arc (i j) or ( j i). For a set of arcs Q ⊆ Y we define C̃Q as
the set of p-cycles in C̃ that use some arc a ∈ Q̂.

Now we will define a pivotal point ∆ in F that will be used to construct other convenient points in F for simple
interchange arguments to establish the coefficients of (11): Because the subgraphs G ′

A and G ′

B are complete and
|A| 6= 2, |B| 6= 2, there exist p-cycles in G ′

A and G ′

B covering all arcs in these subgraphs. In solution ∆, all
commodities in K ′

= K \ K A \ K B are routed using arcs in F \ ÂB and covered using p-cycles in C \ C. The rest of
the solution ∆ is defined as follows (see Fig. 3): Pick (ab) ∈ Y \ I arbitrarily and let y A

ab = dA and yB
ji = dB ; for a

p-cycle c1 ∈ C̃ that contains both (ba) and (i j), let zc1 = dA + ε so that flow on both (ab) and ( j i) is covered by c1
(recall that dA ≥ dB), and the capacity variables x[ab] = η and x[i j] = η. Finally let ya = 0 for all a ∈ ÂB \(ab)\( j i)
and zc = 0 for all c ∈ C \ c1, x[a] = 0 for all a ∈ Y \ I , and xe for all e ∈ [I ] is large. Because r > 0 and c1 6∈ Ci j , ∆
is feasible and satisfies (10). We define Ya and Za as the total flow on arc a and slack reserved for p-cycles using a,
respectively. Observe that for the solution ∆, we have Ye f < Z f e and Ye f + Ze f < x[e f ] for (e f ) ∈ {(ab), ( j i)}. This
is an important property of ∆ that helps us to construct other convenient points.
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Fig. 3. Feasible solution ∆.

To simplify Eq. (11) our first strategy is to find the variables that do not appear in (11), i.e., those that have zero
coefficients. We start with showing that βe = 0, ∀e ∈ E \ [Y ]; these coefficients correspond to capacity variables
which are not part of the partition. Consider ∆. For any edge e ∈ E \[Y ], we increase the capacity by one unit to obtain
a new feasible solution ∆′, which still satisfies (10). Substituting ∆ and ∆′ into (11), we see that βe = 0, e ∈ E \ [Y ].
Similarly, βe = 0, e ∈ [I ]. In the rest of the proof, for ∆ we assume w.l.o.g. that xe is large (>2d〈K 〉 is sufficient)
for all e ∈ [I ] ∪ E \ [Y ] (We refer to this as Assumption A1).

We now show that κc = 0, ∀c ∈ C \ C; these coefficients correspond to p-cycles that do not cross the partition. For
any c ∈ C \ C, we increase zc by ε to obtain a new solution ∆′ that satisfies (10). ∆′ is feasible due to the assumption
A1. Substituting ∆ and ∆′ in (11), we see that κc = 0, c ∈ C \ C. In the rest of the proof, for ∆ we assume w.l.o.g.
that zc is large for all c ∈ C \ C, but such that there still exists some slack on every edge e ∈ E \ [Y ] (We refer to this
as Assumption A2).

Next we prove that πk
a = 0, ∀a ∈ F \Y, k ∈ K ; these coefficients correspond to the flow variables for all arcs that

do not cross the partition. For commodity k, consider an arc (ab) ∈ F \(Y ∪Tk). Let s be the nearest common ancestor
of a and b in Tk (s equals a or b if there is a directed path between them in Tk). By increasing yk

ab and the flow on arcs
in the path from s to a in Tk by ε and decreasing the flow on arcs in the path from b to s in Tk by ε, we obtain a new
feasible solution ∆′ satisfying (10) by AssumptionsA1 andA2. Substituting ∆ and ∆′ in (11), we see that πk

(ab) = 0.

We now show that κc = 0, ∀c ∈ C̃Y\I , and that πk
a = 0, ∀a ∈ Ŷ \ I , ∀k ∈ K . We obtain a new feasible solution

∆′ from ∆ by increasing zc1 by ε. ∆′ satisfies (10) (recall that c1 6∈ Ci j ). Substituting ∆ and ∆′ in (11), we have
κc1 = 0. Alternatively, we can obtain ∆′ that satisfies (10) from ∆ by introducing ε units on a new p-cycle c2 that
uses the same edges as c1 but flows in the reverse direction (note c2 6∈ Ci j

I ). Substituting ∆ and ∆′ in (11), we have
κc2 = 0. From ∆, we obtain a new solution ∆′ that satisfies (10) by decreasing yk

ba and increasing yk
i j by ε for any

commodity k. Substituting ∆ and ∆′ in (11), we have πk
ab = 0 for all k ∈ K since πk

i j = 0 (recall (i j) ∈ F \ Y ).
For any commodity k, by increasing flow on arcs (ab) and (ba) by ε, we obtain another new solution ∆′ from ∆ that
satisfies (10). Substituting ∆ and ∆′ in (11), we get πk

ba = 0 for all k ∈ K . Since (ab) was chosen arbitrarily from
Y \ I , such pairs of solutions can be constructed for all arcs a ∈ Y \ I . Substituting such pairs of ∆ and ∆′ into (11),
we get κc = 0, ∀c ∈ C̃Y\I and πk

a = 0 for all a ∈ Ŷ \ I , ∀k ∈ K .
For Q ⊆ Y let (C̃Q

f , C̃Q
b ) be the partitioning of C̃Q , depending on whether c ∈ C̃Q uses an arc in Y or Y . For any

p-cycle c ∈ C̃ I
b , since C̃ I

b ∩ C i j
I = ∅ we can increase the allocation for the cycle by ε units to obtain a new feasible

solution ∆′ that satisfies (10). Substituting ∆ and ∆′ into (11), we obtain κc = 0, c ∈ C̃ I
b . Thus we have shown that

κc = 0, ∀c ∈ C̃ \ C̃ I
f .

