
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [CDL Journals Account]
On: 10 August 2009
Access details: Access Details: [subscription number 912375050]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713645924

Country credit-risk rating aggregation via the separation-deviation model
Dorit S. Hochbaum ab; Erick Moreno-Centeno a

a Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA, USA
b Walter A. Haas School of Business, University of California, Berkeley, CA, USA

Online Publication Date: 01 October 2008

To cite this Article Hochbaum, Dorit S. and Moreno-Centeno, Erick(2008)'Country credit-risk rating aggregation via the separation-
deviation model',Optimization Methods and Software,23:5,741 — 762

To link to this Article: DOI: 10.1080/10556780802402432

URL: http://dx.doi.org/10.1080/10556780802402432

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713645924
http://dx.doi.org/10.1080/10556780802402432
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Optimization Methods & Software
Vol. 23, No. 5, October 2008, 741–762

Country credit-risk rating aggregation via the
separation-deviation model†

Dorit S. Hochbauma,b* and Erick Moreno-Centenoa

aDepartment of Industrial Engineering and Operations Research, University of California, Berkeley,
CA, USA; bWalter A. Haas School of Business, University of California, Berkeley, CA, USA

(Received 30 September 2007; final version received 6 August 2008 )

Country credit-risk ratings are evaluated independently by several agencies. A common method of aggre-
gating the ratings into a single rating is by taking their averages (the averaging method). We show here that
an approach that captures the relative ranking of the countries given by each agency leads to an improved
aggregate rating with respect to several criteria. The approach we use – the separation-deviation model –
was proposed by Hochbaum. We compare the separation-deviation model with the averaging method for
aggregating country credit-risk ratings provided by three different agencies. We show that the aggregate
rating obtained by the separation-deviation model has fewer rank reversals (discrepancies in the rank order-
ing of the countries) than the aggregate rating obtained by the averaging method. We further prove several
properties of the separation-deviation model, including the property that the aggregate rating obtained
by the separation-deviation model agrees with the majority of agencies or reviewers, regardless of the
scale used.

Keywords: network flow; aggregate ranking; country credit-risk ratings; group rating; group decision-
making

1. Introduction

Country credit-risk ratings quantify the risk associated with investing in a given country. Haque
et al. [8] define country credit-risk rating as an estimate of the probability that a country will
fail to pay back the debt it has acquired. To satisfy increasing investors’ needs for information
on countries’ creditworthiness, several agencies periodically publish country credit-risk ratings.
Often there are differences between the agencies’ credit-risk ratings for a particular country. It
is therefore of interest to aggregate those differing views into a coherent rating that represents a
group consensus capturing the different expertise of the rating agencies.

Aggregating credit-risk ratings is a scenario within group decision-making. Group decision-
making concerns the problem of finding a group consensus from the expressed evaluations of K

reviewers (e.g. agencies) in relation to n objects (e.g. countries). The sense in which the aggregate
preferences form a consensus is to be quantified by performance measures.
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742 D.S. Hochbaum and E. Moreno-Centeno

Most often the reviewers’ evaluations are expressed as point-wise scores or ratings, which
means that each reviewer assigns a scalar-valued score to each of the objects. Let rk

i denote the
evaluation of the ith object by the kth reviewer. We refer to a set of point-wise scores {ri} for
i = 1, . . . , n as a rating vector. We differentiate between a full-list setting, where every reviewer
assigns scores to all objects, and a partial-list setting, where each reviewer assigns scores only
to a subset of the objects. This paper addresses the country credit-risk rating aggregation, which
belongs to the full-list setting.

Alternatively, the reviewers’evaluations can be expressed as pairwise comparisons. That is, each
reviewer gives pairwise intensity of preferences between object pairs. The intensity of preference
of the kth reviewer for the ith object over the j th object, pk

ij , may be used either in the additive
(e.g. [2]) or multiplicative sense (e.g. [14]). Here we use intensities of preference in the additive
sense. In this sense, the intensity of preference represents the difference between the strengths of
the two objects compared. We will use the term separation gap to refer to the additive intensity
of a preference.

The aggregation scheme considered here is the separation-deviation model proposed by
Hochbaum [9,10]. To the best of our knowledge, the separation-deviation model is the only
model that permits to combine both kinds of inputs: point-wise scores and pairwise compar-
isons. In this paper, we demonstrate that, even when the input is given only as point-wise
scores, it is useful to consider also the implied separation gaps: pk

ij = rk
i − rk

j . The separation
gaps are scale-independent and are shown to mitigate the effect of inflated scores or shifts in
evaluation scale.

The aggregate rating vector given by the separation-deviation model is the rating vector that
minimizes the total sum of deviation penalties and separation penalties. A deviation penalty is a
(convex) function of the difference between the aggregate score and a point-wise score, assuming
a value of 0 for the argument 0. A separation penalty for a pair of objects i, j is a (convex) function
of the difference between the separation gaps of the aggregate scores and the separation gaps of
the point-wise scores. If this difference is 0 then the penalty is 0.

We prove several properties of the separation-deviation model, including the property that the
aggregate rating obtained by the separation-deviation model agrees with the majority of agencies
or reviewers, regardless of the scale used. The analysis of the separation-deviation model here is
in the full-list setting. The details and assessment on how the separation-deviation model applies
to the partial-list setting are described in a companion paper [12].

There are other rating-aggregation schemes, each resulting in a different outcome. The most
commonly used method, of rating aggregation is the averaging method. In this method, the aggre-
gate score of each country is the average of the point-wise scores that this country received from
all of the reviewers. We assess the performance of the separation-deviation model and compare
the model with the averaging method, using several performance measures. We demonstrate that
in the full-list setting the aggregate rating vector, obtained by the separation-deviation model,
better preserves the relative order of the objects induced by each of the input rating vectors as
compared with the aggregate rating vector obtained by the averaging method.

The main contributions and results here are

(1) Illustrating the benefit of using the separation-deviation model in the credit-risk rating context.
(2) Proving that the aggregate rating vector obtained by the separation-deviation model with

absolute value penalty functions agrees with the majority of reviewers. This demonstrates the
model’s robustness in the presence of individual reviewer’s manipulations.

(3) Showing that the averaging method is a special case of the separation-deviation model with
uniform quadratic penalty functions1.

(4) Presenting an experimental study showing that the aggregate rating vector obtained by the
separation-deviation model with absolute value penalty functions has fewer rank reversals
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Optimization Methods & Software 743

than the aggregate rating vector obtained by the averaging method. Informally, a rank reversal
is a discrepancy in the relative order between a pair of objects when comparing the aggregate
rating vector with the input rating vectors.

(5) Using the separation-deviation model is shown to identify several outliers in the ratings of
the agencies.

The paper is organized as follows: Section 2 gives a review of the separation-deviation model;
Section 3 analyses the robustness properties of the model; Section 4 shows that the averaging
method is special of the separation-deviation model; finally, Section 5 provides the details on the
application of the separation-deviation model to country credit-risk aggregation.

2. Preliminaries and definitions

2.1 Review of the separation-deviation model

The separation-deviation model was proposed by Hochbaum [9,10] and Hochbaum and Levin [11].
The separation-deviation model can be applied in scenarios where the input is either point-wise
scores or pairwise comparisons or any combination of both. Here we use it for the full-list setting
and point-wise scores.

