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Abstract—This paper presents an integrated distribution lo-
cational marginal pricing (DLMP) method designed to alleviate
congestion induced by electric vehicle (EV) loads in future power
systems. In the proposed approach, the distribution system op-
erator (DSO) determines distribution locational marginal prices
(DLMPs) by solving the social welfare optimization of the electric
distribution system which considers EV aggregators as price
takers in the local DSO market and demand price elasticity.
Nonlinear optimization has been used to solve the social welfare
optimization problem in order to obtain the DLMPs. The efficacy
of the proposed approach was demonstrated by using the bus
4 distribution system of the Roy Billinton Test System (RBTS)
and Danish driving data. The case study results show that the
integrated DLMP methodology can successfully alleviate the
congestion caused by EV loads. It is also shown that the socially
optimal charging schedule can be implemented through a decen-
tralized mechanism where loads respond autonomously to the
posted DLMPs by maximizing their individual net surplus.

Index Terms—Congestion management, distribution en-
gineering, distribution locational marginal prices (DLMPs),
distribution locational marginal pricing (DLMP), distribution
system operator (DSO), electric vehicle (EV), Roy Billinton Test
System (RBTS).

NOMENCLATURE:

Power transfer distribution factor (PTDF)
coefficient of line with respect to a unit
injected at node .

EV charging energy limit at time period at
node .

MVA capacity of line .

Set of all nodes.

Subset of demand nodes.

Subset of nondemand nodes.

Manuscript received January 13, 2013; revised May 01, 2013; accepted Au-
gust 15, 2013. The work was supported in part by the National Science Foun-
dation under Grant IIP 0969016 and by the members of the Power Systems
Engineering Research Center (PSERC). The work of Q. Wu was supported
by a fellowship from the Danish Agency for Science, Technology and Inno-
vation (DASTI) during his research stay in the Department of Industrial Engi-
neering and Operational Research (IEOR), University of California, Berkeley,
CA, USA, from Feb.–May 2012. Paper no. TPWRS-01388-2012.
R. Li and S. S. Oren are with the Department of Industrial Engineering and

Operations Research (IEOR), University of California, Berkeley, CA 94704
USA (e-mail: ruoyang@berkeley.edu; oren@ieor.berkeley.edu).
Q. Wu is with the Center for Electric Power and Energy (CEE), Department

of Electrical Engineering, Technical University of Denmark (DTU), 2800 Kgs.
Lyngby, Denmark (e-mail: qw@elektro.dtu.dk).
Digital Object Identifier 10.1109/TPWRS.2013.2278952

Distribution locational marginal price at time
period at node of the distribution grid.

Benefits from using demand at time period
at node .

System locational marginal price (LMP) at time
period for the node feeding the distribution
grid.

Initial aggregate battery state of charge (SOC)
at node .

Minimum aggregate battery SOC at time period
at node .

Maximum aggregate battery SOC at time
period at node .

Planning periods for optimization.

Conventional household demand at time period
at node .

The subset of generation node(s).

Dual variables for total power flow balance
constraints.

Generation supplied to the distribution grid at
time period .

Net active power import/export at time period
at generation node (positive for import.)

Net active power import/ export at time period
at node (positive for import).

EV charging energy at time period at node .

Dual variables for aggregate EV minimum
SOC constraints.

Dual variables for aggregate EV maximum
SOC constraints.

Dual variables for negative line flow
constraints.

Dual variables for positive line flow constraints.

Dual variables for EV minimum charging
energy constraints.

Dual variables for EV maximum charging
energy constraints.

Dual variables for conventional household
demand constraints.

0885-8950 © 2013 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON POWER SYSTEMS

Dual variables for demand node power balance
constraints.

Demand variables at time period at node .

Dual variables for generation node power
balance constraints.

Dual variables for non-demand node net active
power import/output constraints.

I. INTRODUCTION

E NVIRONMENTAL concerns and the quest for energy
supply independence have resulted in increasing pene-

tration of renewable energy sources (RES) and a move toward
electrification of transportation. Consequently, electric vehicles
(EVs) are expected to play a significant role in the future power
systems and distribution networks. Increased use of EVs will
reduce the green house gas (GHG) emission from the transport
sector by replacing conventional internal combustion engine
(ICE) vehicles while also serving as distributed energy storage
that can mitigate uncertainties arising from intermittent RES.
Numerous studies have addressed vehicle-to-grid (V2G)