For the rest of the proof, we need an intermediate technical result that holds due to the assumption of the theorem
on disjoint matchings: Toward this goal, we also need solutions ∆1 and ∆2 that satisfy equation (10) and Assumptions
A1 and A2; see Fig. 4. Comparing them with ∆ and other derived feasible points satisfying (10), we evaluate the rest
of the coefficients. ∆1 is defined by modifying ∆ as follows: For an arbitrarily chosen arc (e f ) ∈ I , we decrease flow
variable y A

ab to dA − r and route r using arc (e f ) instead; thus, y A
ef = r . We reduce the allocation on p-cycle c1 so

that zc1 = dA − r and introduce a new p-cycle variable c2 ∈ C̃ I
b to cover the flow on arc (e f ); thus, we set zc2 = r .

Finally, we reduce the capacity installed on edge [ab] by one unit and set x[ab] = η − 1. ∆2 is obtained by modifying
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Fig. 4. Feasible solutions ∆1 and ∆2.

∆1 as follows: We set y A
ef = 0 and route this flow on (i j) instead; i.e., y A

i j = r . We reduce yB
ji to dB − r and route the

remaining flow on ( f e) instead; i.e., y A
f e = r . We replace p-cycle c2 with a new p-cycle c3 ∈ C̃ I

f that goes through
the same edges as c2, but in the reverse direction. Hence, both points ∆1 and ∆2 satisfy (10).

Claim 1. For any p-cycle c ∈ C \ C̃, either κc = 0 or there exists a p-cycle c0 ∈ C̃ I
f such that κc = κc0.

Proof. For p-cycle c ∈ C \ C̃, let T ⊆ Y \ I and W ⊆ Y \ I be the arcs p-cycle c uses to cross the partition. Note that
[W ] and [T ] are two disjoint matchings of [Y \ I ]. Letting t = |T | and w = |W |, from the assumption of the theorem
on all disjoint matchings in [Y \ I ], we have t + w ≤ η. Consider the solution ∆′ with zc > 0 obtained as follows:

Case 1. T 6= ∅. We construct ∆′ from ∆. Without loss of generality, suppose that ∆ is chosen so that (ab) ∈ T . Let
T ′

= T \ (ab) and t ′ = |T ′
|. Observe that t ′ + w ≤ η − 1. Let xe = 1 for all [T ′

∪ W ] and x[ab] = η − t ′ − w.
For demands in K A, we send 1 − ε flow on each arc in T ′ and W and dA − (t ′ + w)(1 − ε) on (ab). We reduce
allocation of zc1 to η − (t ′ + w) − ε, and introduce a new p-cycle in C̃Y\I

b for each arc in T ′
∪ W , setting its allocation

to 1 − ε. ∆′ satisfies (10) as well because the total flow on I , slack reserved for p-cycles in C i j
I and the total capacity

on [Y \ I ] are unchanged. Now, by introducing p-cycle c with allocation ε, we get another solution ∆′′ that satisfies
(10). Substituting ∆′ and ∆′′ into (11), we get κc = 0.

Case 2a. T = W = ∅. In this case, p-cycle c does not use any arcs in Ŷ \ I .

2a.1. If p-cycle c covers arc (i j) and uses some arc (e f ) ∈ I , consider solution ∆2; see Fig. 4. Assume without loss
of generality that ∆2 is chosen so that αc

e f = 1. We obtain ∆′ from ∆2 by setting zc = ε and reducing the slack

reserved for p-cycle c3 to r − ε. Substituting ∆2 and ∆′ into (11), we obtain κc = κc3, where c3 ∈ C̃ I
f .

2a.2. If p-cycle c does not cover arc (i j), we obtain ∆′ from ∆ by setting zc = ε. Substituting ∆ and ∆′ into (11),
we see that κc = 0.

Case 2b. T = ∅ and W 6= ∅. Without loss of generality, suppose ∆2 is chosen so that ba ∈ W . Let W ′
= W \ (ba)

and w′
= |W ′

|. Observe that w′
≤ η − 1. We construct ∆′ from ∆2 as follows: Let x[a] = 1 for all a ∈ W ′ and

x[ab] = η−1−w′. For demands in K A, we send 1 unit of flow on each arc in W ′, dA−w′
−r on (ab), and r units on (i j).

We reduce allocation of zc1 to η−w′
−ε, and introduce a new p-cycle in C̃Y\I

b for each arc in W ′ with allocation 1−ε.

2b.1. If p-cycle c covers arc (i j), we obtain another solution ∆′′ that satisfies (10) by increasing allocation to p-cycle
c3 to r − ε, and adding p-cycle c with allocation ε. Substituting ∆′ and ∆′′ into (11), we obtain κc = κc3, where
c3 ∈ C̃ I

f .
2b.2. If p-cycle c does not cover arc (i j), we obtain ∆′′ from ∆′ by setting zc = ε. Substituting ∆′ and ∆′′ into (11),

we see that κc = 0. �

Next we show that κc = 0, ∀c ∈ C \Ci j
I . Any p-cycle c ∈ C \C i j

I \ C̃ contains either (i j) or some arc (ab) ∈ Y \ I ,
since it does not cover flow on arc (i j) or use any arc in I . If p-cycle c uses any arc in AB \ I , we get κc = 0 from
Claim 1 (Case 1). If it does not, then c contains (i j), and does not cover (i j). Now, depending on whether c uses any
arcs on AB \ I , we get κc = 0 from either Case 2.a.2 or 2.b.2 of Claim 1.
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Now we show that βe = β for all e ∈ [Y \ I ]. Since in the definition of ∆ the choice of (ab) ∈ Y \ I is arbitrary,
let ∆′ be the solution with arc (e f ) ∈ Y \ I , different from (ab). Substituting ∆ and ∆′ in (11), we get β[ab] = β[e f ].
Thus, βe = β for all e ∈ [Y \ I ].