A set of separation gaps, pij , is said to be consistent if for all triplets i, j, k, pij + pjk = pik .
Consistency is equivalent to the existence of a set of weights ωi for i = 1, . . . , n so that pij =
ωi − ωj . Such vector of weights is not unique, since for any consistent set of weights ω1, . . . , ωn

and a scalar c, the set ω1 + c, . . . , ωn + c is also a consistent rating vector.
Let the variable xi be the aggregate score of the ith object, and the variable zij be the aggregate

separation gap of the ith over the j th object. The mathematical programming formulation of the
separation-deviation model, given in [11] is:

(Sep–Dev) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

f k
ij (zij − pk

ij ) +
K∑

k=1

n∑
i=1

gk
i (xi − rk

i ) (1a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n). (1b)

In (Sep–Dev) the function, f k
ij (zij − pk

ij ) is the separation penalty function of the deviation from
the separation gap on the pair (i, j) given by the kth reviewer. The function gk

i (xi − rk
i ) is the

deviation penalty function of the deviation from the point-wise score on the ith object given by
the kth reviewer. The functions f k

ij () and gk
i () are convex functions that assume the value 0 for the

argument 0. Constraint (1b) enforce the consistency of the aggregate separation gaps conforming
to the aggregate rating vector.

One of the advantages of the (Sep–Dev) is its ability to incorporate imprecise beliefs, or less than
full confidence in some of the point-wise scores or separation gaps. Higher (lower) confidence
levels are implicit in the use of higher (lower) penalties for deviating from the scores or separation
gaps. This allows differentiating between reviewers according to their expertise in evaluating
specific objects or specific pairwise comparisons.

2.2 The separation model

We refer to the separation-deviation model with no deviation functions, or gk
i () ≡ 0 for k =

1, . . . , K , as the separation model. In the separation model, for any feasible solution x and any
constant c, x + ce (where e is the vector of ones) is also a feasible solution with the same objective
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744 D.S. Hochbaum and E. Moreno-Centeno

value. Therefore, the separation model has an infinite number of optimal solutions. To avoid this,
we set the rating of an arbitrarily selected anchor node to zero, e.g. x1 = 0. The other aggregate
scores xi for i = 2, . . . , n are then relative to this ‘anchor’value. The mathematical representation
of the separation model as optimization problem is:

(Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

f k
ij (zij − pk

ij ) (2a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n) (2b)

x1 = 0. (2c)

2.3 Existence and uniqueness of an optimal solution

For both (Sep–Dev) and (Sep), it is easy to see that a feasible solution always exists. This holds
since, e.g. for some k, the solution xi = rk

1 for i = 1, . . . , n and zij = xi − xj for i, j = 1, . . . , n,
is obviously feasible. The uniqueness of the optimal solution is guaranteed when the functions
f k

ij () and gk
i () are strictly convex functions. Otherwise the separation-deviation model might have

multiple optimal solutions.

3. Robustness of the separation-deviation model

3.1 Robustness of the absolute value separation problem

The absolute value separation problem, (‖, Sep) is formulated as follows:

(‖, Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

uk
ij |zij − pk

ij | (3a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n) (3b)

x1 = 0. (3c)

We denote an optimal solution to (‖, Sep) as x|S|.
In this section, we show that for the full-list setting (‖, Sep) is robust in that it resists manipulation

by a minority of the reviewers. For this purpose, we prove that x|S| agrees with the (weighted)
majority of reviewers.

DEFINITION 3.1 A rating vector x is said to be equivalent under translation to the rating vector
x̃ if there exists a constant c, such that xi = x̃i + c for i = 1, . . . , n.

The relation of equivalence under translation is reflexive, symmetric, and transitive. As such,
it partitions the set of rating vectors into equivalence classes.

The following lemma is needed in the proof of the property of ‘resistance to manipulation by
a minority of reviewers’. The problem analysed in the lemma is a special case of the weighted
median on a line and the weighted median on a graph, which were studied extensively in [4,6].
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Optimization Methods & Software 745

LEMMA 3.2 Given the optimization problem y∗ = argmin
∑K

k=1 wk|y − ak|, where wk ≥ 0 for
k = 1, 2, . . . , K . If there is a weight wi such that wi > 1/2

∑K
k=1 wk , then the optimal solution

to the problem is y∗ = ai .

Proof Suppose by contradiction that there exists an optimal solution of the form y∗∗ = ai − δ for
some δ > 0, then it follows from simple arithmetic calculations that y∗ = ai has a strictly lesser
objective value. The same holds for any solution of the form y∗∗ = ai + δ for some δ > 0. �

THEOREM 3.3 For (‖, Sep), if a subset S of reviewers has rating vectors equivalent under trans-
lation, and S is a weighted majority for every pair i, j , i.e.

∑
k∈S uk

ij > 1/2
∑K

k=1 uk
ij , then x|S| is

equivalent under translation to rating vector of the weighted majority, i.e. x|S| is equivalent under
translation to every ri , i ∈ S.

Proof Omitting constraint (3b) decomposes the problem to several optimization problems, one
for each zij . Each of these optimization problems, z∗

ij = argmin
∑K

k=1 uk
ij |zij − pk

ij | for i, j =
1, 2, . . . , n, is of the form described in Lemma 3.2. Since the reviewers in S have rating vectors
equivalent under translation, we have that pk

ij = pS
ij for all k ∈ S. Furthermore, since S is a

weighted majority, then uS
ij = ∑

k∈S uk
ij >

∑K
k=1 uk

ij . Therefore, by Lemma 3.2, z∗
ij = pS

ij . Finally,
since (by construction) the separation gaps pS

ij are consistent in the additive sense, it follows that by
setting x1 = 0 and xi = z∗

i1 + x1 for i = 2, . . . , n, we obtain a rating vector satisfying constraints
(3b) and (3c). In particular, this rating vector is equivalent under translation to all of the rating
vectors of the reviewers in S. �

COROLLARY 3.4 For problem (‖, Sep), with two reviewers, K = 2, if all the penalty weights of
reviewer 1 dominate the penalty weights of the reviewer 2 (i.e. u1

ij > u2
ij for every pair i, j), then

any optimal solution to (‖, Sep), is an aggregate rating vector equivalent under translation to the
rating vector of reviewer 1.

Let the unweighted absolute value separation problem, (‖, Sep, 1), refer to (‖, Sep) with
uk

ij = 1, for i, j = 1, . . . , n and k = 1, . . . , K .
From Theorem 3.3, we have the following corollaries.

COROLLARY 3.5 For (‖, Sep, 1), if a simple majority of reviewers has rating vectors equivalent
under translation, then any optimal solution to (‖, Sep, 1) is an aggregate rating vector equivalent
under translation to every rating vector of each of the reviewers in the majority.

COROLLARY 3.6 The problem (‖, Sep, 1) with two reviewers, K = 2, has an infinite number
of optimal solutions. Two of the solutions are equivalent under translation to the (input) rating
vectors of reviewer 1 and reviewer 2. And any convex linear combination of these two rating
vectors is an optimal solution as well.

In contrast to (‖, Sep, 1), the solution to the averaging method does not have the property of
agreeing with the majority. An example shown in Table 1 demonstrates that a single reviewer
(reviewer 3) can dominate the aggregate rating vector solution of the averaging method by manip-
ulating his/her rating scale. The aggregate rating obtained by the averaging method is denoted in
Table 1 as xAvg.

Theorem 3.3 applies only when the penalty function used in (Sep) is the absolute value function
(it applies exclusively for (‖, Sep)) and cannot be extended to other convex penalty functions. It
does not even hold for convex quadratic penalty functions, as shown in the example in Table 2,
where the third reviewer dominates the aggregate ratings even though reviewers 1 and 2 had the
same ratings.
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746 D.S. Hochbaum and E. Moreno-Centeno

Table 1. Aggregate rating vector xAvg obtained by the averaging method.

Reviewer 1 Reviewer 2 Reviewer 3 xAvg

Object 1 1 1 13 5
Object 2 2 2 10 4.67
Object 3 3 3 7 4.33
Object 4 4 4 4 4
Object 5 5 5 1 3.66

Table 2. Aggregate rating obtained by solving (Sep) with f k
ij (y) = y2 for all i, j, k.