technology to investigate the technical and commercial feasi-
bility of providing ancillary service to the grid from EVs. The
capacity from EVs and the economic return to participate in
peak power, spinning reserve and regulation markets have been
explored in [1]–[3]. The effectiveness of using EVs to provide
peak load shaving and extra flexibility has been illustrated in
[4] and [5].
However, the deployment of a large number of EVs will chal-

lenge power system operations especially for distribution net-
works if there is no proper coordination of the EV charging.
Grid congestion results from demand patterns that induce flows
exceeding design limits. Congestion from EVs can be observed
at the medium voltage (MV) level, as demonstrated by a number
of studies [6]–[9]. It was also noted that the problems are likely
to originate on the distribution network and, as such, analysis of
these networks should be conducted as the primary stage of EV
induced congestion [9]–[11].
Grid congestion depends on a number of factors including

local grid rating and topology, penetration and distribution
of EVs, and charging management procedures. Coordinated
charging appears to be an effective means of allowing increased
penetration of EVs without violating grid constraints. There
is some diversity regarding the optimal manner in which to
coordinate charging and the proposed objectives for such
coordination include minimization of losses [7], maximization
of EV penetration [9], and minimization of customer charging
costs [12], [13].
The congestion management methods can be categorized into

three groups: optimal power flow (OPF) based method, price
area congestion control method, and transaction-based methods
[14]. The OPF-based congestion management method is based
on a centralized optimization and is considered to be the most
accurate and effective congestion management method. Price-

based congestion management controls congestion by genera-
tion redispatch in response to congestion prices within an OPF
framework [15].
In the existing work on load management techniques and

other methods for alleviating congestions from EVs, there is no
integrated method which has a closed loop solution accounting
for conventional demand elasticity and EV demand shifting
characteristics. In order to address this problem, the distribution
locational marginal pricing (DLMP) method is proposed for
electric distribution networks in order to alleviate congestion
induced by EVs. In the proposed method, the distribution
system operator (DSO) determines the distribution locational
marginal prices (DLMPs) by solving the social welfare opti-
mization for the electric distribution network which considers
EV aggregators as price takers in the local DSO market and
demand elasticity for residential energy consumption. It is as-
sumed that all of the EV aggregators are economically rational,
i.e., their objective is to maximize their individual surplus.
This paper is organized as follows. The mathematical formu-

lation of the integrated DLMP method and the determination
of DLMPs are presented in Section III. In Section IV, the EV
aggregator-based optimal charging management is described.
The alleviation of congestion induced by EVs within electric
distribution networks is explained in Section V. Case studies
were conducted using the bus 4 distribution networks of the Roy
Billinton Test System (RBTS) [16] and the Danish driving data,
and the case study results are presented in Section VI with de-
tailed discussion to follow in Section VII.

II. DETERMINATION OF DLMPS USING
INTEGRATED OPTIMIZATION

The system LMPs are determined by minimizing the cost of
generations with the physical constraints of the transmission
system respected, which exposes producers and consumers to
the marginal cost of electricity delivery at different locations.
The LMPs can be decomposed into three components: marginal
cost of generation, marginal cost of losses and marginal cost of
congestion [17].
The LMPs can be computed by either ac optimal power flow

(ACOPF) or dc optimal power flow (DCOPF). The DCOPF is
widely used and is considered to be sufficient for LMP calcula-
tion due to its computational efficiency and approximation accu-
racy [18]. The DCOPF has also been employed by several soft-
ware tools for chronological LMP simulation and forecasting,
such as ABB GridViewTM, Siemens Promod, GE MAPSTM,
and PowerWorld [19].
The DCOPF was adopted in the derivation of DLMPs as a

practical approach to address the computational complexity re-
sulting from the large number of nodes within the electric dis-
tribution network. In the proposed DLMP algorithm, the DSO
determines the DLMPs for the next day by solving a constrained
social welfare maximization problem.
The mathematical formulation in [20]–[22] has been mod-

ified to make it more general to allow economic allocation
for both conventional household demand and EV charging
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energy. The mathematical formulation of the DSO optimization
problem is presented as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The DSO objective is to maximize the social surplus in (1)
subject to the energy-balance constraints in (2), the transmission
constraints in (3), the nondemand node constraints in (4), gener-
ation node balance constraints in (5), the demand node balance
constraints in (6), the conventional household demand non-neg-
ativity constraints in (7), the charging energy limit constraints
in (8), and the driving requirement constraints in (9).
For the demand node balance constraints in (6), the assump-

tion is that EVs only charge energy at the location they belong
to, which requires that the energy import is the sum of the
conventional household demand and EV demand at time
period at node . The elastic conventional household demand
is constrained to be non-negative in (7). The EV demand