In the rest of the proof we will determine the remaining coefficients in (11): β = β[a], a ∈ Y \ I , πk
a , a ∈ I, k ∈ K ,

and κc, c ∈ Ci j
I .

First, we show that πk
f e = 0 for all k ∈ K . From ∆1, we can obtain an new solution ∆′ that satisfies (10) by

increasing yk
f e and yk

i j by ε for k ∈ K . Substituting ∆ and ∆′ in (11), we have πk
f e = 0 for all k ∈ K .

Second, we show that πk
e f = 0 for any k 6∈ K A. For k 6∈ K A, by increasing flow on arcs (e f ) and ( f e) by ε, we

can obtain another new solution ∆′ from ∆ that satisfies (10). Substituting ∆ and ∆′ in (11), we get πk
f e = 0 for all

k 6∈ K A.
Third, we show that for any commodity k ∈ K A, πk

e f = β/r . Substituting ∆ and ∆1 in (11), we get

−rπk
ab + rπk

e f − (r + ε)κc1 + rκc2 − β[ab] = 0. Since πk
ab = κc1 = κc2 = 0, we have πk

e f = β/r for all k ∈ K A.

Fourth, we show that for p-cycle c3, κc3 = β/r . Substituting ∆1 and ∆2 in (11), we get −rπk
e f + rπk

i j − rκc2 +

rκc3 = 0. Since πk
i j = κc2 = 0 and πk

e f = β/r , we have κc3 = β/r .

Since (e f ) is chosen from I arbitrarily, we have κc = β/r, ∀c ∈ C̃ I
f . Similarly we obtain πk

a = 0, if a ∈ I , ∀k ∈ K ,

πk
a = 0 if a ∈ I, ∀k 6∈ K A, and πk

a = β/r if a ∈ I, ∀k ∈ K A.
Furthermore, for all c ∈ Ci j

I , there exists a p-cycle c1 ∈ C̃ I
f such that κc = κc1. To see why this is true, consider

any p-cycle c ∈ Ci j
I . This p-cycle c contains some arc (ab) ∈ I and covers the flow on arc (i j). By Claim 1, κc = κc1,

where c1 ∈ C̃ I
f and uses (ab) (either Case 2.a.1 or Case 2.b.1 depending on whether c contains any arcs from AB \ I ).

Therefore, we have κc = β/r for all c ∈ Ci j
I .

Finally, plugging ∆ in (11), we obtain γ = ηβ. This gives β[a] = γ /η, for all a ∈ AB \ I , πk
a = γ /(rη) if

a ∈ I, ∀k ∈ K A, and κc = γ /(rη) for all c ∈ Ci j
I . Thus, we have shown that (11) is a multiple of (10). Multiplying

(11) by rη/γ , we obtain (10). �

Remark 2 (Necessity). Theorem 1 establishes sufficient facet conditions for (6). The condition |A| 6= 2, |B| 6= 2 is
assumed for convenience. However, the remaining facet conditions are necessary: If r = 0, it follows from the MIR
procedure that p-cycle flow partition inequality is dominated by (9) and y A

〈I 〉 + z〈Ca
I 〉 ≥ 0.

For any two disjoint matchings M1, M2 in [AB \ I \ a], there is a p-cycle c crossing the partition using the edges
in the matchings. Consequently, if |M1

∪ M2
| > η, then zc > 0 implies x〈AB \ I \ a〉 > η, in which case (6) is not

tight. In other words, zc = 0 for all points on the face of conv(SNP) defined by (6).

3.2. P-cycle flow subset-Q inequalities

The next class of inequalities are obtained by considering subsets of p-cycle flow partition inequalities (6)
simultaneously. For Q ⊆ AB with q := |Q| ≥ 2, let ηq = dqη/(q − 1)e and rq = qη − (q − 1)bqη/(q − 1)c.

Proposition 3. For partition (A, B) and arc sets Q ⊆ AB with q ≥ 2, I ⊆ AB \ Q, the p-cycle flow subset-
Q inequality

q

r
y A

〈I 〉 +
1
r

∑
a∈Q

z〈Ca
I 〉 + rq x〈[Q]〉 + (rq + 1)x〈[AB \ Q \ I ]〉 ≥ rqηq (12)

is valid for SNP.

Proof. Consider the p-cycle flow partition inequality (6) defined by a ∈ AB and I ⊆ AB \ a, which is

y A
〈I 〉 + z〈Ca

I 〉 + r x〈[AB \ I \ a]〉 ≥ rη. (13)

For Q ⊆ AB \ I , adding (13) for each arc a ∈ Q and dividing the resulting inequality by r(q − 1), we have

q

rq − r
y A

〈I 〉 +
1

rq − r

∑
a∈Q

z〈Ca
I 〉 + x〈[Q]〉 +

q

q − 1
x〈[AB \ Q \ I ]〉 ≥

qη

q − 1
. (14)
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Fig. 5. Feasible solution ∆Q .

We obtain (12) by applying mixed-integer rounding (Lemma 1) to (14) after splitting the fourth term into x〈[AB \

Q \ I ]〉 and x〈[AB \ Q \ I ]〉/(q − 1) and by treating x〈[AB \ Q \ I ]〉 as an integer variable and the remaining
x〈[AB \ Q \ I ]〉/(q − 1) as a non-negative continuous variable, and then multiplying the resulting MIR inequality by
q − 1. �

The next theorem states conditions under which p-cycle flow subset-Q inequalities (12) are strong for SNP. We
need to define the following notation: For a matching M in [AB] and P ⊆ [AB] let MP = M ∩ P .