Reviewer 1 Reviewer 2 Reviewer 3 Aggregate rating

Object 1 1 1 25 4
Object 2 2 2 20 3
Object 3 3 3 15 2
Object 4 4 4 10 1
Object 5 5 5 5 0

3.2 Robustness of the absolute value separation-deviation problem

We define the absolute value separation-deviation problem, (‖, Sep–Dev) as follows:

(‖, Sep–Dev) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

uk
ij |zij − pk

ij | +
K∑

k=1

n∑
i=1

vk
i |xi − rk

i | (4a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n). (4b)

Let an optimal solution to (‖, Sep–Dev) by denoted by x|SD|.
In this section, we show that, for the full-list setting and under certain restrictions, any optimal

solution to (‖, Sep–Dev) is an aggregate rating vector identical to the rating vector of the majority
of reviewers.

THEOREM 3.7 For (‖, Sep–Dev), if a subset S of reviewers has identical rating vectors rS and
S is a weighted majority for both the deviation and the separation terms (i.e.

∑
k∈S uk

ij >

1/2
∑K

k=1 uk
ij for any pair i, j and

∑
k∈S vk

i > 1/2
∑K

k=1 vk
i for every i), then x|SD| is equal to rS .

Proof Omitting constraint (4b) decomposes the problem into the following optimization
problems:

z∗
ij = argmin

K∑
k=1

uk
ij |zij − pk

ij | for i = 1, . . . , n; j = i + 1, . . . , n (5)

x∗
i = argmin

K∑
k=1

vk
i |xi − rk

i | for i = 1, 2, . . . , n. (6)

All of the problems are of the form described in Lemma 3.2. Since the reviewers in S have identical
rating vectors, we have that pk

ij = pS
ij and rk

i = rS
i for all k ∈ S. Therefore by Lemma 3.2, we

have that z∗
ij = pS

ij and x∗
i = rS

i . Since the separation gaps were derived from the rating vectors by
setting pk

ij = rk
i − rk

j , it follows that z∗
ij = x∗

i − x∗
j , and so constraint (4b) is satisfied. Therefore,
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Optimization Methods & Software 747

the optimal solution to the separation-deviation problem is an aggregate rating vector identical to
all the rating vectors of the weighted majority of reviewers. �

COROLLARY 3.8 For problem (‖, Sep–Dev) with two reviewers, K = 2, if all the penalty weights
of reviewer 1 dominate the penalty weights of the reviewer 2 (i.e. u1

ij > u2
ij for every pair i, j ,

and v1
i > v2

i for all i), then the optimal solution to (‖, Sep–Dev) is an aggregate rating vector
identical to the rating vector of reviewer 1.

Let the unweighted absolute value separation-deviation problem, (‖, Sep–Dev, 1), refer to (‖,
Sep–Dev) with uk

ij = vk
i = 1, for i, j = 1, . . . , n and k = 1, . . . , K .

From Theorem 3.7, we have the following corollaries.

COROLLARY 3.9 For (‖, Sep–Dev, 1), if a simple majority of reviewers has identical rating vec-
tors, then the optimal solution to (‖, Sep–Dev, 1) is an aggregate rating vector identical to the
rating vector of the majority.

COROLLARY 3.10 The problem (‖, Sep−Dev,1) with two reviewers, K = 2, has an infinite num-
ber of optimal solutions. Two of the solutions are identical to the (input) rating vectors of reviewer
1 and reviewer 2. And any convex linear combination of these two rating vectors is an optimal
solution as well.

Theorem 3.7 for (‖, Sep–Dev) is weaker than the corresponding Theorem 3.3 for (‖, Sep) in that
it requires the rating vectors of the majority to be identical rather than just being equivalent under
translation. Since there are O(Kn2) separation penalty terms and only O(Kn) deviation penalty
terms in the separation-deviation problem, one might think that it is possible to make Theorem
3.7 as strong as Theorem 3.3. The example shown in Table 3 proves that this is impossible.

Still, Table 3 data is a pathological instance of the problem. To demonstrate that, we show in
Table 4 that with a minor perturbation in the data, x|SD| is equivalent under translation to the rating
vectors of the majority (reviewers 1 and 2).

One might still prefer (‖, Sep–Dev) to (‖, Sep) since, even though it is only guaranteed to satisfy
the weaker theorem, it tends to have an optimal solution on a ‘similar’ scale to the input rating
vectors. An example illustrating this ‘similarity’ is shown in Table 5.

Table 5 provides an instance where x|S| and x|SD| are equivalent under translation to the ratings
given by the majority of reviewers (i.e. reviewers 1 and 2). The advantage of x|SD|, is that its scale
is closer to the scale used by the reviewers.

Table 3. x|S| is equivalent under translation to the rating vector of the majority,
but x|DS| is not.

Reviewer 1 Reviewer 2 Reviewer 3 x|S| x|SD|

Object 1 1 4 517 0 4
Object 2 2 5 3 1 3

Table 4. Both x|S| and x|SD| are equivalent under translation to the rating vector
of the majority.

Reviewer 1 Reviewer 2 Reviewer 3 x|S| x|SD|

Object 1 1 4 516 0 4
Object 2 2 5 3 1 5
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748 D.S. Hochbaum and E. Moreno-Centeno

Table 5. x|DS| is closer to the input rating vectors than x|S|.

Reviewer 1 Reviewer 2 Reviewer 3 x|SD| x|S|

Object 1 100 700 600 400 0
Object 2 200 800 500 500 100
Object 3 300 900 400 600 200

So far, we have shown that: (1) x|S| is equivalent under translation to the majority rating; (2)
(under stronger assumptions) x|SD| is identical to the majority rating; and (3) depending on the
choice of anchoring (generally x1 = 0), x|SD| is closer than x|S| to the scale of the input rating
vectors. Next we show that, with a minor adjustment to (‖, Sep–Dev), we can obtain all of these
desirable properties in a single model.

We note that (‖, Sep–Dev) is a multi-objective problem. The first objective is to minimize the
separation penalty, and the second objective is to minimize the deviation penalty. So far we have
minimized an unweighted sum of these two (possibly conflicting) objectives. However, we can
obtain all of the desired properties by minimizing a weighted sum of the separation penalty and
the deviation penalty. In particular, we propose the following problem:

(‖, M · Sep–Dev) min
x,z

M ·
K∑

k=1

n∑
i=1

n∑
j=i+1

uk
ij |zij − pk

ij | +
K∑

k=1

n∑
i=1

vk
i |xi − rk

i | (7a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n), (7b)

where M is a large number so that the separation penalty is lexicographically more important than
the deviation penalty. By lexicographically more important, we mean that the separation penalty
is the dominant term in the optimization problem so that the deviation penalty is only used to
choose among the feasible solutions with minimum separation penalty. In practice, it suffices to
select M satisfying

M ≥ n · (max
ik

rk
i − min

ik
rk
i ) · maxik vk

i

minijk uk
ij

.

We denote an optimal solution to (‖, M· Sep–Dev) as xMSD.

Observation 3.11 The optimal solution to (‖, M· Sep–Dev) is the rating vector that minimizes
the deviation penalty among all the rating vectors in the set of all optimal solutions to (‖, Sep).

THEOREM 3.12 An optimal solution to (‖, M · Sep–Dev) has the following properties:

(1) If a subset S of reviewers has identical rating vectors and S is a weighted majority, then xMSD

is identical to the rating vectors of the majority.
(2) If a subset S of reviewers has rating vectors equivalent under translation, and S is a weighted

majority, then xMSD is equivalent under translation to the rating vectors of the majority.

Proof It is easy to see that, letting the weights of the separation terms to be M · uk
ij , property

(1) follows from Theorem 3.7. Property (2) follows from Observation 3.11, Theorem 3.3, and the
fact that if two rating vectors are identical, then they are also equivalent under translation. �
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4. The equivalence between uniform quadratic separation-deviation problem
and the weighted averaging method

The mathematical formulation of the uniform quadratic separation-deviation problem, (()2, Sep–
Dev), is given in Equation (8).

