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Abstract. The lot–sizing polytope is a fundamental structure contained in many practical production plan-
ning problems. Here we study this polytope and identify facet–defining inequalities that cut off all fractional
extreme points of its linear programming relaxation, as well as liftings from those facets. We give a polyno-
mial–time combinatorial separation algorithm for the inequalities when capacities are constant. We also report
computational experiments on solving the lot–sizing problem with varying cost and capacity characteristics.

1. Introduction

Given the demand, production cost, and inventory holding cost for a product and produc-
tion capacities and production setup cost for each time period over a finite discrete–time
horizon, the lot–sizing problem is to determine how much to produce and hold as inven-
tory in each time period so that the sum of production, inventory holding, and setup costs
over the horizon is minimized. The lot–sizing problem (LSP) is NP–hard (Florian et al.
[9]). Several special cases, including the uncapacitated and constant–capacity cases, of
the problem are solved in polynomial time; see Bitran and Yanasse [5], Federgruen and
Tzur [7], Florian and Klein [8], van Hoesel and Wagelmans [20], Wagelmans et al. [21],
and Wagner and Whitin [22].

Many practical multi–item, multi–stage production planning problems over a finite
discrete–time horizon contain the lot–sizing problem as a substructure. Strong valid
inequalities and reformulations for the lot–sizing problem often form the basis of branch–
and–cut algorithms and effective models for those more complicated problems; see, for
instance, Belvaux and Wolsey [3, 4], Pochet and Wolsey [17], and Wolsey [24]. There-
fore, a good understanding of the lot–sizing polytope has immediate implications for
many practical production problems.

A complete linear description of the uncapacitated lot–sizing polytope is given by
Barany et al. [2]. The constant–capacity lot–sizing polytope is studied by Leung et al.
[11] and Pochet and Wolsey [18]. For the general case with no restrictions on capacities
Pochet [16] gives valid inequalities for LSP based on surrogate single node flow relax-
ations, Miller et al. [14] describe inequalities from its continuous knapsack relaxations.
Loparic et al. [12] study a dynamic knapsack set relaxation of LSP.
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Here we study the lot–sizing polytope directly. In particular, we define a notion
of bottleneck covers and show the correspondence between bottleneck covers and the
fractional vertices of the linear programming relaxation of the lot–sizing problem. We
identify facet–defining inequalities that cut off all of the fractional vertices of the linear
programming relaxation as well as liftings from those facets.

Throughout we let [i, k] := {j ∈ Z : i ≤ j ≤ k}, a+ := max{a, 0}, and ei denote
the ith unit vector. Let pt , ht , and st denote the production, holding, and setup costs
in period t , and wt, it , and zt denote the production, incoming inventory, and setup
variables in period t ∈ [1, n], respectively. Then LSP can be formulated as

(LSP) min

{
n∑
i=1

(ht it + ptwt + st zt ) : (z, w, i) ∈ E
}

where

E :=

(z, w, i) ∈ {0, 1}n × R

n
+ × R

n+1
+ :

it + wt − it+1 = dt t ∈ [1, n]
wt ≤ ct zt t ∈ [1, n]

in+1 = 0




dt is the demand and ct is the production capacity in period t .
Eliminating the inventory variables, by substituting it = dt −wt + it+1 in it ≥ 0 and

reindexing the variables in the reverse order, gives the following equivalent bottleneck
flow model of the feasible solutions of LSP:

F :=



x ∈ {0, 1}n, y ∈ R

n
+ :

y1 ≤ u1
y1 + y2 ≤ u2

...

y1 + y2 + · · · + yn ≤ un
y1 ≤ a1x1, . . . , yn ≤ anxn




where ai = cn−i+1 and ui = ∑i
j=1 dn−j+1 for i ∈ [1, n], that is, u1 = dn, u2 =

dn + dn−1, and so on. The full–dimensional bottleneck flow model reveals more of the
structure of the lot–sizing problem than the standard formulation E; therefore, in the
rest of the paper we will work on F .

Section 2 is devoted to the analysis of the convex hull of F . The results are special-
ized for the uncapacitated and constant–capacity cases in Section 3. The computational
experiments with the new inequalities when used as cutting planes are described in
Section 4. We conclude with Section 5.

2. Polyhedral analysis

Assumptions. Throughout the paper we assume that the data of the bottleneck flow
model F consists of rational numbers and without loss of generality satisfy the follow-
ing:

(A1) 0 < ai ≤ ui for all i ∈ [1, n],
(A2) 0 ≤ ui − ui−1 ≤ ai for all i ∈ [1, n], where u0 = 0.
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If ai ≤ 0, then (xi, yi) can be dropped. If ui < ai , then ai can be reduced to ui without
changing F . If ui < ui−1, then ui−1 can be reduced to ui , and if ui > ui−1 + ai , then
ui can be reduced to ui−1 + ai without changing F .

Proposition 1. Dimension & trivial facets.

1. Conv(F ) is full–dimensional,
2. yi ≥ 0, xi ≤ 1, yi ≤ aixi , i ∈ [1, n], define facets of conv(F ),
3. y1 + · · · + yi ≤ ui , i ∈ [2, n], defines a facet of conv(F ) if and only if
ui ≤ uk−1 + ∑i

j=k+1 aj for all k ∈ [1, i] and ui < ui+1, where un+1 = ∞.

Proof. Parts 1 and 2 follow from (A1) immediately. We prove part 3. If ui > uk−1 +∑i
j=k+1 aj for some k ∈ [1, i], then inequality (2), introduced in Section 2.2, dom-

inates y1 + · · · + yi ≤ ui . Else, y1 + · · · + yi + yi+1 ≤ ui dominates it whenever
ui = ui+1. For sufficiency, we give 2n affinely independent points (xk, yk) of F satis-
fying y1 + · · · + yi = ui . The first 2i points are: ykj > 0 and xkj = 1 for j ∈ [1, k − 1]

such that
∑k−1
j=1 y

k
j = uk−1; ykk = 0 and xkk ∈ {0, 1}; and ykj > 0 and xkj = 1 such that∑i

j=k+1 y
k
j = ui−uk−1; and ykj = xkj = 0 for j ∈ [i+1, n] and k ∈ [1, i]. The remain-

ing 2(n− i) points are (ek, yi) and (ek, yi + min{ak, ui+1 − ui}ek) for k ∈ [i + 1, n].
��

2.1. A min–max relationship

Let S = {s1, s2, . . . , sp} be a subset of [1, n] such that s1 < s2 < · · · < sp and, for
simplicity of notation, let s0 = 0. The following min–max relationship, which holds
due to the lower–triangular structure of the first set of constraints of F , is the key for
understanding the bottleneck structure of conv(F )

ζ(S) := max

{∑
i∈S

yi : (x, y) ∈ F
}

= min
0≤i≤p

{
usi +

p∑
k=i+1

ask

}
. (1)

Definition 1. The smallest minimizer in (1) is called the bottleneck of the set S and
is denoted as bS(∈ [0, p], b∅ = 0). The index set BS := {bSi : i ∈ [1, p]} is called
the bottleneck set of S, where Si := {s1, s2, . . . , si} for i ∈ [1, p]. For a given S and
i ∈ [1, p], the bottleneck of the ith element, denoted as bi , is the bottleneck of the set
Si−1.

Example 1. Consider an instance of F with u = (5, 8, 11, 13) and a = (5, 9, 7, 12).
For S = {s1, s2} = {3, 4}, we have BS = {0, 2} and b1 = b2 = 0, since us0 + as1 =
0 + 7 ≤ us1 = 11. On the other hand, for S = {s1, s2, s3, s4}, we have BS = {0, 2, 3, 4}
and b1 = b2 = 0, whereas b3 = 2 and b4 = 3. ��
Proposition 2. If p is the bottleneck of S = {s1, s2, . . . , sp}, i.e., bS = p, then

1. ζ(S \ {sk}) = min
{
usp , usbk

+ ∑p
i=bk+1 asi − ask

}
for sk ∈ S,

2. ζ(S ∪ {sk}) =
{
usp if sk ≤ sp,

min{usp + ask , usk } if sk > sp
for sk ∈ [1, n] \ S.
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Proof. The proposition follows from the min–max relationship (1).