Theorem 2. For any non-empty partition (A, B) of G and arc set Q ⊆ AB with q > 2, the p-cycle flow subset-Q
inequality (12) with I = ∅ is facet-defining for conv(SNP) if |M1

Q ∪ M2
Q |+d

1
rq

|M1
AB\Q ∪ M2

AB\Q |e(rq +1) ≤ ηq for

all disjoint matchings M1, M2 in [AB], rq > 0, |A| 6= 2, |B| 6= 2, and either q = m or ηm/(m − 1) < bηq/(q − 1)c.

Remark 3. Note that partition inequality (4) is a special case of (12) with I = ∅ and Q = AB. In order to show that
the right-hand side of (4) is tight with c(dA) = dddAem/(m − 1)e, below we illustrate a feasible point of SNP, ∆Q ,
satisfying

rq x〈[Q]〉 + (rq + 1)x〈[AB \ Q]〉 = rqηq (15)

for any Q ⊆ AB. Indeed, ∆Q is the pivotal point used for manipulation to describe other points satisfying (15) for
proving Theorem 2 with similar exchange arguments as in the proof of Theorem 1.

Just like the point ∆ in the proof of Theorem 1, for the point ∆Q all commodities in K ′
= K \ K A \ K B are routed

using arcs in F \ ÂB and covered using p-cycles in C \ C. The rest of the point ∆Q is defined as follows (see Fig. 5):
Pick (ab), (e f ) ∈ Q arbitrarily (q > 2). Let β = ηq −η and Γ = ηq −βbηq/βc (note that ηq > η). We set capacities
of arbitrary bηq/βc edges in [Q] to β, one of them to Γ , and the rest to zero. This can be done as q > ηq/β. Let [H ]

be the set of edges with capacity β. Note that, because ηq ≥ 2β, we have h := |H | ≥ 2. W.l.o.g let [ab] and [e f ] be
two edges in [H ]; i.e., x[ab] = x[e f ] = β and let x[i j] = Γ .

We send the commodities in K A using arcs Q \ (e f ) and the commodities in K B using arcs Q \ (ba) as follows:
For commodities in K A, we route β − ε units on arcs H \ (e f ); and the remainder γ = dA − h(β − ε) is sent on
arc (i j). Similarly, for commodities in K B , we route up to β − ε units on arcs H \ ( f e) until all the flow is sent. If
dB > h(β − ε), the rest is sent on arc ( j i). In Fig. 5, we present the case, where dA = dB and h = 3.

Now, to cover the flow on these arcs, consider p-cycle c1 ∈ C̃ (defined in the proof of Theorem 1) that contains both
(ba) and (e f ) and let zc1 = β − ε/2 so that flow on all arcs in Q̂ (including both (ab) and ( j i)) is covered by c1.
Since we did not route any flow on arcs (ba) and (e f ), the capacity constraints on edges [ab] and [e f ] are not violated.
Finally let ya = 0 for all a ∈ ÂB \ Q and zc = 0 for all c ∈ C \ c1, and xe = 0 for all e ∈ [AB \ Q]. Hence, ∆Q is
feasible and satisfies (15).

Remark 4 (Necessity). The first two conditions of Theorem 2 are necessary: For any two disjoint matchings M1,
M2 in [AB], there is a p-cycle c crossing the partition using the edges in the matchings. If |M1

Q ∪ M2
Q | +

d
1
rq

|M1
AB\Q ∪ M2

AB\Q |e(rq + 1) > ηq , then zc > 0 implies that rq x〈Q〉 + (rq + 1)x〈AB \ Q〉 > rqηq , in which case
(12) is not tight. In other words, zc = 0 for all points on the face of conv(SNP) defined by (12).
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It follows from the MIR procedure that p-cycle flow subset-Q inequality (12) is dominated by p-cycle flow partition
inequalities (6) and non-negativity on the continuous variables if ηq/(q − 1) is an integer, or equivalently rq = 0 (in
particular, if q = 2).

The assumption |A| 6= 2, |B| 6= 2 is made for convenience. When Q 6= AB, the last condition is sufficient to
ensure that there are solutions with positive capacity variables for edges in [AB \ Q] satisfying (12) at equality.

3.3. Special cases

We obtain special cases of the p-cycle flow partition inequality (6) and p-cycle flow subset-Q inequality (12) that
contain only integer capacity variables by letting I = ∅. For partition (A, B) and arc a ∈ AB, we refer to

x〈[AB \ a]〉 ≥ η (16)

as the survivable partition inequality. On the other hand, for partition (A, B) and Q ⊆ AB such that q ≥ 2,

rq x〈[Q]〉 + (rq + 1)x〈[AB \ Q]〉 ≥ rqηq (17)

is referred to as the survivable subset-Q inequality.
Inequalities (16) and (17) are introduced in Bienstock and Muratore [12] and Balakrishnan et al. [8], respectively,

as valid inequalities for GNP and they deserve special attention because separation for them is easier than for the
general inequalities (6) and (12).

Corollary 1. For any non-empty partition (A, B) of G and arc (i j) ∈ AB, the survivable partition inequality (16) is
facet-defining for conv(X (SNP)) if r > 0, |A| 6= 2, and |B| 6= 2.

Corollary 2. For any non-empty partition (A, B) of G and arc set Q ⊆ AB with q ≥ 2, the survivable subset-
Q inequality (17) is facet-defining for conv(X (SNP)) if rq > 0, |A| 6= 2, |B| 6= 2, and either q = m or
ηm/(m − 1) < bηq/(q − 1)c.

3.4. Separation

In this section we discuss separation for the partition inequalities of Sections 3.1 and 3.2 for a given partition
(A, B) of the graph.

3.4.1. P-cycle flow partition inequalities
Given a fractional solution (x, y, z) to linear programming (LP) relaxation of SNP, and a partition (A, B), we are

interested in either finding a ∈ AB and I ⊆ AB \ a such that the corresponding p-cycle flow partition inequality (6)
is violated, or proving that no such inequality exists. Unfortunately, we do not know an efficient way for finding a set
I that would give a violation, if there is any. Given I , it is easy to find an appropriate a in O(m − |I |) time; however,
there are exponentially many choices for I .