(()2, Sep–Dev) min
x,z

λ

K∑
k=1

n∑
i=1

n∑
j=i+1

wk(zij − pk
ij )

2 +
K∑

k=1

n∑
i=1

wk(xi − rk
i )2 (8a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n). (8b)

Here λ is a parameter that allows to vary the relative importance of the separation penalty to the
deviation penalty. Note that in (()2, Sep–Dev), the weights wk depend only on the reviewer and
not on the object or object-pair as in (Sep–Dev). We denote an optimal solution to (()2, Sep–Dev)
as x(SD)2

.
Let the weighted averaging method be the rating aggregation method where the aggregate score

of each object is the weighted average of the point-wise scores of all reviewers for this object.
The following theorem establishes that in the full-list setting (()2, Sep–Dev) is equivalent to the
weighted averaging method.

THEOREM 4.1 The optimal solution to (()2, Sep–Dev) is the same as the aggregate rating vector
solution to the weighted average method, that is, x∗

i = ∑K
k=1 wkrk

i /W for i = 1, 2, . . . , n, and
z∗
ij = x∗

i − x∗
j , where W = ∑K

k=1 wk .

Proof Omitting constraint (8b) decomposes the problem to separate optimization problems for
each zij and each xi . Each of this problems is of the form miny

∑K
k=1 αk(y − rk)2. It is easy to see

that this unconstrained optimization problem achieves its minimum at y∗
i = ∑

k αkrk/
∑

k αk .
Therefore, the optimal solution to the optimization problem obtained by omitting constraint

(8b) is:

x∗
i =

∑
k wkrk

i

W
for i = 1, . . . , n (9)

z∗
ij =

∑
k λwk(rk

i − rk
j )

λW
=

∑
k wk(rk

i − rk
j )

W
for i = 1, . . . , n; j = i + 1, . . . , n. (10)

Since z∗
ij =

(∑
k wk(rk

i − rk
j )

)
/W = ∑

k wkrk
i /W − ∑

k wkrk
j /W = x∗

i − x∗
j , constraint

(8b) is satisfied by x∗
i and z∗

ij given in Equations (9) and (10). �

The analogous separation model with uniform quadratic is formulated as follows:

(()2, Sep) min
x,z

K∑
k=1

n∑
i=1

n∑
j=i+1

wk(zij − pk
ij )

2 (11a)

such that zij = xi − xj (i = 1, . . . , n; j = i + 1, . . . , n). (11b)

COROLLARY 4.2 The optimal solution to (()2, Sep) is an aggregate rating vector identical to the
aggregate rating vector obtained by the weighted averaging method, x∗

i = ∑K
k=1 wkrk

i /W for
i = 1, 2, . . . , n, and z∗

ij = x∗
i − x∗

j , where W = ∑K
k=1 wk .

We conclude that, in the full-list setting, the optimal solution to (()2, Sep–Dev) and (Sep) is
the weighted average of the point-wise scores of each object. Therefore, the separation-deviation
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750 D.S. Hochbaum and E. Moreno-Centeno

model offers no advantage compared with the weighted averaging method in this case. However,
this equivalence does not carry to the partial-list setting. Indeed we show in [12] that, in the
partial-list setting, (()2, Sep–Dev) and (()2, Sep) give a better aggregate rating vector than the
weighted averaging method.

5. Experimental study

We set up an experimental study using the separation-deviation model for the purpose of aggre-
gating country credit-risk rating vectors. We use the credit-risk ratings given by Standard and
Poor’s (S&P), Moody’s (Mdy) and The Institutional Investor (InsI) in 1998 as the data. The input
data2 used is given in Table 6.

One challenge with this data is that each of the three agencies has its own rating scale: S&P
uses an alphabetical rating scale (shown in the ‘S&P scale’ column in Table 7) ranging from low
end at SD, CC through AAA; Mdy uses an alphanumerical rating scale (shown in the ‘Moody’s

Table 6. Country credit-risk ratings by country and rating agency.

Country S&P Mdy InsI

Argentina BB Ba3 42.70
Australia AA+ Aa2 74.30
Austria AAA Aaa 88.70
Belgium AA+ Aa1 83.50
Bolivia BB− B1 28.00
Brazil B+ B2 37.40
Canada AA+ Aa1 83.00
Chile A− Baa1 61.80
China BBB A3 57.20
China-HK A A3 61.80
Colombia BB+ Baa3 44.50
Costa Rica BB Ba1 38.40
Croatia BBB− Baa3 39.03
Cyprus A A2 57.30
Czech Republic A− Baa1 59.70
Denmark AA+ Aa1 84.70
Dominican Republic B+ Ba2 28.10
Egypt BBB− Ba1 44.40
El Salvador BB+ Ba2 31.20
Estonia BBB+ Baa1 42.80
Finland AA+ Aaa 82.20
France AAA Aaa 90.80
Germany AAA Aaa 92.50
Greece A− Baa1 56.10
Hungary BBB Baa2 55.90
Iceland A+ Aa3 67.00
India BB Ba2 44.50
Indonesia CCC+ B3 27.90
Ireland AA+ Aaa 81.80
Israel A− A3 54.30
Italy AA Aa3 79.10
Japan AAA Aa1 86.50
Jordan BB− Ba3 37.30
Kazakhstan B+ Ba3 27.90
Korea Republic BBB Ba1 52.70
Latvia BBB Baa2 38.00
Lebanon BB− B1 31.90
Lithuania BBB− Ba1 36.10

(Continued)
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Table 6. Continued.

Country S&P Mdy InsI

Malaysia BBB Baa3 51.00
Malta A A3 61.70
Mexico BB Ba2 46.00
Morocco BB Ba2 43.20
Netherlands AAA Aaa 91.70
New Zealand AA+ Aa2 73.10
Norway AAA Aaa 86.80
Pakistan B− Caa1 20.40
Panama BB+ Ba1 39.90
Paraguay B B2 31.30
Peru BB Ba3 35.00
Philippines BB+ Ba1 41.30
Poland BBB Baa3 56.70
Portugal AA Aa2 76.10
Romania B− B3 31.20
Russia SD B3 20.00
Singapore AAA Aa1 81.30
Slovak Republic BB+ Ba1 41.30
Slovenia A A3 58.40
South Africa BB+ Baa3 45.80
Spain AA+ Aa2 80.30
Sweden AA+ Aa2 79.70
Switzerland AAA Aaa 92.70
Thailand BBB− Ba1 46.90
Trin & Tobago BBB− Ba1 43.30
Tunisia BBB− Baa3 50.30
Turkey B B1 36.90
UK AAA Aaa 90.20
USA AAA Aaa 92.20
Uruguay BBB− Baa3 46.50
Venezuela B B2 34.40

Table 7. Conversion from S&P and Mdy’s rating
scales to a numeric scale.

S&P scale Moody’s scale Converted scale

AAA Aaa 100.00
AA+ Aa1 95.00
AA Aa2 90.00
AA− Aa3 85.00
A+ A1 80.00
A A2 75.00
A− A3 70.00
BBB+ Baa1 65.00
BBB Baa2 60.00
BBB− Baa3 55.00
BB+ Ba1 50.00
BB Ba2 45.00
BB− Ba3 40.00
B+ B1 35.00
B B2 30.00
B− B3 25.00
CCC+ Caa1 20.00
CCC Caa2 15.00
CCC− Caa3 10.00
CC Ca 5.00
SD/D C 0.00
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752 D.S. Hochbaum and E. Moreno-Centeno

scale’ column in Table 7) ranging from low end at C, Ca through Aaa; and InsI uses a numeric
scale ranging from high end at 100 through 0. Several authors (e.g. [5,7]) converted S&P and
Mdy rating scales to the numeric scales shown in the ‘converted scale’ column of Table 4. This
converted scale ranges from 0 to 100, where a lower numeric value denotes a higher probability
of default. Note that in this scale the differences in the values assigned are constant for any pair
of consecutive rating categories.