1. If bS\{sk} > k, then

ζ(S \ {sk}) = min
k+1≤i≤p

{
usi +

p∑
t=i+1

ast

}
= usp (by assumption).

If bS\{sk} < k, then

ζ(S \ {sk}) = min
0≤i≤k−1

{
usi +

p∑
t=i+1

ast − ak

}
= ζ(Sk−1)+

p∑
t=k+1

ast .

2. Suppose that sj < sk < sj+1 for sj , sj+1 ∈ S. Then

ζ(S ∪ {sk}) = min


ζ(Sj )+ ask +

p∑
t=j+1

ast , usk +
p∑

t=j+1

ast , ζ(S)


 = usp

The last equation follows from usk +
∑p
t=j+1 ast ≥ usj +∑p

t=j+1 ast ≥ ζ(S) = usp .

On the other hand, if sk > sp, ζ(S ∪ {sk}) = min
{
ζ(S)+ ask , usk

}
. ��

2.2. Bottleneck covers

Definition 2. For S = {s1, s2, . . . , sp} ⊆ [1, n] let λi := usbi
+∑p

j=bi+1 asj −usp for
i ∈ [1, p]. S is called a bottleneck cover if λi > 0 for some i ∈ [1, p].

Proposition 3. For any S = {s1, s2, . . . , sp} ⊆ [1, n] the following statements hold:

1. λi ≥ λk for i, k ∈ [1, p] such that i < k,
2. λi = λk if and only if bi = bk for i, k ∈ [1, p],
3. λi > λi+1 if and only if bi+1 = i for i ∈ [1, p − 1],
4. λp > 0 if and only if bS = p.

Proof. The proof follows from the definition that bk is the bottleneck of Sk−1.

1. For i, k ∈ [1, p] such that i < k

usbk
+

k−1∑
j=bk+1

asj = ζ(Sk−1) ≤ ζ(Si−1)+
k−1∑
j=i

asj = usbi
+

k−1∑
j=bi+1

asj ,

which gives λi ≥ λk .
2. bi = bk implies λi = λk from the definition of λi . Now suppose bi < bk for i < k.

Then usbi + ∑k−1
j=bi+1 asj < usbk

+ ∑k−1
j=bk+1 asj , since bk is the smallest minimizer,

or equivalently, λi > λk .
3. If λi = λi+1, from part 2, we have bi = bi+1, but bi < i. If λi > λi+1, from part 2,
bi < bi+1 (as bi ≤ bi+1 in general). We also have

ζ(Si) = min
{
ζ(Si−1)+ asi , usi

}
,

but bi < bi+1 implies that ζ(Si−1)+ asi > usi = ζ(Si), which gives bi+1 = i.
4. bS = p if and only if usp < ζ(Sp−1)+ asp if and only if λp > 0. ��
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For a bottleneck cover S = {s1, s2, . . . , sp}, let the bottleneck cover inequality be
defined as

p∑
i=1

min{asi , (asi − λi)
+}(1 − xsi )+

p∑
i=1

ysi ≤ usp . (2)

Observe that if p is the bottleneck of S, or equivalently, λp > 0, then ζ(S) = usp ;
consequently, when xsi = 0, the slack of the constraint

∑p
i=1 ysi ≤ usp is at least

ζ(S) − ζ(S \ {si}) = (asi − λi)
+. In Theorem 2 we show that inequality (2) is weak

unless λp > 0.

Example 1 (cont.). For S = {s1, s2, s3, s4} = {1, 2, 3, 4}, we have λ1 = λ2 = 20,
λ3 = 14, and λ4 = 10. So the corresponding bottleneck cover inequality (2) is

2(1 − x4)+ y1 + y2 + y3 + y4 ≤ 13.

For S = {s1, s2} = {2, 3}, λ1 = 5 and λ2 = 4, and inequality (2) is

4(1 − x2)+ 3(1 − x3)+ y2 + y3 ≤ 11.

��
Remark 1. Observe that the bottleneck cover inequality (2) is at least as strong as the
flow cover inequality (Padberg et al. [15])

∑p
i=1(asi − λ)+(1 − xsi )+

∑p
i=1 ysi ≤ usp ,

where λ = ∑p
i=1 asi − usp , since λ = λ1 ≥ λi for all i ∈ [1, p]. If bi = 0 for all

i ∈ [1, p], then λi = λ1 for all i ∈ [1, p] and the bottleneck cover inequality reduces to
the flow cover inequality. ��
Remark 2. Bottleneck cover inequality (2) is also at least as strong as the surrogate flow
cover inequality (Pochet [16])∑

s∈C
(ys + (min{as, ds�} − λ)+(1 − xs)) ≤ dk� + i� (3)

for the lot–sizing problem, where λ = ∑
s∈C min{as, ds�}−dk� for C ⊆ [�, k]. In order

to see this, using ds� = us − u�−1 and i� = u�−1 − ∑�−1
i=1 yi , we rewrite (3) as

�−1∑
s=1

ys +
∑
s∈C
(ys + (min{as, us − u�−1} − λ)+(1 − xs)) ≤ uk (4)

and compare (4) with the bottleneck cover inequality (2) where S = [1, � − 1] ∪
C ∪ {k}; thus sp = k. To verify that for st ∈ C, min{ast , ust − u�−1} − λ = uk −
u�−1 − ∑

si∈C min{asi , usi − u�−1} + min{ast , ust − u�−1} ≤ ast − λt = uk − usbt −∑p
j=bt+1 asj + ast , let h = max{si ∈ C : asi > usi − u�−1} and observe that

u�−1 +
∑
si∈C

min{asi , usi − u�−1} ≥ uh +
∑

si∈C:si>h

asi

≥ min
0≤i≤p


usi +

p∑
j=i+1

asi


 = usbt +

p∑
j=bt+1

asj .

��
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Proposition 4. The bottleneck cover inequality (2) is valid for F .

Proof. For (x, y) ∈ F let {z1, z2, . . . , z�} := {i ∈ [1, p] : xsi = 0}, indexed in
increasing order of i. The statement holds trivially if asi ≤ λi for all i ∈ [1, p]. So let
k = min{j ∈ [1, �] : aszj > λzj }. Then

p∑
i=1

min{asi , (asi − λi)
+}(1 − xsi ) =

�∑
j=k

min{aszj , (aszj − λzj )
+}

≤ aszk− λzk+
�∑

i=k+1

aszi

≤ max
j∈[1,�]




{ �∑
i=j

aszi − λzj

}+

 . (5)

On the other hand, we also have

p∑
i=1

ysi ≤ min


usp , min

j∈[1,�]

{
usbzj

+
p∑

k=bzj+1

ask −
�∑
k=j

aszk

}


= usp − max
j∈[1,�]




{
usp − usbzj

−
p∑

k=bzj+1

ask +
�∑
k=j

aszk

}+



= usp − max
j∈[1,�]




{ �∑
k=j

aszk − λzj

}+

 . (6)

Adding (5) and (6) shows that inequality (2) is satisfied by (x, y) ∈ F . ��
Theorem 1. Let LF denote the linear programming relaxation of F.

1. Every fractional extreme point of LF is defined by a bottleneck cover.
2. Bottleneck cover inequalities (2) cut off all fractional extreme points of LF .

Proof. 1. Let (x, y) be an extreme point of LF . Observe that xi equals either 1 or
yi/ai ; and 0 < xi < 1 implies that 0 < yi < ai and yi = ui − ∑i−1

j=1 yj . Now
let S = {s1, s2, . . . , sp} = {i ∈ [1, n] : yi > 0} such that 0 < xsp < 1 and let
k = max{i ∈ [1, p − 1] : xsi < 1} (if no such k exists, let k = 0). Because either

k ≥ 1 and ysk = usk − ∑k−1
i=1 ysi , or k = 0, we have ysp = usp − usk − ∑p−1

i=k+1 asi .
Since ysp < asp , we have usp < usk + ∑p

i=k+1 asi , and since (x, y) is feasible, we have

usk + ∑j
i=k+1 asi ≤ usj for all j ∈ [k+ 1, p− 1]. Then, by induction, S is a bottleneck

cover and k is the bottleneck ofp. Hence, {i ∈ [1, p] : 0 < xsi < 1} is preciselyBS \{0}.
2. Since ysp > 0, we have λp = usk + ∑p

i=k+1 asi − usp < asp . Then inequality (2)
defined by S = {i ∈ [1, n] : yi > 0} cuts off (x, y) as

∑p
i=1 ysi = usp and 0 < xsp < 1.