Therefore, we present a weaker inequality for which separation is easier. If there is a set I and an arc a for which the
weaker inequality is violated, then so is the corresponding p-cycle flow partition inequality (6). Clearly, the converse
is not true. Thus this approach can be used as a heuristic method for finding p-cycle flow partition cuts. The weakening
given below is based on counting the number of times a p-cycle uses arcs in the set I , which is αc

〈I 〉.

Proposition 4. For partition (A, B), arc a ∈ AB, and arc set I ⊆ AB \ a, inequality

y A
〈I 〉 +

∑
c∈Ca

αc
〈I 〉zc + r x〈[AB \ I \ a]〉 ≥ rη (18)

is valid for SNP. Furthermore, for a given partition (A, B), separation for inequalities (18) can be done in O(m2)

time.

Proof. To see that (18) is a weakening of (6) first observe that z〈Ca
\ Ca

AB\I 〉 ≥ z〈Ca
I 〉. But then, αc

〈I 〉 ≥ 1 for all
c ∈ Ca

\ Ca
AB\I , and αc

〈I 〉 = 0 for all c ∈ Ca
AB\I .
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For efficient separation we introduce to the LP formulation auxiliary variables zb
a =

∑
c∈Ca αc

bzc for each pair
a, b ∈ F . Given arc a, inequality (18) with the smallest left-hand side can be calculated in O(m) time as follows:
Since zb

a is the total slack reserved for all p-cycle variables that use arc b and cover arc a, the contribution of arc
b ∈ AB \ a to the left-hand side of (18) is y A

b + zb
a if it is included in the set I , and is r x [b] otherwise. Thus, we find

inequality (18) with the smallest left-hand side for arc a by choosing I as

I =

{
b ∈ AB \ a : y A

b + zb
a < r x [b]

}
,

which can be done in linear time. Repeating this for each arc a ∈ AB, inequality (18) with the smallest left-hand side
for partition (A, B) can be obtained in O(m2) time. �

We can further reduce the separation effort, by considering a weaker inequality that includes all p-cycle variables
using arcs in I .

Proposition 5. For partition (A, B), arc a ∈ AB, and arc set I ⊆ AB \ a, inequality

y A
〈I 〉 +

∑
c∈C

αc
〈I 〉zc + r x〈[AB \ I \ a]〉 ≥ rη (19)

is valid for SNP. Furthermore, for a given partition (A, B), separation for inequalities (19) can be done inO(m) time.

Proof. Since Ca
⊆ C and αc

〈I 〉zc ≥ 0 for c ∈ C, (19) is a weakening of (18).
For efficient separation we introduce to the LP formulation auxiliary variables zb

=
∑

c∈C αc
bzc for each

b ∈ F . Thus zb is the total slack reserved for p-cycles that cross the partition and contain arc b. Now, define
fb = min{y A

b + zb, r x [b]}. Then, inequality (19) with the smallest left-hand side for partition (A, B) is obtained
by setting a = arg minb∈AB{ fb} and I = {b ∈ AB \ a : y A

b + zb < r x [b]}, which is done in O(m) time. �

3.4.2. Survivable partition inequalities
We now discuss the separation for survivable partition inequalities (16). Observe that for a given partition (A, B)

there are only n survivable partition inequalities, each of which can be checked for violation by x in O(m), giving us
a trivial O(m2) algorithm. However, this can be accomplished more efficiently as shown below.

Proposition 6. For a given partition (A, B), separation for survivable partition inequalities (16) can be done inO(m)

time.

Proof. Compute Xm = x〈[AB]〉 and b = arg max{a ∈ AB : x [a]} in O(m) time. If X − x [b] ≥ η, then no violated
inequality (16) exists. However, if X − x [b] < η, then the most violated survivable partition inequality for partition
(A, B) is given by x〈[AB \ b]〉 ≥ η. �

3.4.3. P-cycle flow subset-Q inequalities
In this section we discuss separation for the p-cycle flow subset-Q inequalities. Given a fractional solution (x, y, z)

to the LP relaxation of SNP and a partition (A, B), we are interested in either finding Q ⊆ AB with q ≥ 2 and
I ⊆ AB \ Q such that corresponding p-cycle flow subset-Q inequality (12) is violated, or proving that no such
inequality exists.

Since p-cycle flow subset-Q inequalities are derived from multiple p-cycle flow partition inequalities (6), their
separation is more involved. As with the p-cycle flow inequalities, we present weaker inequalities than (12) for which
separation is easier. The separation algorithm for these weaker inequalities can then be used as heuristics for finding
p-cycle flow subset-Q cuts.

Proposition 7. For partition (A, B) and arc sets Q ⊆ AB with q ≥ 2, I ⊆ AB \ Q, inequality

q

r
y A

〈I 〉 +
q

r

∑
c∈C

αc
〈I 〉zc + rq x〈[Q]〉 + (rq + 1)x〈[AB \ Q \ I ]〉 ≥ rqηq (20)

is valid for SNP. Furthermore, for a given partition (A, B), separation for inequalities (20) can be done in
O(m2 log m) time.
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Proof. In the proofs of Propositions 4 and 5 we showed that z〈Ca
I 〉 ≤

∑
c∈Ca αc

〈I 〉zc ≤
∑

c∈C αc
〈I 〉zc for a ∈ AB.