Let (‖, M· Sep–Dev, 1), refer to (‖, M· Sep–Dev) with uk
ij = vk

i = 1, for all i, j, k. We use
(‖, M· Sep–Dev, 1), as no a priori estimates are available on the relative expertise of each agency.

We obtain the aggregate country-credit-risk rating vector by solving (‖, M· Sep–Dev, 1). We
refer to the solution of (‖, M· Sep–Dev, 1) as the aggregate MSD1 rating, xMSD1, and to the
aggregate rating vector obtained by the averaging method as the aggregate averaging rating, xAvg.
The (converted) S&P’s rating vector is denoted by rSP, the (converted) Mdy’s rating vector by
rMdy and the InsI’s rating vector by rInsI. These rating vectors are given in Table 8.

Table 8. Input and output for the country credit-risk aggregation problem.

Country rSP rMdy rInsI rMSD xAvg

Argentina 45 40 42.7 44.1 42.6
Australia 95 90 74.3 90.0 86.4
Austria 100 100 88.7 99.1 96.2
Belgium 95 95 83.5 94.1 91.2
Bolivia 40 35 28.0 36.5 34.3
Brazil 35 30 37.4 34.1 34.1
Canada 95 95 83.0 94.1 91.0
Chile 70 65 61.8 69.1 65.6
China 60 70 57.2 65.7 62.4
China-HK 75 70 61.8 70.3 68.9
Colombia 50 55 44.5 53.0 49.8
Costa Rica 45 50 38.4 46.9 44.5
Croatia 55 55 39.0 54.1 49.7
Cyprus 75 75 57.3 74.1 69.1
Czech Republic 70 65 59.7 68.2 64.9
Denmark 95 95 84.7 94.1 91.6
Dominican Republic 35 45 28.1 36.6 36.0
Egypt 55 50 44.4 52.9 49.8
El Salvador 50 45 31.2 45.0 42.1
Estonia 65 65 42.8 64.1 57.6
Finland 95 100 82.2 94.8 92.4
France 100 100 90.8 99.3 96.9
Germany 100 100 92.5 100.0 97.5
Greece 70 65 56.1 65.0 63.7
Hungary 60 60 55.9 60.0 58.6
Iceland 80 85 67.0 79.8 77.3
India 45 45 44.5 45.0 44.8
Indonesia 20 25 27.9 25.0 24.3
Ireland 95 100 81.8 94.8 92.3
Israel 70 70 54.3 69.1 64.8
Italy 90 85 79.1 87.6 84.7
Japan 100 95 86.5 95.0 93.8
Jordan 40 40 37.3 40.0 39.1
Kazakhstan 35 40 27.9 36.4 34.3
Korea Republic 60 50 52.7 58.3 54.2
Latvia 60 60 38.0 59.1 52.7
Lebanon 40 35 31.9 39.1 35.6
Lithuania 55 50 36.1 50.0 47.0
Malaysia 60 55 51.0 58.8 55.3
Malta 75 70 61.7 70.2 68.9

(Continued)
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Table 8. Continued.

Country rSP rMdy rInsI rMSD xAvg

Mexico 45 45 46.0 45.0 45.3
Morocco 45 45 43.2 45.0 44.4
Netherlands 100 100 91.7 100.0 97.2
New Zealand 95 90 73.1 90.0 86.0
Norway 100 100 86.8 99.1 95.6
Pakistan 25 20 20.4 24.1 21.8
Panama 50 50 39.9 49.1 46.6
Paraguay 30 30 31.3 30.0 30.4
Peru 45 40 35.0 43.3 40.0
Philippines 50 50 41.3 49.8 47.1
Poland 60 55 56.7 59.1 57.2
Portugal 90 90 76.1 89.1 85.4
Romania 25 25 31.2 25.0 27.1
Russia 0 25 20.0 24.1 15.0
Singapore 100 95 81.3 95.0 92.1
Slovak Republic 50 50 41.3 49.8 47.1
Slovenia 75 70 58.4 70.0 67.8
South Africa 50 55 45.8 54.1 50.3
Spain 95 90 80.3 90.0 88.4
Sweden 95 90 79.7 90.0 88.2
Switzerland 100 100 92.7 100.0 97.6
Thailand 55 50 46.9 54.1 50.6
Trin & Tobago 55 50 43.3 51.8 49.4
Tunisia 55 55 50.3 55.0 53.4
Turkey 30 35 36.9 35.0 34.0
UK 100 100 90.2 99.1 96.7
USA 100 100 92.2 100.0 97.4
Uruguay 55 55 46.5 55.0 52.2
Venezuela 30 30 34.4 30.0 31.5

5.1 Analysis of results

In this section, we analyse the optimal solution to (‖, M· Sep–Dev, 1), xMSD1. The analysis involves
comparing the degree of agreement between xMSD1 and each agency’s rating vectors.

For given penalty functions fij (), we define the vector-separation distance between two rating
vectors a and b to be

∑n
i=1

∑n
j=i+1 fij (p

a
ij − pb

ij ) and the scalar-separation distance between
two rating-pairs {ai, aj } and {bi, bj } to be fij (p

a
ij − pb

ij ), where pa
ij = ai − aj and pb

ij = bi − bj .
Similarly, for given penalty functions gi() we define the vector-deviation distance between two
rating vectors a and b to be

∑n
i=1 gi(ai − bi) and the scalar-deviation distance between two

ratings ai and bi to be gi(ai − bi). When fij (y) = |y| (fij (y) = y2) will refer to the absolute
value (quadratic) vector-separation distance. Finally, when gi(y) = |y| (gi(y) = y2) will refer
to the absolute value (quadratic) scalar-separation distance.

The aggregate MSD1 rating vector xMSD1 is shown in the column 5 of Table 8. The absolute
value vector-separation and vector-deviation distances between each agency’s rating vector and
xMSD1 are shown in Table 9.

Table 9. Distances between xMSD1 and each agency’s rating vector.

rSP − xMSD1 rMdy − xMSD1 rInsI − xMSD1 Total

Absolute value vector-separation 7540.00 6058.60 13952.00 27550.60
Absolute value vector-deviation 148.60 108.20 600.40 857.20
Total distance 7688.6 6166.8 14552.4 28407.8
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754 D.S. Hochbaum and E. Moreno-Centeno

Table 10. Distances between the rating vectors of each pair of agencies.

S&P − Mdy S&P − InsI Mdy − InsI

Absolute value vector-separation 11440.00 19496.80 17994.60
Absolute value vector-deviation 230.00 703.60 618.60

The information in Table 9 demonstrates that InsI’s country credit-risk ratings are the ratings
which deviate the most from xMSD1. To explain why, we provide the absolute value vector-
separation and vector-deviation distances for each pair of the three agencies in Table 10. These
distances show that S&P and Mdy’s rating vectors are, by far, the closest among the three pairs.
We also note that Hammer et al. [7], found the correlation between the rating vectors of S&P and
Mdy higher than both the correlation between the rating vectors of InsI and S&P and the corre-
lation between the rating vectors of S&P and InsI. Therefore, S&P and Mdy form an ‘almost’
majority, and thus in the spirit of Theorem 3.7 should be closer to the aggregate MSD1 rating
vector. This explains why xMSD1 is significantly closer to the rating vectors of S&P and Mdy.

5.1.1 Analysis of the results via the absolute value scalar-deviation distance

The absolute value scalar-deviation distance between each agency’s country rating and the
respective country rating of xMSD1 is given in Table 11.

Table 11. Countries sorted in descending absolute-value scalar-deviation distance per agency.