��
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Theorem 2. The bottleneck cover inequality (2) defines a facet of conv(F ) if and only
if λp > 0, maxi∈[1,p]{asi − λi} > 0, [1, sbr ] ⊂ S, usbr < usbr+1, where r = min{i ∈
[1, p] : λi < asi }, and K = {k ∈ [1, n] \ S : ubr ≤ uk ≤ ut } = ∅, where t = max{i ∈
[br , r − 1] : usbr + ∑i

k=br+1 ask = usi }.
Proof. (Necessity) Let q ∈ [1, p] be the highest index such that λq > 0. Since S is a
bottleneck cover, q exists. Then by updating S as {s1, s2, . . . , sq}, we get an inequal-
ity dominating (2), since

∑p
i=q+1(asi (1 − xsi ) + ysi ) ≤ ∑p

i=q+1 asi ≤ usp − usq . If
maxi∈[1,p]{asi − λi} ≤ 0, then y1 + · · · + ysp ≤ usp dominates (2). If k ∈ [1, sbr ] \ S,
since br is the bottleneck of [1, sbr ], by Proposition 2, augmenting S with k, does not
change λi for i ∈ [br+1, p] and cannot decrease λi for i ∈ [1, br ]. Since the coefficients
of all xsi with i ∈ [1, r−1] are zero, the inequality with S equal to {s1, s2, . . . , sp}∪{k}
dominates (2). If usbr = usbr+1, then the inequality obtained by augmenting S with
sbr + 1 dominates (2). Finally, note that if t > br , then t is an alternative minimizer
in (1), achieving the value ζ({s1, . . . , sr−1}). Thus, S can be augmented with k ∈ K

without changing λi for i ∈ [r, p] to get an inequality stronger than (2).
(Sufficiency) The following 2n points (xk, yk) are affinely independent points of the

face of conv(F ) generated by inequality (2). For k ∈ [1, p] such that 0 < λk < ask , let
y
sk
si > 0 and xksi = 1 for i ∈ [1, bk] such that

∑bk
i=1 ysi = usbk

, ysksk = 0 and xsksk = 0, and

y
sk
si = asj and xsksi = 1 for i ∈ [bk + 1, p] \ {k}; and yski = x

sk
i = 0 for i ∈ [1, n] \ S;

and let ysksi > 0 and xksi = 1 for i ∈ [1, bk] such that
∑bk
i=1 ysi = usbk

, ysksk = ask − λk

and xsksk = 1, and ysksi = asi and xsksi = 1 for i ∈ [bk + 1, p] \ {k}; and yski = x
sk
i = 0 for

i ∈ [1, n] \ S.
For k ∈ [1, p] such that λk ≥ ask , let ysksi > 0 and xsksi = 1 for i ∈ [1, bk] such

that
∑bk
i=1 ysi = usbk

, ysksk = 0 and xsksk ∈ {0, 1}, and ysksi > 0 and xsksi = 1 for i ∈
[bk+1, p]\{k} such that

∑p
i=bk+1 ysi = usp −usbk and yski = x

sk
i = 0 for i ∈ [1, n]\S.

Let ȳ = ∑br
i=1 εiesi + ∑p

i=br+1 asi esi − asr esr and x̄ = ∑p
i=1 esi − esr such that

ai ≥ εi > 0 and
∑br
i=1 εi = ubr . We see that ȳ has a positive slack for constraints

y1 + · · · + yi ≤ ui with sbr + 1 ≤ i < sbr+1 since usbr < usbr+1; with sbr+1 ≤ i < sr
sinceK = ∅; with i ≥ sr since ȳ has a slack of asr −λr for constraint y1+· · ·+ysp ≤ usp
and p is the bottleneck of S. Then the remaining 2(n − p) points are (ȳ, x̄ + ek) and
(ȳ + εek, x̄ + ek) for k ∈ [sbr + 1, n] \ S with small ε > 0. ��
Remark 3. The necessity part of the proof of Theorem 2 shows that if any of the facet
conditions is not satisfied by a bottleneck flow cover inequality (2), then a stronger
inequality is immediately available. Observe that both of the inequalities in Example 1
satisfy the conditions of Theorem 2. ��

As pointed out to us by L. A. Wolsey, the bottleneck cover inequalities are part of the
more general submodular inequalities for capacitated fixed–charge networks (Wolsey
[23]). The min–max relationship (1) and Propositions 2–3 allow us to characterize these
inequalities explicitly for the lot–sizing problem and to lift them for deriving other strong
inequalities. Interval submodular inequalities of Constantino [6] are more general than
the bottleneck inequalities in the sense that they examine the effects of closing several
production arcs in an interval simultaneously.
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2.3. Lifting bottleneck covers

In this section we generalize bottleneck cover inequalities (2) by introducing pairs of
variables (xi, yi) i ∈ [1, n] \ S into them. Let T ⊂ [1, n] and consider the restriction
FT := {(x, y) ∈ F : xi = yi = 0 for i ∈ T } of F and a facet–defining bottleneck
inequality

p∑
i=1

((asi − λi)
+(1 − xsi )+ ysi ) ≤ usp (7)

defined by some S = {s1, s2, . . . , sp} ⊆ [1, n] \ T for conv(FT ). We will derive a new
inequality of the form

p∑
i=1

((asi − λi)
+(1 − xsi )+ ysi )+

∑
i∈T
(πixi + µiyi) ≤ usp (8)

starting from (7).
Let FT (u) be the set FT as a function of the right hand side vector u ∈ R

n. Let
� : R

n+ �→ R ∪ {+∞} be defined as

�(v) = usp − max

{
p∑
i=1

((asi − λi)
+(1 − xsi )+ ysi ) : (x, y) ∈ FT (u− v)

}
, (9)

where we let �(v) = ∞ if FT (u − v) = ∅, i.e., v ≤ u. By definition of �, inequality
(8) is valid for F if and only if∑

i∈T
(πixi + µiyi) ≤ �(

∑
i∈T

yigi) (10)

for all (x, y) ∈ F , where gi = ∑n
k=i ek , i ∈ [1, n] and ek is the kth unit vector in R

n.
Rather than characterizing�(

∑
i∈T yigi) for all (x, y) ∈ F , we will describe a lower

bound on �(ag�) for 0 ≤ a ≤ u� and � ∈ T , which suffices to prove the validity of the
inequalities introduced in this section. For some � ∈ T let P�(ag�) denote the problem
of computing �(ag�). Since (xi, yi), i ∈ [1, n] \ S do not appear in inequality (7), we
may ignore them when computing�(ag�). Then, from assumption (A2), all constraints
ys1 + ys2 + · · · + ysp ≤ ui − a with i > max{�, sp} are redundant and can be dropped
from the problem. Thus, P�(ag�) can be stated as

�(ag�) = usp − max
p∑
i=1

((asi − λi)
+(1 − xsi )+ ysi )

s.t. ys1 ≤ us1

ys1 + ys2 ≤ us2
...
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ys1 + ys2 + · · · + ysp ≤ usp

...

ys1 + ys2 + · · · + ysp ≤ u� − a

ysi ≤ asi xsi , ysi ∈ R+, xsi ∈ {0, 1} i ∈ [1, p]. (11)

Proposition 5. Problem P�(ag�) has an optimal solution (x, y) such that

1. xsi = 1 for all i ∈ [1, p] with asi ≤ λi ,
2. ask > ysk > (ask − λk)

+ for at most one k ∈ [1, p],
3. ysi ∈ {0, asi } for all i ∈ [1, p] \ {k},
4. if

∑h
i=1 ysi = ush for h ∈ [1, p], then ysi > 0 for all i ∈ [1, h] with asi > λi ,

5. ysi = 0 for some i ∈ [1, p] with asi > λi .