Then ∑
a∈Q

z〈Ca
I 〉 ≤

∑
a∈Q

∑
c∈Ca

αc
〈I 〉zc ≤ q

∑
c∈C

αc
〈I 〉zc,

which implies that (20) is a weakening of (12).
For fixed q , the inequality (20) with the smallest left-hand side can be found in O(m log m) time as follows:

Observe that rq and ηq are fixed when q is fixed. For efficient separation we introduce to the LP formulation auxiliary
variables za

=
∑

c∈C αc
azc for each a ∈ F . Thus za is the total slack reserved for p-cycles that cross the partition

and contain arc a. Let fa = min{q/r(y A
a + za), (rq + 1)x [a]}. The contribution of arc a ∈ AB to the left-hand side

of (20) is rq x [a] if it is included in the set Q, and fa otherwise. So we sort the arcs in AB in non-increasing order
of fa − rq x [a] and assign the first q elements to Q, which is done in O(m log m) time. Among the remaining arcs in
AB, we assign arc a to I if q/r(y A

a + za) < (rq + 1)x [a]. Then, since q ≤ m, by repeating this procedure for each q,
separation for (20) is completed in O(m2 log m) time. �

3.4.4. Survivable subset-Q inequalities
We now discuss the separation problem for the survivable subset-Q inequalities (17). Given a fractional solution

(x, y, z) to the LP relaxation of SNP and a partition (A, B), we are interested in either finding Q ⊆ AB with q ≥ 2
such that the corresponding survivable subset-Q inequality (17) is violated, or proving that no such inequality exists.

Proposition 8. For a given partition (A, B), the separation for survivable subset-Q inequalities (17) can be done in
O(m log m) time.

Proof. First observe that the survivable subset-Q inequality can be rewritten as

x〈[AB]〉 + 1/rq x〈[AB \ Q]〉 ≥ ηq ,

where the first term is constant for a given x and is computed in linear time. Then for a fixed q the left-hand side of
the inequality is minimized by picking [Q] as the set of edges with the q largest xe. Then, after sorting xe, e ∈ [AB]

in O(m log m) time, partial sums x〈[AB \ Q]〉 for all 2 ≤ q ≤ m can be computed in linear time incrementally. �

4. Computational experiments

In this section we present computational experiments conducted by using the partition inequalities as cutting planes
for solving SDP. All experiments are performed using CPLEX Version 10.1 MIP solver on a 3MHz Intel Pentium4
Linux workstation with 1GB main memory. Each instance is run up to either five hours or 1,000,000 branch-and-bound
nodes, whichever is reached first.

4.1. Solving the LP relaxation

We solve the LP relaxation of SNP with exponentially many p-cycle variables using column generation. If u and
v denote the dual variables for constraints (2) and (3) of the LP relaxation, respectively, then the reduced cost of a
p-cycle variable zc, c ∈ C can be stated as∑

i j∈F

((u j i − vi j )α
c
i j + ui jρ

c
[i j]). (21)

Rajan and Atamtürk [32] show that the pricing problem for p-cycle variables is NP-hard and describe an effective
polynomial heuristic for identifying p-cycle variables with negative reduced cost.

Here we follow an alternative approach, in which we formulate the pricing problem for p-cycle variables as a
mixed-integer program and solve it with CPLEX. Solving the pricing problem exactly allows us to solve the LP
relaxation of SNP to optimality and, thus, ensures that we have a lower bound on the optimal value for SNP. A p-cycle
variable zc with negative reduced cost can be identified by solving a minimum weight p-cycle problem on G ′, where
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the weight of a p-cycle is defined as in (21). Letting χa, a ∈ F and σi , i ∈ N be binary variables indicating the arcs
and nodes on the p-cycle and τe, e ∈ E the chord edges of the p-cycle, we formulate the problem as

min
∑
i j∈A

(u j i − vi j )χi j +

∑
[i j]∈E

(ui j + u j i )τ[i j]

s.t.: χ〈δ(i)〉 = σi , i ∈ N , (22)

(PPC) χ〈δ(S)〉 ≥ σi + σ j − 1, i ∈ S, j ∈ N \ S, S ⊂ N , (23)

σi − χi j − χ j i ≥ τ[i j], [i j] ∈ E, (24)

χ ∈ {0, 1}
F , σ ∈ [0, 1]

N , τ ∈ [0, 1]
E .

Here δ(S) denotes the set of arcs leaving node set S. Constraints (22) and (23) define a simple directed cycle in G ′.
Observing that u ≤ 0, for a node i on the p-cycle, constraint (24) allows [i j] to be picked as a chord edge in an
optimal solution if only if neither (i j) nor ( j i) is on the p-cycle. Constraint (24) also eliminates cycles with only two
arcs as χi j = χ j i = 1 is infeasible. Thus, feasible directed cycles are limited to p-cycles. Note that binary restriction
on variables σ and τ is not necessary; hence, they are modeled as continuous variables between 0 and 1.

Subtour elimination constraints (23) are added to PPC as they are violated. Their separation problem is a simple i– j
min-cut problem. Our experience with pricing p-cycle variables by solving PPC with CPLEX has shown this approach
to be quite practical. In our experiment CPLEX solves each pricing problem very fast. Moreover, it produces many
p-cycles with negative reduced cost early in the branch-and-bound algorithm before finding an optimal solution. We
add all found p-cycles with negative reduced cost to the LP formulation at each pricing phase.

4.2. Adding cutting planes

After the LP relaxation of SNP is solved to optimality with column generation, using only the p-cycle variables
generated so far, a branch-and-cut algorithm is started. Because the pricing problem PPC is no longer valid after
cutting planes are added to the formulation, we do not generate further p-cycles. However, we keep in the formulation
all p-cycle variables ever found even if they are non-basic. Nevertheless, we may not find a true optimal solution
to SNP because we do not consider other p-cycles once its LP relaxation is solved and, thus, the solution approach
is a heuristic one. The computational results presented in the next subsection show, however, that the objective gap
between the optimal LP and the MIP solutions found is small especially for larger instances.