S&P Moody’s Institutional Investor Total

Country Dev Country Dev Country Dev Country Dev

Russia 24.1 Dominican Republic 8.4 Estonia 21.3 Russia 29.1
China 5.7 Korea Republic 8.3 Latvia 21.1 Estonia 23.1
Australia 5.0 Finland 5.2 New Zealand 16.9 Latvia 22.9
El Salvador 5.0 Iceland 5.2 Cyprus 16.8 New Zealand 21.9
Greece 5.0 Ireland 5.2 Australia 15.7 Australia 20.7
Indonesia 5.0 China 4.3 Croatia 15.1 Lithuania 18.9
Japan 5.0 Argentina 4.1 Israel 14.8 El Salvador 18.8
Lithuania 5.0 Brazil 4.1 Lithuania 13.9 Singapore 18.7
New Zealand 5.0 Chile 4.1 El Salvador 13.8 Cyprus 18.6
Singapore 5.0 Lebanon 4.1 Singapore 13.7 China 18.5
Slovenia 5.0 Pakistan 4.1 Ireland 13.0 Dominican Republic 18.5
Spain 5.0 Poland 4.1 Portugal 13.0 Ireland 18.4
Sweden 5.0 Thailand 4.1 Iceland 12.8 Iceland 18.2
Turkey 5.0 Malaysia 3.8 Finland 12.6 Finland 18.0
Malta 4.8 Kazakhstan 3.6 Norway 12.3 Croatia 16.9
China-HK 4.7 Peru 3.3 Slovenia 11.6 Israel 16.6
South Africa 4.1 Czech Republic 3.2 Canada 11.1 Slovenia 16.6
Bolivia 3.5 Costa Rica 3.1 Belgium 10.6 Korea Republic 15.6
Trin & Tobago 3.2 Egypt 2.9 Austria 10.4 Sweden 15.3
Colombia 3.0 Italy 2.6 Sweden 10.3 Portugal 14.8
Italy 2.4 Colombia 2.0 Spain 9.7 Spain 14.7
Egypt 2.1 Trin & Tobago 1.8 Denmark 9.4 Norway 14.1
Costa Rica 1.9 Bolivia 1.5 Panama 9.2 Greece 13.9
Czech Republic 1.8 Austria 0.9 Greece 8.9 Bolivia 13.5
Korea Republic 1.7 Belgium 0.9 UK 8.9 China-HK 13.5
Peru 1.7 Canada 0.9 Bolivia 8.5 Colombia 13.5
Dominican Republic 1.6 Croatia 0.9 China 8.5 Costa Rica 13.5
Kazakhstan 1.4 Cyprus 0.9 China-HK 8.5 Czech Republic 13.5

(Continued)
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Table 11. Continued.

S&P Moody’s Institutional Investor Total

Country Dev Country Dev Country Dev Country Dev

Malaysia 1.2 Denmark 0.9 Colombia 8.5 Egypt 13.5
Argentina 0.9 Estonia 0.9 Costa Rica 8.5 Italy 13.5
Austria 0.9 Israel 0.9 Czech Republic 8.5 Japan 13.5
Belgium 0.9 Latvia 0.9 Dominican Republic 8.5 Kazakhstan 13.5
Brazil 0.9 Norway 0.9 Egypt 8.5 Malta 13.5
Canada 0.9 Panama 0.9 France 8.5 Trin & Tobago 13.5
Chile 0.9 Portugal 0.9 Italy 8.5 Peru 13.3
Croatia 0.9 Russia 0.9 Japan 8.5 South Africa 13.3
Cyprus 0.9 South Africa 0.9 Kazakhstan 8.5 Canada 12.9
Denmark 0.9 UK 0.9 Malta 8.5 Malaysia 12.8
Estonia 0.9 France 0.7 Philippines 8.5 Belgium 12.4
Israel 0.9 China-HK 0.3 Slovak Republic 8.5 Chile 12.3
Latvia 0.9 Malta 0.2 Trin & Tobago 8.5 Austria 12.2
Lebanon 0.9 Philippines 0.2 Uruguay 8.5 Lebanon 12.2
Norway 0.9 Slovak Republic 0.2 Netherlands 8.3 Thailand 12.2
Pakistan 0.9 Australia 0.0 Peru 8.3 Denmark 11.2
Panama 0.9 El Salvador 0.0 South Africa 8.3 Panama 11.0
Poland 0.9 Germany 0.0 Malaysia 7.8 UK 10.7
Portugal 0.9 Greece 0.0 USA 7.8 France 9.9
Thailand 0.9 Hungary 0.0 Germany 7.5 Philippines 8.9
UK 0.9 India 0.0 Chile 7.3 Slovak Republic 8.9
France 0.7 Indonesia 0.0 Switzerland 7.3 Pakistan 8.7
Finland 0.2 Japan 0.0 Lebanon 7.2 Uruguay 8.5
Iceland 0.2 Jordan 0.0 Thailand 7.2 Brazil 8.3
Ireland 0.2 Lithuania 0.0 Romania 6.2 Netherlands 8.3
Philippines 0.2 Mexico 0.0 Korea Republic 5.6 Indonesia 7.9
Slovak Republic 0.2 Morocco 0.0 Tunisia 4.7 USA 7.8
Germany 0.0 Netherlands 0.0 Venezuela 4.4 Germany 7.5
Hungary 0.0 New Zealand 0.0 Hungary 4.1 Poland 7.4
India 0.0 Paraguay 0.0 Russia 4.1 Switzerland 7.3
Jordan 0.0 Romania 0.0 Pakistan 3.7 Turkey 6.9
Mexico 0.0 Singapore 0.0 Brazil 3.3 Argentina 6.4
Morocco 0.0 Slovenia 0.0 Indonesia 2.9 Romania 6.2
Netherlands 0.0 Spain 0.0 Jordan 2.7 Tunisia 4.7
Paraguay 0.0 Sweden 0.0 Poland 2.4 Venezuela 4.4
Romania 0.0 Switzerland 0.0 Turkey 1.9 Hungary 4.1
Switzerland 0.0 Tunisia 0.0 Morocco 1.8 Jordan 2.7
Tunisia 0.0 Turkey 0.0 Argentina 1.4 Morocco 1.8
USA 0.0 USA 0.0 Paraguay 1.3 Paraguay 1.3
Uruguay 0.0 Uruguay 0.0 Mexico 1.0 Mexico 1.0
Venezuela 0.0 Venezuela 0.0 India 0.5 India 0.5

Total 148.6 108.2 600.4 857.2
Maximum 24.1 8.4 21.3 29.1
Average 2.2 1.6 8.7 12.4
σ 3.3 2.0 4.4 5.7

Note: For each agency and each country column ‘Dev’ gives the distance between the respective agency’s rating and the aggregate MSD1
rating. Column ‘Total’ shows the sum of the 3 absolute value scalar-deviations.

As seen in Table 11, for each agency there is a set of countries where the absolute value scalar-
deviation distance with respect to xMSD1 is considerably higher than the rest of the absolute value
scalar-deviation distances. In particular, we note that:

(1) S&P’s rating to Russia has an absolute value scalar-deviation distance with more than 6.6 σ s
from the mean, while all other S&P’s ratings are within 1 σ from the mean.
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756 D.S. Hochbaum and E. Moreno-Centeno

(2) Mdy’s ratings to the Dominican and Korean Republics have absolute value scalar-deviation
distances with more than 3.3 σ s from the mean, while all other Mdy’s ratings are within 1.8
σ s from the mean.

(3) InsI’s rating to Estonia and Latvia have absolute value scalar-deviation distances with more
than 2.7 σ s from the mean, while all other S&P’s ratings are within 1.9 σ s from the mean.

We argue that these ratings are outliers with respect to the country credit-risk ratings given by this
group of agencies.

In particular, Russia’s rating by S&P has a scalar-deviation distance to the respective aggregate
rating dramatically larger than all other scalar-deviation distances. We note that Russia appears to
be an outlier in S&P’s ratings as the 1998 ratings of S&P, Mdy, and InsI are SD (0), B3 (25) and
20.0, respectively. One possible explanation for this discrepancy in Russia’s ratings is that S&P
distinguishes between ‘default’ and ‘selective default’, whereas the other agencies don’t do so. It
should be pointed out that S&P upgraded Russia’s rating from SD in 1998 and 1999 to B−, B
and B+ in December 2000, June 2001, and December 2001, respectively [1].