is constrained between 0 and charging energy limit at time
period at node in (8). varies over time to reflect the avail-
ability of EVs across hours. The SOC of EV batteries at time pe-
riod at node is the sum of its initial SOC and total charging en-
ergy up to time period minus the total driving energy
requirement up to time period . The SOC is constrained be-
tween minimum SOC and maximum SOC in (9). The
variables in parentheses next to each constraint denote the La-
grange multipliers corresponding to that constraint.
The objective function consists of two components, social

value of meeting the conventional demand, given by the area
under the demand functions, and the cost of satisfying both the
EV demand and the conventional demand, as shown in (1). The
benefit of the EV demand is not included in the objective func-
tion since that component is constant, as long as the EV de-
mand is met within the day, and is not affected by the charging
schedule. Instead, a constraint requiring that the EV demand be
met by the schedule is included. To be more specific, the object

function in (1) can be further decomposed into three terms as
shown by

(10)

where
is the social welfare

corresponding to the conventional demand and
is the EV charging cost.

The Karush–Kuhn–Tucker (KKT) optimality conditions for
the social welfare optimization problem are summarized as fol-
lows:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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(27)

(28)

The KKT conditions yield the optimality for the primal
problem and provide an economic interpretation of the La-
grange multipliers. The DLMPs are derived from the KKT
conditions to provide price incentives for market participants
to alleviate congestion and ensure efficient load allocation. By
solving (12), (14), and (15), the marginal value of a unit of EV
charging energy or conventional demand at time period at
node takes the form of

(29)

In the RBTS, the power transfer distribution factor (PTDF)
coefficient associated with the generation node is set to be
0 to enable unlimited import from the grid to the distribution
network, which simplifies (29) and yields

(30)

The DLMPs can be derived by combining (11) and (30) to
yield

(31)

(32)

The non-negativity constraint (7) can be excluded by implic-
itly assuming an interior solution with respect to these con-
straints, forcing the dual variable associated with the constraint

. This can be explained as: every conventional house-
hold consumes at least a small positive amount of energy. Under
this assumption, the DLMPs become

(33)

where . The DLMPs can be inter-
preted as the sum of the reference price and the loca-
tional congestion markup , which is analogous to the mar-
ginal cost of congestion in the LMPs.
Noticing that the LMPs only optimize the dispatch of instan-

taneous demand, the DLMPs are designed to cooptimize the dis-
patch of both the instantaneous demand and the aggregated EV
charging schedule over the planning interval. By rearranging
(16) and (17), can be written as

(34)

where is the mar-
ginal value of energy at nonterminal period at node ,
and is marginal value of energy at terminal period

at node . Combining (11) and (34) gives the DLMPs at
time period at node as a linear combination of the dual vari-
ables associated with constraints of EVs:

(35)

(36)

(37)

where assuming (7) does not bind.
The DLMPs defined by (33) and (37) can be interpreted as

the equilibrium conditions for the electric distribution system
market clearing. The market dynamics and the economic be-
havior of market participants under the DLMPs are discussed
in Section IV.

III. AGGREGATOR-BASED OPTIMAL EV
CHARGING MANAGEMENT

The EV charging management can take different forms:
charging management controlled by individual EV users, ag-
gregator-based charging management and proper mixture of
the two mechanisms. In this paper, the aggregator-based EV
charging management implementation is used.
In the aggregator-based EV charging management concept,

the EV aggregator is a profit-seeking entity who takes care of the
EV fleet on behalf of the EV users, ensures that the energy needs
are satisfied, and provides customized service and charging so-
lution. The objective of EV aggregators is to meet the energy
needs of EV users with the minimum charging cost. It is also
assumed that each EV aggregator only controls a small portion
of the EVs so that EV aggregators do not have market power
and act as price takers in the DSOmarket. The aggregator-based
EV optimal charging management can be described by the op-
timization problem that follows:

(38)

(39)

(40)

The constraints in (39) and (40) are to ensure that the EV
charging energy and the EV battery SOC are within the spec-
ified limits. When the DLMPs, , are known to the
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EV aggregator, the optimization problem is a linear program-
ming problem and the EV aggregator optimally decides ,
the amount of energy to purchase in each hour, to minimize the
charging cost subject to the charging power limit constraints and
the driving requirement constraints. The optimality conditions
of the EV charging are summarized in

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Equations (41)–(42) are the primal feasibility conditions.
Equations (43)–(48) are the dual feasibility conditions. Equa-
tions (49)–(52) are the complementarity conditions.
Theorem 1: The efficient allocation of EV charging of the

DSO problem is optimal for each EV aggregator under the
DLMPs, if the non-negativity constraint of conventional house-
hold demand (7) does not bind.