Proof. Part 1 is immediate. For part 2, suppose asi > ysi > (asi −λi)+ and asj > ysj >

(asj −λj )+ for i < j . Increasing ysj and decreasing ysi by the same amount sufficiently
we satisfy either ysj = asj or ysi = (asi − λi)

+ and do not degrade the objective value.
To see part 3, observe that if 0 < ysi ≤ asi − λi , then the objective value improves by
asi − λi − ysi by setting ysi = xsi = 0.

Part 4 is a consequence of feasibility. By definition of bh, ush +∑p
i=h+1 asi ≥ ubh +∑p

i=bh+1 asi = usp + λh. Since for any j ∈ [1, h], we also have usbj + ∑p
i=bj+1 asi =

usp + λj , it follows that ush ≥ usbj
+ ∑h

i=bj+1 asi − (λj − λh) for j ≤ h. There-
fore, if asj > λj , since λh ≥ 0 (as (7) is facet–defining for conv(FT )), we have

ush > usbj
+ ∑h

i=bj+1 asi − asj and ysj = 0, which contradicts
∑h
i=1 ysi = ush .

Suppose (x, y) is a counterexample for part 5 with the smallest ysi > 0. We must
have

∑bi
j=1 ysj = usbi

, ysj = asj for all j ∈ [bi, p] \ {i}, since ysi can be reduced
otherwise. Also from parts 3 and 4, we have ysi > asi − λi . However, this contradicts
the feasibility of (x, y), since (x, y) does not satisfy constraint

∑p
j=1 ysj ≤ usp − a as

asi > λi = usbi
+ ∑p

j=bi+1 asj − usp . ��

Since (7) is facet–defining for conv(FT ), we have�(0) = 0; consequently,�(ag�) ≥
0 for a ≥ 0. Let δ� := (u� − usp )

+. Since any optimal solution for a = 0 is feasible for
0 ≤ a ≤ δ�, we also have �(ag�) = 0 for 0 ≤ a ≤ δ�.

First suppose that � > sp; we will remove this restriction later. From Proposition 2,
we see that �(0) = 0 is achieved by (x, y) such that xsi = 1 for all i ∈ [1, p] \ {k} and
xsk = 0 for any k ∈ [1, p] with ask > λk , and

∑p
i=1 ysi = usp − (ask − λk). Since (11)

has a slack of ask − λk for this solution for all a ≤ δ� + ask − λk , we have �(ag�) = 0
for 0 ≤ a ≤ δ� + ash − λh, where h = argmaxi∈[1,p]{asi − λi : asi > λi} (since (7) is
facet–defining, h exists).

Then for a = δ� + ash − λh, problem P�(ag�) has an optimal solution (x̄, ȳ) such

that
∑bh
i=1 ȳsi = usbh

, ȳsi = asi for all i ∈ [bh + 1, p] \ {h}, and ȳsh = 0, so that∑p
i=1 ȳsi = usp −ash +λh. Since constraint (11) is tight at this point, given that x̄sh = 0,

increasing a beyond δ�+ash −λh requires reduction in some ȳsi , i ∈ [1, p]\ {h}, which
will increase �(ag�) at the same rate.
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If asi ≤ λi for all i ∈ [1, p]\{h}, then�(ag�) = a−(δ�+ash−λh) for δ�+ash−λh <
a ≤ u� by reducing ȳsi , i ∈ [1, p] \ {h} in increasing order of i; and we are done with
characterizing �(ag�). Otherwise, since when ȳsi reduces to asi − λi(> 0), we can set
ysi = xsi = 0 without changing the objective function, and introduce a slack of asi − λi
to constraint (11), the variable to reduce is ysd , where d = argmini∈[1,p]\{h}: asi >λi {ȳsi −
(asi − λi)} (ties broken by selecting one with the largest asi − λi). Thus, �(ag�) will
increase by ȳsd − (asd − λd) at the rate of one and then stay constant for asd − λd as a
increases further. By letting k = h, the following lemma shows that ȳsd − (asd − λd)

indeed equals one of the λi’s, which is not obvious unless ȳsd = asd .

Lemma 1. Let k ∈ [1, p] be such that ask > λk . P̄�(ag�) be the restriction of P�(ag�)
with xk = yk = 0 and a = δ� + ask − λk . Then P̄�(ag�) has an optimal solution (x, y)
such that

min
i∈[1,p]

{
yi − (asi − λi) : ysi > asi − λi > 0

} = min
i∈[1,p]

{
λi : asi > λi

}
.

Proof. Since usbk + ∑p
i=bk+1 asi = usp + λk , we have ysi = asi for all i ∈ [bk + 1, p]

and
∑bk
i=1 ysi = usbk

. Then if bk = 0, the result follows trivially. On the other hand, if
bk ≥ 1, then, from Proposition 5.2, we may assume that asi > ysi > ai − λi > 0 for at
most one i ∈ [1, bk].

Suppose asj > ysj > asj − λj > 0 for some j ∈ [1, bk]. If ysj − (asj − λj ) ≥
yi−(asi −λi) for all i ∈ [bk+1, p] such that asi > λi , then we are done, since ysi = asi
for all i ∈ [bk + 1, p]. In the following we show that ysj − (asj −λj ) = asj − (λj −λk)
and then the result follows from ask > λk .

Without loss of generality, we may assume that
∑bj
i=1 ysi = usbj

, since if
∑bj
i=1 ysi <

usbj
, we can increase

∑bj
i=1 ysi (as from Proposition 5.1 and 5.4, xi = 1 for all i ≤ k) and

decrease ysj by the same amount until either
∑bj
i=1 ysi = usbj

holds or ysj = asj − λj

without changing the objective value. Then, since λk = usbk
+ ∑p

i=bk+1 asi − usp and

λj = usbj
+∑p

i=bj+1 asi −usp , and
∑bk
i=1 ysi = usbk

as well, we see that
∑bk
i=bj+1 ysi =

λk − λj + ∑bk
i=bj+1 asi . Therefore, ysi = asi for i ∈ [bj + 1, bk] \ {j} and ysj =

asj − (λj − λk). Furthermore, since λj > λk (as j ≤ bk), j exists; and we are done. ��
Let α1 := maxi∈[1,p]{asi −λi : asi > λi} and β1 := mini∈[1,p]{λi : asi > λi}. From

Lemma 1, for a > δ�+α1,�(ag�) increases at the rate of one by reducing ysd from ȳsd
to ȳsd −β1 and then reaches a flat region again because of the slack asd −λd introduced
in constraint (11) by setting ysd = xsd = 0. Hence

�(ag�) =



0 if 0 ≤ a ≤ δ� + α1,

a − δ� − α1 if δ� + α1 ≤ a ≤ δ� + α1 + β1,

β1 if δ� + α1 + β1 ≤ a ≤ δ� + α1 + β1 + asd − λd.

Example 2. Let u = (4, 8, 11, 12, 13) and a = (4, 4, 4, 2, 8). For S = {s1, s2, s3, s4} =
{1, 2, 3, 4}, we have λ1 = λ2 = λ3 = 2 and λ4 = 1 and the corresponding bottleneck
cover inequality

2(1 − x1)+ 2(1 − x2)+ 2(1 − x3)+ 1(1 − x4)+ y1 + y2 + y3 + y4 ≤ 12.
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Let us compute �(ag5). We have δ5 = (u5 − us4)
+ = 1, α1 = as1 − λ1 = 2, and

β1 = λ4 = 1 (with d = 4). Thus

�(ag5) =



0 if 0 ≤ a ≤ 3,
a − 3 if 3 ≤ a ≤ 4,
1 if 4 ≤ a ≤ 5.

Unfortunately characterizing�(ag�) for a > δ�+α1 +β1 +asd −λd is much harder,
because reducing a variable with small λi first, without considering asi − λi , may not
be the best for larger a.

In Figure 1 we plot two upper bounds on �(ag�) obtained by reducing yi in two
different sequences. The plot with dashed line is obtained by reducing yi in the order
1,2,3,4, whereas the plot with dotted line is obtained when yi is reduced in the order
1,4,2,3. Here observe that �(ag�) is the point–wise minimum of these two lines (not
drawn in the figure). ��

The next proposition shows that the observation on �(ag�) in Example 2 holds in
general.