For each agency and each country column ‘Dev’ gives the distance between the respective
agency’s rating and the aggregate MSD1 rating. Column ‘Total’ shows the sum of the 3 absolute
value scalar-deviations.

5.1.2 Analysis of the results via the absolute value scalar-separation distance

This section provides an analysis of the solution to (‖, M· Sep–Dev, 1) in terms of the absolute
value scalar-separation distance analogous to the analysis provided in the previous section. The
overall results are consistent with those of the previous section.

With ratings of 69 countries, we have 2346 pairwise comparisons and it is impossible to list
all of the absolute value scalar-separation distances. Instead in Table 12, we list only the most
significant pairwise comparisons in terms of largest absolute value scalar-separation distances
between each agency’s rating and xMSD1.

It is interesting to observe that the countries which have the highest scalar-deviation distances
belong to the country-pairs which have the highest absolute value scalar-separation distances.
Indeed, reviewing the ranked list of the pairwise comparisons which deviate the most from xMSD1,
one observes that certain countries appear in country-pairs with high scalar-separation distances.
These two observations are related to having derived the separation gaps from the ratings pk

ij =
rk
i − rk

j . Thus, any discrepancy in one score affects all pairwise comparisons with such score.
Indeed, it is easy to see in Table 12 that for the case of S&P, the first 68 pairwise comparisons
concern Russia. In the case of Mdy, the countries which dominate the results are the Dominican
Republic and the Korean Republic. Finally, in the case of InsI, this clustering of countries is not as
evident; however, one can still observe the predomination of Estonia and Latvia as the countries
with the higher absolute value scalar-separation distances. Recall that these countries were the
ones with the highest scalar-deviation distances.

5.2 Comparison of the aggregate MSD1 rating to the aggregate averaging rating

We now show that the aggregate MSD1 rating xMSD1 is in some sense closer than the aggregate
averaging rating xAvg to the group consensus. The aggregate MSD1 rating and the aggregate
averaging rating are shown in columns 5 and 6 of Table 8, respectively. We compare xMSD1 to xAvg

by evaluating their respective distances to each of the agencies’ rating vectors. For this purpose,
we use the vector-separation and vector-deviation distances and the number of reversals which
we define next.
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Table 12. Country-pairs with the highest absolute value scalar-separation distance per agency sorted in descending order.

S&P Moody’s Institutional Investor

Country 1 Country 2 Sep Country 1 Country 2 Sep Country 1 Country 2 Sep

Australia Russia 29.1 Dominican Republic Korea Republic 16.7 Estonia Romania 27.5
El Salvador Russia 29.1 Finland Korea Republic 13.5 Latvia Romania 27.3
Greece Russia 29.1 Iceland Korea Republic 13.5 Estonia Venezuela 25.7
Japan Russia 29.1 Ireland Korea Republic 13.5 Latvia Venezuela 25.5
Lithuania Russia 29.1 China Korea Republic 12.6 Brazil Estonia 24.6
New Zealand Russia 29.1 Argentina Dominican Republic 12.5 Brazil Latvia 24.4
Russia Singapore 29.1 Brazil Dominican Republic 12.5 Estonia Indonesia 24.2
Russia Slovenia 29.1 Chile Dominican Republic 12.5 Indonesia Latvia 24.0
Russia Spain 29.1 Dominican Republic Lebanon 12.5 Estonia Turkey 23.2
Russia Sweden 29.1 Dominican Republic Pakistan 12.5 New Zealand Romania 23.1
Malta Russia 28.9 Dominican Republic Poland 12.5 Cyprus Romania 23.0
China-HK Russia 28.8 Dominican Republic Thailand 12.5 Latvia Turkey 23.0
Bolivia Russia 27.6 Dominican Republic Malaysia 12.2 Estonia Paraguay 22.6
Russia Trin&Tob 27.3 Kazakhstan Korea Republic 11.9 Latvia Paraguay 22.4
Italy Russia 26.5 Dominican Republic Peru 11.7 Estonia Mexico 22.3
Egypt Russia 26.2 Czech Republic Dominican Republic 11.6 Latvia Mexico 22.1
Czech Republic Russia 25.9 Costa Rica Korea Republic 11.4 Australia Romania 21.9
Korea Republic Russia 25.8 Dominican Republic Egypt 11.3 New Zealand Venezuela 21.3
Peru Russia 25.8 Dominican Republic Italy 11.0 Croatia Romania 21.3
Malaysia Russia 25.3 Colombia Korea Republic 10.3 Cyprus Venezuela 21.2
Argentina Russia 25.0 Dominican Republic Trin&Tob 10.2 Israel Romania 21.0
Austria Russia 25.0 Bolivia Dominican Republic 9.9 Estonia India 20.8
Belgium Russia 25.0 Argentina Finland 9.3 India Latvia 20.6
Brazil Russia 25.0 Argentina Iceland 9.3 Brazil New Zealand 20.2
Canada Russia 25.0 Argentina Ireland 9.3 Australia Venezuela 20.1
Chile Russia 25.0 Brazil Finland 9.3 Brazil Cyprus 20.1

(Continued)
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Table 12. Continued.

S&P Moody’s Institutional Investor

Country 1 Country 2 Sep Country 1 Country 2 Sep Country 1 Country 2 Sep

Croatia Russia 25.0 Brazil Iceland 9.3 Lithuania Romania 20.1
Cyprus Russia 25.0 Brazil Ireland 9.3 El Salvador Romania 20.0
Denmark Russia 25.0 Chile Finland 9.3 Argentina Estonia 19.9
Estonia Russia 25.0 Chile Iceland 9.3 Romania Singapore 19.9
Israel Russia 25.0 Chile Ireland 9.3 Indonesia New Zealand 19.8
Latvia Russia 25.0 Finland Lebanon 9.3 Argentina Latvia 19.7
Lebanon Russia 25.0 Finland Pakistan 9.3 Cyprus Indonesia 19.7
Norway Russia 25.0 Finland Poland 9.3 Estonia Morocco 19.5
Pakistan Russia 25.0 Finland Thailand 9.3 Croatia Venezuela 19.5
Panama Russia 25.0 Iceland Lebanon 9.3 Latvia Morocco 19.3
Romania 19.2
Portugal Russia 25.0 Iceland Poland 9.3 Portugal Romania 19.2
Russia Thailand 25.0 Iceland Thailand 9.3 Israel Venezuela 19.2
Russia UK 25.0 Ireland Lebanon 9.3 Australia Brazil 19.0
France Russia 24.8 Ireland Pakistan 9.3 Iceland Romania 19.0
Finland Russia 24.3 Ireland Poland 9.3 Estonia Poland 18.9
Iceland Russia 24.3 Ireland Thailand 9.3 New Zealand Turkey 18.8
Ireland Russia 24.3 Austria Korea Republic 9.2 Finland Romania 18.8
Philippines Russia 24.3 Belgium Korea Republic 9.2 Latvia Poland 18.7
Russia Slovak Republic 24.3 Canada Korea Republic 9.2 Cyprus Turkey 18.7
Germany Russia 24.1 Croatia Korea Republic 9.2 Australia Indonesia 18.6
Hungary Russia 24.1 Cyprus Korea Republic 9.2 Estonia Jordan 18.6
India Russia 24.1 Denmark Korea Republic 9.2 Norway Romania 18.5
Jordan Russia 24.1 Estonia Korea Republic 9.2 Brazil Croatia 18.4
Mexico Russia 24.1 Israel Korea Republic 9.2 Jordan Latvia 18.4
Morocco Russia 24.1 Korea Republic Latvia 9.2 Lithuania Venezuela 18.3
Netherlands Russia 24.1 Korea Republic Norway 9.2 New Zealand Paraguay 18.2
Paraguay Russia 24.1 Korea Republic Panama 9.2 El Salvador Venezuela 18.2
Romania Russia 24.1 Korea Republic Portugal 9.2 Brazil Israel 18.1
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Russia Switzerland 24.1 Korea Republic Russia 9.2 Singapore Venezuela 18.1
Russia Tunisia 24.1 Korea Republic S. Africa 9.2 Cyprus Paraguay 18.1
Russia USA 24.1 Korea Republic UK 9.2 Croatia Indonesia 18.0
Russia Uruguay 24.1 Finland Malaysia 9.0 Mexico New Zealand 17.9
Russia Venezuela 24.1 France Korea Republic 9.0 Romania Slovenia 17.8
Kazakhstan Russia 22.7 Iceland Malaysia 9.0 Cyprus Mexico 17.8
Dominican Republic Russia 22.5 Ireland Malaysia 9.0 Indonesia Israel 17.7
Costa Rica Russia 22.2 China-HK Dominican Republic 8.7 Australia Turkey 17.6
Colombia Russia 21.1 Dominican Republic Malta 8.6 Estonia Pakistan 17.6
Russia S. Africa 20.0 Finland Peru 8.5 Ireland Venezuela 17.4
Indonesia Russia 19.1 Iceland Peru 8.5 Latvia Pakistan 17.4
Russia Turkey 19.1 Ireland Peru 8.5 Portugal Venezuela 17.4
China Russia 18.4 Korea Republic Philippines 8.5 Canada Romania 17.3
Australia China 10.7 Korea Republic Slovak Republic 8.5 Brazil Lithuania 17.2
China El Salvador 10.7 Czech Republic Finland 8.4 Estonia Russia 17.2
China Greece 10.7 Czech Republic Iceland 8.4 Estonia Hungary 17.2
China Japan 10.7 Czech Republic Ireland 8.4 Iceland Venezuela 17.2
China Lithuania 10.7 Australia Dominican Republic 8.4 Brazil El Salvador 17.1
China New Zealand 10.7 Dominican Republic El Salvador 8.4 Brazil Singapore 17.0