Proof: It has been shown that the optimal solution of the
DSO problem also satisfies the opti-
mality conditions of the EV aggregator’s problem in (41)–(52).
The optimal solution of the DSO problem satisfies the KKT

conditions (11)–(28). If (7) does not bind, the optimal solution
of the DSO problem satisfies (37) as follows:

This implies that (43) and (44) hold under the optimal
solution . Equations (41), (42), and
(45)–(52) come directly from KKT conditions (25)–(28). Thus,
the efficient allocation of EV charging from the DSO problem
satisfies the optimality conditions of the EV aggregator’s
problem.

Fig. 1. Congestion alleviation from EVs using DLMPs.

Corollary 1: The efficient allocation of the DSO problem
can be achieved in a decentralized system under the

DLMPs, if the non-negativity constraint of conventional house-
hold demand (7) does not bind.

Proof: The conventional household demand is deter-
ministic under the DLMPs. From Theorem 1, it is known that,
under the DLMPs, the optimal solution of the EV aggregator’s
problem is the efficient allocation of EV charging of the DSO
problem . Therefore, the efficient allocation of the DSO
problem can be achieved in the decentralized implementation.

IV. ALLEVIATING CONGESTION FROM EVS WITHIN ELECTRIC
DISTRIBUTION NETWORKS USING DLMP

The intention of the proposed DLMP concept is to alleviate
congestion within electric distribution networks which might be
caused by the EV charging demand. The congestion alleviation
approach using DLMP is illustrated in Fig. 1.
The DSO plays a major role in the DLMP-based congestion

management within electric distribution networks. The concept
can be explained by the following steps.
Step 1) The DSO obtains the LMPs from the posted day-

ahead energy prices.
Step 2) According to the EV data within the electric distribu-

tion network, the expected EV demand will be fore-
casted by the DSO with the assumption that all EV
aggregators are minimizing their EV charging costs.
Conventional demandwill be forecasted by the DSO
according to the posted energy prices.

Step 3) With the information on the forecasted demand, the
DSO calculates the DLMPs at the electric distribu-
tion network level taking into account the electric
distribution network topology.

Step 4) In the end, the DLMPs will be sent to all EV aggre-
gators and retailers.

As proved in Theorem 1 and Corollary 1, after receiving the
DLMPs from the DSO, EV aggregators and retailers will be-
have exactly as the DSO predicts. Consequently, the congestion
on the electric distribution network will be properly managed,
while it only requires EV aggregators and retailers to react ratio-
nally to the DLMPs by maximizing their individual net surplus.
At this point, any additional information of distribution net-
work grid or line congestion is redundant to the decision-making
process of EV aggregators and retailers.
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Fig. 2. Single line diagram of bus 4 distribution system of RBTS [16].

V. CASE STUDIES

In order to illustrate the efficacy of the proposed DLMP con-
cept in alleviating congestion from EV demand, case studies
have been conducted using the bus 4 distribution network of
the RBTS with the Danish driving data.
Fig. 2 illustrates the single line diagram of the electric dis-

tribution system used in the case study. The electric distribu-
tion systems of the RBTS were designed following the general
utility principles and practices regarding topology, ratings and
load levels. They represent typical distribution networks. The
bus 4 distribution system of the RTBS has a relatively com-
plex topology and sufficient number of customers. Therefore,
the bus 4 distribution system of the RTBS was chosen to carry
out case studies. This medium voltage (MV) distribution net-
work is comprised of three supply points (SPs) connected to the
main grid by 33 kV/11 kV transformers, 38 load points (LPs),
and seven feeders. The customer data are listed in Table I.
The customer data consist of customer type, peak and average

loads and number of customers. There are 4779 customers in
total in the electric distribution network. The inverse demand
function at each bus is assumed to be linear with a price elas-
ticity of 0.1. This level of demand price elasticity is consis-
tent with empirical studies in [23]. There are seven feeders in
the electric distribution network. Each of the lines is one of the
three types listed in Table II.

A. EV Data

A nonhomogenous EV fleet is used for the EV charging man-
agement studies. The EV battery size varies according to indi-
vidual EV driving requirements. It is assumed that themaximum
charging power is 1.15 kW (based on a 5 A, 230 V connection).
A typical value of 0.15 kWh/km is used to calculate the energy
consumption while driving [24]. The minimum and maximum
EV battery SOC is set as 20% and 85%, respectively. The initial
EV SOC varies by individual EV, and is set such that individual

TABLE I
CUSTOMER DATA

TABLE II
CONNECTION LINE TYPES

charging and driving requirements can be met. This is in accor-
dance with the nonhomogenous nature of EVs. A summary of
the EV data is listed in Table III.