Proposition 6. Let S and � be defined as in (7) and (9). If � > sp, then for a > δ�,

�(ag�) is the point–wise minimum of �I (ag�) for all I , where I is a permutation of
S and �I (ag�) is the upper bound on �(ag�), obtained by reducing the continuous
variables in the order of I .

Proof. Let (x, y) be an optimal solution forP�(ag�) such that ysi = 0 for some i ∈ [1, p]
with asi > λi . By Proposition 5.5 such a solution exists. LetQ = {i ∈ [1, p] : ysi = 0},
k = min{i ∈ Q : asi > λi}, and R = [bk + 1, p] \Q.

Suppose constraint (11) has a slack ρ > 0 for (x, y). First observe that ρ ≤ (asi −
λi)

+ for all i ∈ Q, since otherwise letting ysi = asi improves the objective. Second,∑bk
i=1 ysi = usbk

, because otherwise, since bk is the bottleneck of sk ,
∑bk
i=1 asi > usbk

,
and xi = 1 for all i ∈ [1, bk] (by assumption on k and Proposition 5.1), and ρ > 0,
the objective can be improved by increasing some ysi i ∈ [1, bk]. Also ysi = asi for
all i ∈ R, since otherwise these variables can be increased to improve the objective

aβ1 β2α2 α3 β3 α4α1δ�

φ�(a)

β̄1

β̄3

β̄2

Fig. 1. Illustration of φ�(a) in Example 2.
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without violating feasibility as ρ > 0 and ȳsk = 0,
∑bk
i=1 ȳsi = usbk

, and ȳsi = asi for
all i ∈ [bk, p] \ {k} is a feasible (and optimal) solution when a = 0. Therefore,

usp − (a − δ�) =
p∑
i=1

ysi + ρ = usbk
+

∑
i∈R

asi + ρ.

Then

�(ag�) = usp −
∑
i∈Q

(asi − λi)
+ − usbk

−
∑
i∈R

asi = a − δ� + ρ −
∑
i∈Q

(asi − λi)
+.

Now let I ′ = (q1, q2, . . . , qr ) be some permutation of Q such that q1 = k. For
a > δ�, first letting ysq1

= 0, and then reducing the remaining ysqj j = 2, 3, . . . , r − 1
from asqj to 0, and ysqr from asqr to asqr − ρ, since

ask − λk +
∑

i∈Q\{k}
asi − ρ = usp − usbk

−
∑
i∈R

asi − ρ = a − δ�

and ρ ≤ (asi − λi)
+ for all i ∈ Q, we obtain the upper bound

�I ′(ag�) = a − δ� −
∑
i∈Q

(asi − λi)
+ + ρ,

which equals �(ag�).
Now suppose constraint (11) has no slack for (x, y), thus

usp − (a − δ�) =
p∑
i=1

ysi = usbk
+

∑
i∈R

asi − ϕ,

where ϕ = asi − ysi for some i ∈ [1, bk] ∪ R. Recall that by Proposition 5.2 we may
assume there exists at most one ysi such that asi > ysi > (asi − λi)

+ and every other
variable is at one of its bounds. So let yst = ast − ϕ. Then

�(ag�) = usp −
∑
i∈Q

(asi − λi)
+ − usbk

−
∑
i∈R

asi + ϕ = a − δ� −
∑
i∈Q

(asi − λi)
+.

Let I ′ = (q1, q2, . . . , qr ) be some permutation of Q ∪ {t} such that q1 = k and
qr = t . For a > δ�, first letting ysq1

= 0, and then reducing ysqj j = 2, 3, . . . , r − 1
from asqj to 0 and ysqr from asqr to asqr − ϕ, since

∑
i∈Q

asi − λk + ϕ = usp − usbk
−

∑
i∈T

asi + ϕ = a − δ�,

we obtain the upper bound

�I ′(ag�) = a − δ� −
∑
i∈Q

(asi − λi)
+ + ϕ,

which equals �(ag�). ��
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Proposition 6 suggests a lower bound on�(ag�) by sorting asi −λi in nonincreasing
order, and λi in nondecreasing order separately and lining up alternating flat and sloped
regions in this order.

Formally let αk be the kth largest asi − λi , i ∈ [1, p] such that asi > λi and
βk be the kth smallest λi , i ∈ [1, p] such that asi > λi , and α0 = β0 = 0. Define
ᾱi := ∑i

k=0 αk and β̄i := ∑i
k=0 βk for i ∈ [0, r], where r = |{i ∈ [1, p] : asi > λi}|,

and φ� : R+ �→ R+ as

φ�(a) =




0 if 0 ≤ a ≤ δ�,

β̄i if δ� + ᾱi + β̄i ≤ a ≤ δ� + ᾱi+1 + β̄i , i ∈ [0, r − 1],
a − δ� − ᾱi if δ� + ᾱi + β̄i−1 ≤ a ≤ δ� + ᾱi + β̄i , i ∈ [1, r − 1],
a − δ� − ᾱr if δ� + ᾱr + β̄r−1 ≤ a.

The solid line in Figure 1 shows φ5(a) in Example 2. The bold line segments on
the horizontal axis indicate the regions where the φ5(a) equals �(ag5), the point–wise
minimum of the dashed and dotted lines.

Finally, we consider the case � < sp. Notice that by increasing u� and usi for
i ∈ [1, p] with � < si < sp to usp , we relax problem P�(ag�). Hence, φ�(a) with
δ� := (u� − usp )

+ is indeed a lower bound on �(ag�) for � < sp as well. This com-
pletes the description of a lower bound on �(ag�) for a fixed � ∈ T ; and from the
preceding we have the following proposition.

Proposition 7. Given a facet–defining inequality (7) for conv(FT ), T ⊂ [1, n]

1. φ�(a) ≤ �(ag�) for 0 ≤ a ≤ u� and all � ∈ T ,
2. φ�(a) = �(ag�) for 0 ≤ a ≤ δ� + α1 + β1 + asd − λd and � ∈ T ∩ [sp + 1, n],
3. φ�(a) = �(ag�) for 0 ≤ a ≤ u� and � ∈ T ∩ [sp + 1, n] if
(i) either asi = ask for all i, k ∈ [1, p] such that asi > λi and ask > λk ,
(ii) or λi = λk for all i, k ∈ [1, p] such that asi > λi and ask > λk .

Next we show how to obtain valid coefficients (πi, µi) for all i ∈ T in (8). The
following lemma is the central result needed for proving the validity of the inequalities
in this section.

Lemma 2. �(
∑
i∈T yigi) ≥ ∑

i∈T φi(yi) for all T ⊆ [1, n] \ S.

Proof. Let ψ : R �→ R+ be defined as

ψ(a) =




0 if a ≤ 0,
β̄i if ᾱi + β̄i ≤ a ≤ ᾱi+1 + β̄i , i ∈ [0, r − 1],
a − ᾱi if ᾱi + β̄i−1 ≤ a ≤ ᾱi + β̄i , i ∈ [1, r − 1],
a − ᾱr if ᾱr + β̄r−1 ≤ a.

Then it follows that, for any k ∈ T ,

ψ(a) =
{
φk(a + δk) if a > 0,
0 if a ≤ 0.

Since ᾱi is partial sum of nonincreasing terms and β̄i is partial sum of nondecreas-
ing terms, it follows that ψ is superadditive; i.e., ψ(a1) + ψ(a2) ≤ ψ(a1 + a2) for
a1, a2 ∈ R.
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The lemma is trivially true if T is empty or singleton. Suppose it is true for all strict
subsets of T and let � = max{i : i ∈ T }. Then, since � is nondecreasing and the
constraint matrix is lower–triangular, we have

�(
∑
i∈T

yigi) ≥ max


�(

∑
i∈T \{�}

yigi), �((
∑
i∈T

yi)g�)




≥ max




∑
i∈T \{�}

φi(yi), φ�(
∑
i∈T

yi)


 (Induction and Proposition 7)

= max




∑
i∈T \{�}

ψ(yi − δi), ψ(
∑
i∈T

yi − δ�)




≥
∑

i∈T \{�}
ψ(yi − δi)+ ψ(y� − δ�) =

∑
i∈T

φi(yi).