Total 7540.0 6058.2 13952.0
Maximum 29.1 16.7 27.5
Average 3.2 2.6 5.9
σ 4.4 2.6 5.0

Note: For each agency and each country-pair the column ‘Sep’ gives the scalar-separation distance between the respective agency’s separation gap and the aggregate MSD1 rating’s.
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For a pair of vectors a and b, and 1 ≤ i < j ≤ n, we define Rij as follows:

Rij =

⎧⎪⎨
⎪⎩

1 if ai > aj and bi < bj or ai < aj and bi > bj ,

1/2 if ai = aj and bi �= bj or ai �= aj and bi = bj ,

0 otherwise.

The number of reversals between the two vectors is then
∑n

i=1

∑n
j=1,j>i Rij . This quantity is also

known as the Kemeny–Snell distance [13]. We note that finding the rating vector that minimizes
the total number of reversals from given ratings vectors is an NP-complete problem [3].

Since xMSD1 is the optimal solution to (‖, M· Sep–Dev, 1), it is the vector with minimum
total sum of absolute value vector-separation and vector-deviation distances with respect to the
agencies’ rating vectors. Thus, xMSD1 tends to perform better than xAvg for the absolute value
vector-deviation distance alone, and the absolute value vector-separation distance alone. This is
shown in Tables 13 and 14.

From Theorem 4.1, we have that xAvg is the optimal solution to the separation-deviation problem
with uniform quadratic penalty functions, i.e. it is the vector with minimum total sum of quadratic
vector-separation and vector-deviation distances to the agencies’ rating vectors. Thus, xAvg tends
to perform better than xMSD1 for the quadratic vector-deviation distance alone, and the quadratic
vector-separation distance alone. This is shown in Tables 15 and 16.

In Table 17, we show the number of reversals when comparing xMSD1 and xAvg with each of
the agency’s original ratings. As shown in column 4 of Table 17, xMSD1 has fewer total number
of reversals from rSP, rMdy, and rInsI, as compared with xAvg. Therefore, the solution to (‖, M·
Sep–Dev, 1) is closer to the ordering implied by the agencies’ ratings than xAvg. Furthermore,

Table 13. Absolute value vector-deviation distances between each aggre-
gate rating vector and each agency rating vector.

rSP rMdy rInsI Total

xMSD1 148.6 108.2 600.4 857.2
xAvg 280.8 210.8 432.2 923.8

Table 14. Absolute value vector-separation distances between each
aggregate rating vector and each agency rating vector.

rSP rMdy rInsI Total

xMSD1 7540.0 6058.6 13952.0 27550.6
xAvg 8990.4 8099.0 11839.0 28928.4

Table 15. Quadratic vector-deviation distances between each aggregate
rating vector and each agency rating vector.

rSP rMdy rInsI Total

xMSD1 1049.76 453.69 6577.21 8080.66
xAvg 1624.09 1043.29 3528.36 6195.74

Table 16. Quadratic vector-separation distances between each aggregate
rating vector and each agency rating vector.

rSP rMdy rInsI Total

xMSD1 70596.49 31187.56 142129.00 243913.05
xAvg 64566.81 43597.44 94740.84 202905.09
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Table 17. Number of reversals distance between each aggregate
rating vector and each agency rating vector.

rSP rMdy rInsI Total

xMSD1 86 87.5 158.5 332
xAvg 107 112.5 129.5 349

Table 18. Number of reversals between the rating vectors of
each pair of agencies.

rSP rMdy rInsI Total

rSP 0 133.5 214.5 348.0
rMdy 133.5 0 228.0 361.5
rInsI 214.5 228 0 442.5

xMSD1 is closer to both rSP and rMdy than xAvg. As noted previously, S&P and Mdy form a kind of
‘majority’. We argue that even when there is no clear majority, as Theorem 3.12 requires, xMSD1

is closer to the rating vectors of the reviewers that show a ‘high degree of agreement’ than to the
rating vectors of other reviewers. We conclude that xMSD1 is close to a group consensus.

We note that rSP has the fewest number of reversals from xMSD1, closely followed by rMdy.
The rInsI rating vector has a far larger number of reversals. This contrasts with the observations
in the previous sections, where Mdy had the closest agency-rating vector to xMSD1. This apparent
contradiction might be explained by the following two observations:

(1) As shown in Table 18, rSP has the fewest total number of reversals when compared with the
other two rating agencies. Furthermore, with respect to the number of reversals measure, rSP

is closer to rInsI than rMdy to rInsI and rSP is closer to rMdy than rInsI to rMdy. So, when using
this distance measure, rSP is closer to the group consensus than the other two rating vectors.

(2) Since the number of reversals distance is only relative to the (implied) ordering, rather than to
the magnitude of the rating scores, it is less sensitive to outliers than the vector-separation and
vector-deviation distances. In this regard, note that Russia’s rating by S&P is the rating with
the highest deviation and separation distances; while Russia contributes only one reversal
when comparing rSP to rMdy and only one reversal when comparing rMdy to rInsI.

6. Conclusions

In this paper, we demonstrate several properties of the separation-deviation model. Our main
result is that the separation model has the property of resistance to manipulation by a minority.
We also prove a similar, but weaker, result for the separation-deviation model. Additionally, we
characterize the optimal solution to the model for certain classes of penalty functions.

The separation deviation model is used here to aggregate conflicting credit-risk ratings.We show
that the aggregate MSD1 rating is closer to the group rating than the aggregate averaging rating.
This is established here for the absolute value vector-deviation and vector-separation distances.
Moreover, the aggregate MSD1 rating also has fewer reversals from the agencies’ ratings than the
aggregate averaging rating. We conclude that the aggregate MSD1 rating better reflects each of
the agency’s ratings than the aggregate averaging rating.

We anticipate that in more general scenarios, the separation-deviation model will prove to be
a useful aggregation method. We believe that the separation-deviation model is a useful tool for
aggregating disparate sources of information, and should be considered as an alternative to other
group-decision-making methods.
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