We generate cutting planes from all unbalanced partitions with up to three nodes on one side of the partition. Recall
that a necessary facet condition for p-cycle flow partition inequalities is that the size of the matchings M1∪M2 crossing
the partition should be sufficiently small. Therefore, unbalanced partitions with small number of nodes on one side of
the partition are more likely to produce strong inequalities. So the number of partitions considered (pre-selected for
separation of cutting planes) is O(|N |

3).
The inequalities are added to the formulation in a hierarchical manner starting with the ones with fastest separation

algorithms. Thus, given a fractional LP solution, we first look for violated survivable partition inequalities (16). If no
more violated cuts of this class are found, we look for violated survivable subset-Q inequalities (17), and then p-cycle
flow partition inequalities (6). We use the exact separation methods described in Propositions 6 and 8 to find violated
survivable partition and subset-Q cuts and the heuristic method in Proposition 4 to find p-cycle flow partition cuts.
We add the most violated subset-Q inequality for each q (see Proposition 8), not just the most violated one for each
partition and do not generate p-cycle flow subset-Q inequalities in these experiments.

When deriving the inequalities in Section 3 we used the demand for commodities K A because they must cross the
partition. For sparse graphs, we may use the demand for K ⊇ K A in writing the inequalities. For example, if there is
a commodity k ∈ K ′ such that all paths between sk and tk cross the partition (A, B), then k ∈ K .

Preliminary experiments have shown that only a few violated cuts are found at the nodes of the search tree other
than the root node. Therefore, in the experiments presented here, the cut separation routines are applied only at the
root node of the tree.

4.3. Results

The experiments are performed on three randomly generated data sets: the first two sets consist of graphs with
average node degrees four and eight; the third set consists of graphs with 75% density. The largest graph has 17 nodes,
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Table 2
Objective values

|N | Degree 4 Degree 8 75% density

LP MIP % gap LP MIP % gap LP MIP % gap

5 74.5 92.5 19.5 74.5 92.5 19.5 74.5 92.5 19.5
6 160.6 194.6 17.5 153.8 171.6 10.4 160.6 194.6 17.4
7 135.5 150.3 9.8 129.4 144.6 10.5 135.5 150.3 9.8
8 181.5 205.0 11.5 166.6 184.6 9.8 166.6 184.6 9.8
9 223.4 232.4 3.9 216.0 227.8 5.2 218.9 230.2 4.9

10 289.6 304.4 4.9 254.0 274.5 7.5 266.9 283.4 5.8
11 350.5 367.7 4.7 340.8 360.7 5.5 342.6 361.7 5.3
12 400.1 413.3 3.2 363.8 384.2 5.3 363.1 383.3 5.3
13 466.5 483.8 3.6 424.2 441.4 3.9 410.3 431.1 4.8
14 528.4 540.5 2.2 498.0 508.8 2.1 487.0 498.9 2.4
15 716.4 730.9 2.0 659.9 676.4 2.5 622.6 640.1 2.7
16 1005.8 1017.2 1.1 945.9 965.4 2.0 922.7 946.0 2.5
17 1076.1 1093.7 1.6 1020.1 1039.3 1.9 985.4 1008.7 2.3

and 34 and 68 edges for the first two sets, and 102 edges for the third set. The demand density of each instance is
set to 50%, i.e., between every pair of nodes, there exists a commodity k with probability 0.5. Demand dk for each
commodity is drawn from Uniform[0, 2]. The objective coefficients are assigned by giving each node a uniformly
generated random coordinate on the unit plane. The flow cost for each arc–commodity pair, gk

a , equals the Euclidean
length of the arc, and the capacity cost of the corresponding edge, h[a], equals 20×gk

a . The data set is available on-line
at http://ieor.berkeley.edu/˜atamturk/data.

Before we present the detailed computational results on the effectiveness of the cutting planes described in the
paper, we list the objective values for the LP relaxation and the integer solutions found for the instances in the data
set in Table 2. The columns under the heading LP give the optimal values for LP relaxation of SNP. Since we price
the p-cycle variables exactly (see Section 4.1), this value represents a true lower bound on the instances. The columns
under the headings MIP and % gap give the objective value of the best integer solution found and the percentage gap
between LP and MIP values. Because we do not generate p-cycles after cuts are added to the formulation, MIP values
are only upper bounds on the optimal values for SNP. Nevertheless, in Table 2 we see that the gap between the MIP
and LP bounds is quite small, especially for larger instances.

Detailed results for graphs with degree 4 are presented in Table 3. The columns under the heading Root LP give
the number of p-cycle variables generated by the column generation algorithm and the time to solve the LP relaxation
(in seconds) at the root node of the branch-and-bound tree. Compared to the overall solution time, the time spent for
solving the root LP relaxation, hence solving PPCs for pricing p-cycle variables, is quite small.

The columns under the heading Default show the performance of default CPLEX without adding any of the
cutting planes described in the paper; though CPLEX adds its own cuts. The gap improvement shown here is the
percentage of the LP gap closed by the CPLEX cuts. Finally, under the heading With Cuts, we report the number
of cuts added for each class (16), (17), (6), the percentage of the LP gap closed, the number of branch-and-bound
nodes, and the total time spent (in seconds) when the cutting planes are used in the computations. With the addition
of partition cuts, the improvement in the LP gap increases from an average of 21%–58%, which reduces the number
of branch-and-bound nodes explored and the total solution time significantly. We should emphasize that the reported
LP gap reduction with the cuts is with respect to the restricted formulation, which contains only the p-cycle variables
generated before the branch-and-cut algorithm starts.

We observe that many more p-cycle flow partition cuts are added compared to subset-Q cuts. Additional
computations (not reported in the table) without p-cycle flow cuts indicate that p-cycle flow partition cuts are effective
in reducing the computational effort especially for the larger problems even though the incremental gap improvement
may not be large. The importance of being able to improve the LP relaxation becomes clear, especially, in the case of
the instance with 12 nodes, for which the cuts were not as effective as for other instances; hence the corresponding
abnormally large solution time.