In order to see that the last inequality holds, observe that if
∑
i∈T \{�}(yi − δi) ≥∑

i∈T yi − δ�, we have y� − δ� ≤ 0, and hence ψ(y� − δ�) = 0. Otherwise, since ψ is
nondecreasing and superadditive, we haveψ(

∑
i∈T yi − δ�) ≥ ψ(

∑
i∈T \{�}(yi − δi)) ≥∑

i∈T \{�} ψ(yi − δi). Then ψ(
∑
i∈T yi − δ�) ≥ ∑

i∈T \{�} ψ(yi) + ψ(y� − δ�) ≥∑
i∈T \{�} ψ(yi − δi)+ ψ(y� − δ�). ��

Valid coefficients (π�, µ�) for (x�, y�) are obtained by ensuring that

h(a) = max π�x� + µ�y�

s.t. y� = a

(H) 0 ≤ y� ≤ a�x�, x� ∈ {0, 1}

is no more than φ�(a) and equals φ�(a) for two linearly independent solutions, as sug-
gested in Gu et al. [10]. It is seen above that h(a) = π� + µ�a for a > 0. Thus π�
and µ� are intercept and slope of an affine function that supports φ�(a) at two linearly
independent solutions of (H). Defining γi = δ� + β̄i + ᾱi+1, it is easy to verify that
(π�, µ�) ∈ H� = {(0, 0)} ∪H 1

� ∪H 2
� , where

H 1
� =

{
(β̄i−1 − βiγi−1

βi + αi+1
,

βi

βi + αi+1
) : a� ≥ γi, i ∈ [1, |S| − 1]

}
and

H 2
� =

{
(−δ� − ᾱi , 1) if γi−1 < a� ≤ γi−1 + βi, i ∈ [1, |S|],
(β̄i−1 − βiγi−1

a�−γi−1
,

βi
a�−γi−1

) if γi−1 + βi < a� < γi, i ∈ [1, |S| − 1]

}
.

Theorem 3. Inequality (8) with (πi, µi) ∈ Hi for i ∈ T , where S, T ⊆ [1, n] and
S ∩ T = ∅ is valid for F . Moreover, such an inequality defines a facet of conv(F ) if
inequality (7) defines a facet of conv(FT ), T ⊆ [sp + 1, n], and ai ≤ δi + α1 + β1 for
all i ∈ T .
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Proof. The validity of (8) is a consequence of (10), which follows from Lemma 2 and
that πi +µia ≤ φi(a) for a ≥ 0 when (πi, µi) ∈ Hi , i ∈ T . The facet condition follows
from the fact that φi(a) = �(agi) for 0 ≤ a ≤ δi + α1 + β1 and i > sp, and that
πi + µia supports φi(a) at two linearly independent solutions of (H) for all i ∈ T . ��
Example 1 (cont.) Earlier we have seen that for S = {s1, s2} = {2, 3}, inequality

4(1 − x2)+ 3(1 − x3)+ y2 + y3 ≤ 11

defines a facet of conv(F ). Lifting it with (xi, yi) i ∈ T = {1, 4}, we have α1 = 4,
β1 = 4, α2 = 3, δ1 = 0, and δ4 = 2. Hence, H 1

1 = ∅, H 2
1 = (−4, 1), H 1

2 = ∅,
H 2

2 = (−4, 2
3 ); consequently, we obtain

−4x1 + 4(1 − x2)+ 3(1 − x3)− 4x4 + y1 + y2 + y3 + 2

3
y4 ≤ 11.

This inequality and similar ones

−4x1 + 4(1 − x2)+ 3(1 − x3)+ y1 + y2 + y3 ≤ 11,

4(1 − x2)+ 3(1 − x3)− 4x4 + y2 + y3 + 2

3
y4 ≤ 11,

by taking T = {1} and T = {4} are easily verified to be facet–defining for conv(F ). The
inequality with T = {1} illustrates that lifted inequalities (8) may define facets even if
T ⊆ [sp + 1, n]. ��

3. Special cases

3.1. Uncapacitated case

We obtain the uncapacitated case by letting ai = ui for all i ∈ [1, n]. In this case,
inequality (8) for S = [1, �], T ⊆ [�+ 1, n] and � ∈ [0, n− 1] reduces to

�∑
i=1

yi + (u� − u�−1)(1 − x�)+
∑
i∈T

yi ≤ u� +
∑
i∈T
(ui − u�−1)xi, (12)

or

�−1∑
i=1

yi +
∑

i∈T∪{�}
yi ≤ u�−1 +

∑
i∈T∪{�}

(ui − u�−1)xi,

which is equivalent to the uncapacitated lot–sizing inequality (Barany et al. [2])∑
t∈T

wt ≤
∑
t∈T

dt�zt + i�

for T ⊆ [1, �], � ∈ [1, n]. There is anO(n log n) separation algorithm for these inequal-
ities and it is sufficient to add them to the LP relaxation to obtain a complete description
of the lot–sizing polytope for the uncapacitated case [2].
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3.2. Constant–capacity case

When the capacities are constant; i.e., ai = a for all i ∈ [1, n], Proposition 3 implies
that the coefficients of the binary variables in

p∑
i=1

min{a, (a − λi)
+}(1 − xsi )+

p∑
i=1

ysi ≤ usp (13)

are nondecreasing in i ∈ [1, p]. Since α1 := maxi∈[1,p]{asi − λi : asi > λi} = a − λp,
the lifting coefficients of inequality (8) reduce to

(πi, µi) =
{
(λp − a − δi, 1) if δi < λp
(0, 0) otherwise

i ∈ T ⊆ [1, n] \ S.

By Theorem 3 if T ⊆ [sp+1, n], inequality (8) defines a facet of conv(F )whenever (13)
defines a facet of conv(FT ), since φi(a) = �(agi) as a ≤ α1 + β1 (= a in this case).
The example below shows that φi(a)may be strictly less than�(agi) for i ∈ T ∩ [1, sp]
in the constant–capacity case.

Example 3. Let a = 5 and u = (3, 7, 7, 11). For S = {s1, s2, s3} = {1, 2, 4}, we have
λ1 = 4, λ2 = 2, λ4 = 1 and the corresponding bottleneck cover inequality

y1 + y2 + y4 + (1 − x1)+ 3(1 − x2)+ 4(1 − x4) ≤ 11 (14)

is facet–defining for conv(F{3}). The exact lifting of (14) with (x3, y3) gives

y1 + y2 + y3 + y4 + (1 − x1)+ 3(1 − x2)− 3x3 + 4(1 − x4) ≤ 11. (15)

Observe that φ3(5) = λ4 = 1 < �(5g3) = 2 and (π3, µ3) = (−4, 1). Therefore
inequality (15) cannot be obtained using φ3 and H3. ��

The most general class of inequalities defined to date for constant–capacity lot sizing
are the so–called (k�SI) inequalities of Pochet and Wolsey [18]. They show that every
valid inequality for F of the form∑

i∈S
(yi + βixi) ≤ πo

is a (k�SI) inequality. Since the coefficient of yi in inequality (8) is either 0 or 1, (k�SI)
inequalities subsume inequalities (8) in the constant–capacity case. Example 3 illustrates
that (8) is a strict subclass of the (k�SI) inequalities.

Separation algorithm. Now we describe a polynomial–time separation algorithm for
inequalities (8) with S ⊆ [1, n] and T ⊆ [sp + 1, n]. Note that no polynomial–time
separation algorithm is known to date for (k�SI) inequalities unless S is fixed (Pochet
and Wolsey [19]).

First we describe the separation algorithm for inequalities (13) and then extend it
for the lifted inequalities. Given a point (x, y) to separate, for each fixed sp ∈ [1, n],
we define a directed network on which a longest path corresponds to an inequality (13)
with the largest left–hand–side value for (x, y). Let G = (V ,A) be an acyclic directed
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graph, where each vertex in V is a triple (t, d, r) such that t ∈ [0, sp]; d ∈ [0, t − 1]
if t ∈ [1, sp − 1] (d is undefined if t = 0); and r ∈ [0, sp − t]. For a vertex (t, d, r), t
denotes an element that may possibly be included in S, d denotes a possible bottleneck
for t , and r denotes |{si ∈ S : si > t}|. A tuple ((ti , di, ri), (tk, dk, rk)), or simply (i, k),
is an arc in A if and only if it satisfies ti < tk , ri = rk + 1, and dk = ti or dk = dti .