B. Driving Data

The driving data used in the case studies are from the Danish
National Travel Survey [24]. The Danish driving data were
chosen for the case studies because the driving behavior in
Denmark could be representative of the EV users’ driving
pattern. In Denmark, the average driving distance is about 40
km per day. Customers who need to drive a longer distance
might not choose to use EVs.
The Danish driving data are highly detailed and provide sig-

nificant insight into the driving habits of Danish residents. The
relevant data used in this study are driving stop and start time,
distance during driving periods, and day type. The EV avail-
ability for charging is defined as the periods during which the
EV is parked. The driving profile from the same day type as
the LMPs is used to create a more consistent test case. The EV
availability on a working day is illustrated in Fig. 3. Each hori-
zontal section represents a single EV, with the white color rep-
resenting availability to charge, and the black color representing
time periods when the EV is driving and is therefore unavailable
to charge.

C. Case Study Results

Three case studies listed in Table IV have been carried out.
The EV penetration is defined as the ratio of maximum EV
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TABLE III
EV DATA SUMMARY

Fig. 3. EV availability on a working day.

TABLE IV
CASE STUDY SCENARIOS

charging demand divided by the conventional household peak
demand. The maximum EV charging demand is the sum of the
EV charging demand when all EVs charge simultaneously.
1) Case Study 1: The results of Case Study 1 are shown in

Figs. 4–6. Figs. 4 and 5 illustrate the effect of congestion alle-
viation on Line 1 when the DLMPs are introduced. Comparing
with Fig. 4, the EV loads are spread out under the DLMPs in
Fig. 5 and distributed among several hours with low LMPs, in-
stead of charging all of the EV loads in a single hour. In Fig. 6,
the circles are the system LMP curve and the solid lines are the
DLMPs at different nodes. The DLMPs are slightly higher than
the system LMPs on the buses downstream to the congested line
in order to shift away the EV loads to avoid severe congestion.
2) Case Study 2: The results of Case Study 2 are shown in

Figs. 7–9. In Case Study 2, the system LMP profile is different
from the one in Case Study 1. The low system LMPs occur
both in the morning and in the afternoon. Without the DLMPs,
congestion occurs in both of the two periods on Line 1. With the
proposed DLMP, it is shown in Fig. 8 that the congestion can be
successfully alleviated. The EV loads have been shifted to the
adjacent low LMP hours.
3) Case Study 3: In Case Studies 1 and 2, it is shown that

DLMPs can alleviate the congestion induced by EVs under
100% EV penetration. In order to further illustrate the effec-
tiveness of the proposed DLMP algorithm, studies with one
projected future EV penetration levels have been conducted
shown in Figs. 10 and 11 with 500% EV penetration.

Fig. 4. Line 1 loading without DLMPs of Case 1.

Fig. 5. Line 1 loading with DLMPs of Case 1.

Fig. 6. System LMPs and DLMPs of Case 1.

With 500% EV penetration, the DLMPs are much higher than
the system LMPs and the curve of DLMPs is flat in order to
distribute the EV charging demand across time periods. Line
capacity constraints are not violated shown in Fig. 11. From the
results presented for Case Study 3, it can be concluded that the
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Fig. 7. Line 1 loading without DLMP of Case 2.

Fig. 8. Line 1 loading with DLMP of Case 2.

Fig. 9. System LMPs and DLMPs of Case 2.

DLMP algorithm is a promising approach even with very high
EV penetration, which is very likely to come into existence in
the future.

Fig. 10. DLMP with 500% EV penetration.

Fig. 11. Line 1 loading with 500% EV penetration.

VI. CONCLUSION

An integrated DLMP algorithm has been proposed in order
to handle the congestion within electric distribution networks
faced by the future energy industry. The proposed DLMP
algorithm optimizes social welfare to determine the DLMPs.
These DLMPs can be used as price signals for EV aggregators
to manage congestion within the electric distribution networks.
Case studies with the RBTS electric distribution network and
the Danish driving data have shown the efficacy of the proposed
DLMP concept under the assumption that EV aggregators are
price takers in the DSO market and under the used demand
price elasticity. In a very extreme scenario with 500% EV
penetration, the congestion in the electric distribution network
can be alleviated by introducing the DLMPs. Future work
will mainly cover the extension of existing framework to the
environment where DSO only have imperfect information on
the LMPs and use the forecast LMPs in decision-making.
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