In Table 4 we report the results of the experiments for graphs with degree 8. Three of the largest instances could
not be solved with default CPLEX within the limits of the experiments. Two of these three could not be solved with

http://ieor.berkeley.edu/~atamturk/data
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Table 3
Experiments with degree 4 graphs

|N | Root LP Default With Cuts

pcyc cpu % gap b&b cpu surv surv pcyc % gap b&b cpu

vars sec impr nodes sec part subQ flow impr nodes sec

5 28 0 28 100 0 6 2 0 67 28 0
6 40 0 35 214 0 20 2 10 88 17 0
7 46 0 20 619 0 7 0 7 73 149 0
8 48 0 39 758 1 9 4 3 70 327 0
9 74 0 22 3 096 6 6 6 7 60 1 057 2

10 62 0 20 8 401 16 15 0 3 53 2 481 5
11 98 1 24 4 131 19 7 0 4 53 1 742 8
12 114 2 15 628 363 2893 5 2 16 29 480 423 2543
13 148 3 12 71 411 434 7 2 9 47 4 470 37
14 168 4 8 38 450 210 10 0 9 67 2 325 15
15 140 5 14 170 240 1032 3 1 3 50 81 722 544
16 152 5 17 144 697 1073 9 1 5 42 20 692 194
17 172 10 24 80 908 895 6 0 3 53 41 843 488

Table 4
Experiments with degree 8 graphs

|N | Root LP Default With Cuts

pcyc cpu % gap b&b cpu sec surv surv pcyc % gap b&b cpu sec

vars sec impr nodes (egap) part subQ flow impr nodes (egap)

5 28 0 28 100 0 6 2 0 67 28 0
6 38 0 17 148 0 21 0 7 100 2 0
7 58 0 27 1 217 2 8 4 6 80 22 0
8 58 0 28 1 314 3 10 14 6 61 540 2
9 86 0 27 13 989 41 14 1 4 45 2 278 9

10 94 1 20 348 546 1371 14 8 6 65 15 542 76
11 116 1 35 200 984 1176 6 4 4 50 12 007 87
12 130 2 29 929 762 7264 5 0 3 38 75 748 615
13 144 4 29 998 047 10 622 10 6 10 65 35 626 420
14 160 5 27 34 665 303 10 7 2 36 12 424 138
15 156 8 18 1000 000 (0.31) 7 0 3 41 1000 000 (0.24)
16 206 12 20 1000 000 (0.68) 9 0 11 50 388 676 6632
17 204 13 26 765 401 (0.4) 4 3 5 47 821 301 (0.34)

the addition of the cuts either. We report the end gap (egap), the gap between best known upper bound and lower
bound, for these problems (with the subset of p-cycles included in the formulation) instead of the solution time. For
the smaller problems that were solved also by default CPLEX, a comparison of branch-and-bound nodes and solutions
times shows that the partition cuts lead to a substantial reduction in the computational effort.

In Table 5 we report the results of the experiments for graphs with 75% edge density. The positive effect of the
partition cuts is also apparent for this case. The cutting planes improve the LP gap and reduce the computation time
significantly. Four of the larger instances could not be solved with either default CPLEX or with the addition of the
cuts within the limits of the experiments. However, the end gap is generally smaller with the cuts.

5. Concluding remarks

We presented a polyhedral study of a model for designing capacitated networks that can survive edge failures by
explicitly reserving slack on p-cycles of the underlying directed graph. Even though the disrupted flow only is rerouted,
the capacity requirement for the model is close to the one achieved by global rerouting models. The minimum capacity
requirement over partitions of the networks achieved by the proposed model equals the one for global rerouting.

We derived strong valid inequalities based on survivability conditions for flows and p-cycles across partitions of the
network. The validity of the inequalities are proved via mixed-integer rounding arguments. Alternative proofs based
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Table 5
Experiments with 75% density graphs

|N | Root LP Default With Cuts

pcyc cpu % gap b&b cpu sec surv surv pcyc % gap b&b cpu sec

vars sec impr nodes (egap) part subQ flow impr nodes (egap)

5 28 0 28 100 0 6 2 0 67 28 0
6 40 0 35 214 0 20 2 10 88 17 0
7 46 0 20 619 0 7 0 7 73 149 0
8 56 0 28 1 527 3 11 9 5 61 381 1
9 70 0 42 4 560 10 9 5 9 54 5 649 14

10 72 1 24 52 506 140 21 21 8 76 2 756 12
11 106 1 32 65 897 348 7 2 5 53 10 940 72
12 134 3 20 1000 000 (0.6) 6 0 5 35 1000 000 (0.1)
13 134 3 38 778 914 8384 8 8 2 48 444 083 6144
14 142 3 33 313 796 3704 13 8 7 50 32 067 431
15 182 10 28 843 201 (0.4) 10 1 4 50 770 546 (0.5)
16 208 12 30 579 801 (0.8) 11 7 7 57 593 801 (0.2)
17 210 12 26 474 101 (0.8) 12 8 3 43 479 521 (0.7)

on strengthening of metric inequalities with survivability restrictions are given in Rajan [31]. The computational
experiments show clearly the effectiveness of the partition cuts in reducing the computational effort of a branch-and-
cut algorithm.

In this study we assumed that the network had no existing capacity and that a single type of facility was available.
If there are multiple types of facilities, inequalities in this paper can be generalized using similar arguments as in
Atamtürk [3], which gives inequalities for network design problems with no survivability requirement for an arbitrary
number of facilities with varying capacities. Existing capacities can be handled indirectly by introducing a new facility
variable and fixing it to one or directly using mixed-integer rounding as done in Bienstock and Günlük [11]. The other
assumption we made in the paper was that installed capacity on an edge could serve flow in both directions up to
this capacity. If this is not the case, i.e., if capacities must be installed separately in each direction, we may do so by
duplicating each edge and fixing to zero one of the flow variables in reverse direction for each copy.
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