So G is an acyclic graph with source vertices {(0,−, 0), (0,−, 1), . . . , (0,−, sp)}
and sink vertices {(sp, 0, 0), (sp, 1, 0), . . . , (sp, sp−1, 0)}. The set of vertices on a path
from a source vertex to a sink vertex represents S and an arc (i, k) on such a path denotes
that ti and tk are two consecutive elements in S. Observe that in (1) the bottleneck of
tk is either ti or the bottleneck of ti ; therefore, G, with O(n4) arcs, can be built with a
forward pass from the sources to the sinks.

Next we assign lengths on the arcs. Observe that for the constant-capacity case,
a− λk = usp − usbk − (p− bk − 1)a. Given a point (x, y) to separate, the length of arc
(i, k) ∈ A equals the contribution of (xk, yk) to the left hand side of inequality (13). In
order to do that we define the length of an arc (i, k) as

cik =
{
ytk + min{a, (usp − rka)

+}(1 − xtk ) if ti = 0,
ytk + min{a, (usp − ubk − (pos[i] − pos[dk] + rk)a)

+}(1 − xtk ) if ti ≥ 1,

where pos[i] is the number of vertices in a longest path from any source vertex to vertex
i. Since the longest path algorithm on an acyclic directed network proceeds in topolog-
ical ordering of the vertices (see, for instance, Ahuja et al. [1]), pos[i] and pos[dk] are
determined before the arc (i, k) is used in the algorithm. Therefore cik is computed when
running the longest path algorithm as it is needed. Given a longest path with arc (i, k),
since pos[i] refers to the position of ti in S, p = |S|, and rk = |{si ∈ S : si > tk}|,
we see that pos[i] − pos[dk] + rk = p − bpos[k] − 1. Hence the length of a longest
path from a source vertex to a sink vertex (sp, i, 0), i ∈ [0, p − 1], all of which can be
computed simultaneously in O(n4), equals the maximum left hand side value for any
inequality (13) under the assumption that i is the bottleneck of p. Any one of the longest
of these sp paths corresponds to a desired inequality (13).

Now it is easy to extend this algorithm to find a most violated lifted bottleneck cover
inequality. We augment G with a super sink vertex ν and an arc from each sink vertex
(sp, i, 0) to ν with length equal to

∑
k∈Ti

(ȳk − min{a, usi + (p − i − 1)a − uk}x̄k), (16)

where Ti = {k ∈ [sp + 1, n] : min{a, usi + (p − i − 1)a − uk}x̄k < ȳ
k
}. Note that

Ti is the index set of variables (xi, yi) that has a positive contribution to the left hand
side of the inequality, given that i is the bottleneck of sp and the summand (16) can be
computed in linear time. Therefore a longest path from a source to the super sink ν gives
a lifted bottleneck cover inequality with the largest left hand side value. Hence for the
constant capacity case, separation problem for the lifted bottleneck cover inequalities
(8) with T ⊆ [sp+1, n] can be solved inO(n5) by running the linear–time longest path
algorithm for each sp ∈ [1, n].
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4. Computations

In this section we describe our computational experiments on using the inequalities
introduced in Section 2 as cutting planes for solving the lot–sizing problem with a
branch–and–cut algorithm. All experiments are done on a 2GHz Intel Pentium4/Linux
workstation with 1GB main memory using the callable libraries of CPLEX1 Version 8.1
Beta with one hour time limit.

For the experiments we created a data set of lot–sizing problem instances with vary-
ing cost and capacity characteristics. Our preliminary experience has shown that two
main characteristics play a major role in influencing the integrality gap, hence the diffi-
culty of solving the problem instances. The first one is the tightness of the capacities with
respect to the demand.The second one is the ratio between the setup cost and the inventory
holding cost. Therefore, the instances are generated for varying mean capacity/demand
ratios c ∈ {2, 3, 4, 5} and setup/holding cost ratios f ∈ {100, 200, 500, 1000}. Capac-
ity ct is drawn from integer uniform [0.75cd̄, 1.25cd̄], setup cost st is drawn from
integer uniform [0.90fh̄, 1.10fh̄], where d̄ and h̄ are the averages for demand and hold-
ing cost. For all instances ht equals 10, and pt and dt are drawn from integer uniform
[81,119] and [1,19], respectively. Here we report a summary of the solution performance
measures for instances with 90 time periods. The data set is available for download at
http://ieor.berkeley.edu/∼atamturk/data.

We use a heuristic separation algorithm in order to find violated cutting planes.
Given a fractional solution (x, y), for each j ∈ [1, n] we sequentially let S = [1, j ],
S = {i ∈ [1, j ] : xi > 0}, and S = {i ∈ [1, j ] : 1 > xi > 0} and then find T ⊆ [1, n]\S
that maximizes the left–hand–side value for (8) for each such S. Observe that for fixed
S, finding T ⊆ [1, n] \ S that maximizes

∑
i∈T (πixi + µiyi), where (πi, µi) ∈ Hi ,

can be done simply by testing πixi + µiyi > 0 for (πi, µi) ∈ Hi separately for each
i ∈ [1, n] \ S.

We perform a number of experiments to evaluate the effectiveness of the inequalities
described in Section 2 as cutting planes. CPLEX MIP solver also adds several clas-
ses of general cutting planes, including the flow cover inequalities [15] mentioned in
Remark 1, to the formulation. In order to isolate the impact of the inequalities specific
for the lot–sizing problem from CPLEX cuts, we perform two sets of experiments. The
first set is without CPLEX cuts; the second is with CPLEX cuts.

The first experiment is done to find out the marginal contribution of the bottleneck
cover (bc) inequalities (2) over the uncapacitated lot–sizing (uls) inequalities (12).
In order to find out the effect of lifting, in the second experiment we test the lifted
bottleneck cover (lbc) inequalities (8). Results of these experiments are summarized
in Table 1. In this table we report the averages for the percentage integrality gap of
the formulation before cuts are added (initgap = 100 × (bestub − initlb)/bestub),
the percentage integrality gap after adding the cuts before branching (rootgap= 100×
(bestub − rootlb)/bestub), and the percentage improvement in the inte-
grality gap at the root node (gapimp= 100 × (1 − rootgap

initgap )), where initlb,
rootlb, bestub are the objective function values of the initial LP relaxation, LP relaxation
after all cuts are added before branching, and the best feasible solution. We report also

1 CPLEX is a trademark of ILOG, Inc.
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Table 1. Experiments without CPLEX cuts.

c f exp initgap rootgap gapimp cuts nodes time

2 100 uls 3.60 1.52 57.85 68 700854 782
bc 1.18 67.42 172 101858 219
lbc 0.91 74.62 223 64693 171

200 uls 3.10 1.68 45.28 58 1030963 1120
bc 1.26 58.85 177 91558 182
lbc 1.03 66.20 231 59807 149

500 uls 2.11 1.42 32.06 42 904695 831
bc 1.07 49.02 146 306429 504
lbc 0.93 55.27 184 155901 290

1000 uls 1.27 0.92 28.33 24 68675 52
bc 0.63 54.03 91 111835 135
lbc 0.56 59.91 122 104867 156

3 100 uls 6.11 1.77 70.89 105 449250 639
bc 1.99 67.52 197 367582 805
lbc 1.02 83.31 303 5677 29

200 uls 5.60 2.24 60.05 98 1396180 1847
bc 2.28 59.91 202 796147 1772
lbc 1.41 75.18 340 228627 900

500 uls 4.28 2.26 47.58 77 850426 1063
bc 1.97 54.40 165 370474 672
lbc 1.49 65.34 284 124742 387

1000 uls 3.35 2.17 34.56 52 1125313 1250
bc 1.66 49.96 151 496626 891
lbc 1.47 55.59 206 175208 379

4 100 uls 7.54 1.51 79.80 119 91074 147
bc 2.15 71.28 173 365794 740
lbc 0.76 89.82 255 1804 13

200 uls 7.92 2.47 68.54 111 162470 226
bc 3.04 61.29 180 841806 1671
lbc 1.53 80.49 361 18012 85

500 uls 6.56 2.92 55.27 101 594321 767
bc 2.97 54.30 176 1034808 1937
lbc 1.95 70.06 307 42829 135

1000 uls 5.03 2.67 46.04 74 720171 833
bc 2.51 50.29 146 620410 888
lbc 1.83 63.37 260 94628 249

5 100 uls 8.88 0.94 89.17 132 453 1
bc 2.19 75.33 160 14826 31
lbc 0.48 94.59 233 122 3

200 uls 9.94 1.97 80.04 135 43955 62
bc 3.84 61.18 171 638657 1265
lbc 1.33 86.58 328 4459 24

500 uls 9.08 3.28 63.98 123 379423 560
bc 4.36 52.07 166 704089 1270
lbc 2.42 73.44 421 51672 244

1000 uls 7.13 3.28 54.08 97 270706 365
bc 3.60 50.71 141 719460 884
lbc 2.40 66.68 294 39821 136

Average uls 5.73 2.07 56.91 89 531306 634
bc 2.29 58.60 163 473897 867
lbc 1.34 72.53 272 73304 209

uls: ineq. (12), bc: ineq. (2), lbc: ineq. (8).
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the averages for the number of cuts added in the search tree (cuts), the number of nodes
explored (nodes) and the elapsed CPU time in seconds (time). Each entry in the table
corresponds to the average for five instances.

In Table 1 we observe that the initial integrality gap as well as the percentage gap
improvement due to the cuts are negatively correlated with fixed cost/inventory cost
ratio f and positively correlated with capacity/demand ratio c. The instances tend to
become easier to solve as the capacity/demand ratio increases. The gap improvement
due to the bottleneck cover (bc) cuts is consistently about 60% over varying capac-
ities. However, the gap improvement due to the uncapacitated lot–sizing (uls) cuts
increases with the capacity, as expected. While bc cuts are more effective for tightly
capacitated instances, uls cuts perform better for higher capacities. These observa-
tions are clearer to see in Table 2, where we report the averages for each capacity
parameter.

The positive effect of lifting is apparent in Tables 1 and 2. The lifted bottleneck cover
(lbc) cuts improve the integrality gap by about 15% over uls and bc cuts. This leads
to about 7 times reduction in the number of nodes explored and 3 times reduction in the
solution time over all instances compared with uls cuts. Note that the difference in the
impact of uls and lbc cuts is bigger for tightly capacitated instances.

In the next experiment we compare the marginal contribution of the lifted bottle-
neck cover (lbc) cuts over default CPLEX cuts, and CPLEX cuts + uncapacitated lot–
sizing (uls) cuts. A summary of the results of this experiment is reported in Table 3.
The results suggest that adding uls and lbc cuts on top of CPLEX cuts improve the
performance of the algorithm considerably. Also the marginal contribution of the lifted
bottleneck cover (lbc) cuts over CPLEX cuts + uncapacitated lot–sizing (uls) cuts is
quite significant: the average number of nodes is reduced by a factor of 3, the average
solution time is reduced by a factor of 2. The positive impact is apparent consistently
for varying cost and capacity parameters.

Table 2. Experiments without CPLEX cuts (summarized).

c exp initgap rootgap gapimp cuts nodes time
2 uls 2.46 1.39 39.60 47 699170 720

bc 1.03 57.33 147 152920 260
lbc 0.86 64.00 190 96317 192

3 uls 4.77 2.10 52.52 81 906304 1128
bc 1.98 57.95 178 507707 1035
lbc 1.35 69.86 283 133563 424

4 uls 6.76 2.39 62.41 101 392009 493
bc 2.67 59.29 168 715704 1309
lbc 1.52 75.94 296 39318 121

5 uls 8.76 2.37 71.82 122 173634 247
bc 3.50 59.82 160 519258 863
lbc 1.66 80.32 319 24018 102

uls: ineq. (12), bc: ineq. (2), lbc: ineq. (8).
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Table 3. Experiments with CPLEX cuts.

c f exp initgap rootgap gapimp cuts nodes time

2 100 cpx 3.60 1.06 70.35 27 429066 583
ulsx 0.77 78.46 90 50917 80
lbcx 0.56 84.27 220 6067 24

200 cpx 3.10 1.19 61.02 17 248307 276
ulsx 0.99 67.34 73 123368 162
lbcx 0.76 75.12 247 27952 82

500 cpx 2.11 0.96 54.38 103 234549 436
ulsx 0.92 56.27 132 245026 450
lbcx 0.71 66.30 190 116169 266

1000 cpx 1.27 0.57 58.03 220 81912 236
ulsx 0.53 60.14 217 36836 104
lbcx 0.40 70.31 123 33183 58

3 100 cpx 6.11 1.70 72.18 32 547439 775
ulsx 0.96 84.38 138 17074 38
lbcx 0.67 88.98 310 1861 13

200 cpx 5.60 2.01 64.86 17 746093 1013
ulsx 1.38 75.33 184 292260 596
lbcx 1.18 79.28 348 150008 721

500 cpx 4.28 1.52 64.76 22 162234 187
ulsx 1.41 67.67 178 149686 281
lbcx 1.14 73.83 284 71255 230

1000 cpx 3.35 1.39 58.23 111 545482 615
ulsx 1.33 60.07 213 323143 860
lbcx 1.06 68.11 225 47061 121

4 100 cpx 7.54 1.48 80.29 37 93890 142
ulsx 0.74 90.08 117 2293 6
lbcx 0.36 95.21 231 566 6

200 cpx 7.92 2.58 67.10 27 883612 1114
ulsx 1.60 79.65 131 28603 50
lbcx 1.10 85.94 350 4506 27

500 cpx 6.56 2.44 62.55 113 317051 379
ulsx 1.97 69.62 193 50073 85
lbcx 1.58 75.69 323 45896 159

1000 cpx 5.03 2.04 58.60 211 154954 346
ulsx 1.87 62.30 344 145657 323
lbcx 1.40 71.31 333 23883 74

5 100 cpx 8.88 1.11 87.23 45 2048 4
ulsx 0.45 94.78 118 139 1
lbcx 0.25 97.12 213 63 3

200 cpx 9.94 2.57 74.08 38 85154 134
ulsx 1.16 88.03 153 9731 21
lbcx 0.85 91.24 315 1448 13

500 cpx 9.08 3.80 58.32 20 598790 693
ulsx 2.86 68.68 209 193174 583
lbcx 1.86 79.51 395 42314 191

1000 cpx 7.13 2.94 60.49 230 368214 938
ulsx 2.51 65.44 267 253253 868
lbcx 1.88 73.90 360 39902 176

Average cpx 5.73 1.86 65.44 92 311002 454
ulsx 1.34 72.99 172 117898 278
lbcx 0.99 79.76 279 38258 135

cpx: CPLEX cuts, ulsx: CPLEX cuts + uls (12), lbcx: CPLEX cuts + lbc (8).
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5. Conclusions

We identified facets of the lot–sizing polytope using its bottleneck structure. These facets
are then generalized by simultaneous lifting with pairs of variables.

The computational experiments with the new inequalities suggest that they are quite
effective in solving lot–sizing problems when used as cutting planes. One may pursue
several directions for improving the computations further. The separation heuristic used
for finding violated cuts in our computations can be improved. Other construction and
exchange heuristics may be developed to find more violated cuts. Identifying stronger
lower bounds than φ for the lifting function� should reduce the integrality gap further.

A complete description of the lot–sizing polytope for the constant–capacity case is
unknown. Investigation of the lifting function� for this special case deserves attention.
Preliminary observations in this direction indicate that the constant–capacity lot–sizing
polytope has facets that are not described by the (k�SI) inequalities (Pochet and Wolsey
[18]) (see also an example in Miller [13]); but are significantly harder to define explicitly
than the ones identified in this paper.

The bottleneck cover inequalities and adaptations of them may have the potential of
speeding up computations for more complicated production problems that contain the
lot–sizing problem as a substructure.
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