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ABSTRACT 
Assembly line reliability can be increased if grippers 
are carefully designed to capture and align parts. 
Jaw design depends on the geometric and mechanical 
properties of the part as well as its desired 
orientation. In this paper we propose a class of 
modular jaws based on rapidly machineable 
trapezoidal modules. An optimal jaw design is an 
arrangement of trapezoidal jaw modules that 
maximizes contacts between the gripper and the part 
at its desired final orientation over the constraints 
that: the jaws will capture and rotate the part to its 
desired orientation and achieve a form-closure 
grasp. Given the n-sided 2D convex projection of an 
extruded polygonal part, we develop an implemented 
O(n5) algorithm to find the optimal jaw design. The 
algorithm combines toppling, jamming, liftoff, 
accessibility, and form-closure analysis. We verify 
resulting designs by physical experiments. 
 
1 INTRODUCTION 
Grippers can be the most design-intensive 
components of an assembly system [10]. Although 
grippers are widely used for automated 
manufacturing, assembly, and packing, the design of 
gripper jaws is usually ad-hoc and can be a major 
limiting factor in automated assembly.  

Causey and Quinn [7] propose guidelines for the 
design of grippers in manufacturing. Based upon 
these criteria, we propose a modular approach where 
the standard parallel-jaw gripper is augmented with 
trapezoidal jaw modules. 

 
Figure 1 Gripper jaws align the part for assembly: (a) pushing 
(beginning); (b) pushing (ending); (c) toppling; and (d) fixturing. 
 

As illustrated in Figure 1, the part is initially in 
the resting pose (a). It is necessary to rotate the part 
to the desired final orientation (d) for assembly. The 
idea is to design the gripper jaws so as to align the 

part as it is acquired. We divide the grasp into three 
phases: pushing, toppling and fixturing. Initially, one 
jaw makes contact with the part (the “pushing 
contact”). The jaw pushes the part along the work-
surface until the part makes contact with the 
“toppling contact” on the second jaw.  At this point 
the part begins to rotate  (topple) from its initial 
orientation to the desired orientation. During 
toppling, the part is constrained by two contacts and 
the surface. When the part reaches its final fixtured 
orientation other jaw surfaces stop its motion.  The 
optimal jaw design guides the part through these 
phases, avoids premature toppling, jamming, and 
liftoff, and fixtures the part in form closure with 
maximal linear contact. 

  
2 RELATED WORK 
There is a substantial body of research on robotic 
grasping; Bicchi and Kumar provide a concise survey 
in [3].     

A number of papers consider part motion in the 
horizontal plane and how it can be used to reduce 
uncertainty. The motion of parts during grasp 
acquis ition was first analyzed by Mason [13], who 
studies push mechanics as a role of passive 
compliance in grasping and manipulation. Erdmann 
and Mason [8] explore the use of motion strategies to 
reduce uncertainty in the location of objects. They 
described a systematic algorithm for sensorless 
manipulation to orient parts using a tilting tray. Brost 
[5] applies Mason’s Rule to analyze the mechanics of 
the parallel-jaw gripper and polygonal parts. He 
shows that it is possible to align parts using passive 
push and squeeze mechanics. Goldberg [9] 
demonstrates that a modified parallel-jaw gripper 
could orient polygons up to symmetry by a sequence 
of normal pushes. Akella et al. [2] study a minimalist 
manipulation method to feed planar parts using a one 
joint robot over a conveyor belt.  

Several authors address motion of parts in the 
vertical (gravitational) plane during grasping. Trinkle 
and Paul [16] show how to align parts in the 
gravitational plane by lifting them off work-surface 
using a planar gripper with two pivoting jaws. The 
pre-liftoff phase analysis of their paper is related to 
our toppling analysis. They generated liftability 
regions corresponding to contact that cause the part 
to: slide, jam, and break contact with the work-
surface.  We focus on design of jaw shape and show 
that parts can be rotated using only translational jaw 
motion. Abell and Erdmann [1] study how a planar 



 

polygon can be rotated while stably supported by two 
frictionless contacts. Rao et al. [15] give a planar 
analysis for picking up polyhedral parts using 2 hard-
point contacts with a pivoting bearing, allowing the 
part to pivot under gravity to rotate into a new 
configuration. Blind et al. [4] present a “Pachinko”-
like device to orient polygonal parts in the vertical 
plane. It consists of a grid of retractable pins that are 
programmed to bring the part to a desired orientation 
as the part falls.  

Wallack and Canny [19] develop an algorithm 
for planning planar grasp configurations using a 
modular vise. Brown and Brost [6] turn the vise 
upside down and invent a modular parallel-jaw 
gripper. Each jaw consists of a regular grid of 
precisely positioned holes. By properly locating 
(inserting) four pins on each grid, the object can be 
grasped reliably at the desired orientation.  

Mathematical programming has been employed 
to analyze grasping properties. Trinkle [16] 
introduced a nonlinear programming (NLP) model to 
predict instantaneous contact force, contact type, and 
velocity of grasped parts. The model minimizes the 
power generated by friction and gravity subject to   
kinematic constraints. Trinkle solves the problem 
using the primal-dual relationship. And shows that 
the problem can be reduced to a LP problem if the 
contacts are frictionless [17,18]. 

Our work is also motivated by recent research in 
toppling manipulation. Lynch [11,12] derived 
sufficient mechanical conditions for toppling parts   
in term of constraints on contact friction, location, 
and motion and we built on his analysis.  Zhang and 
Gupta [21] study how parts can be reoriented as they 
fall down a series of steps. They derive the critical 
transition height, which is the minimum step height 
to topple a part from a given stable orientation to 
another. Yu et al. [20] estimate the mass and COM of 
objects by toppling. In [22], we introduced the 
toppling graph to geometrically represent the 
mechanics of toppling. We extended toppling 
analysis to parallel-jaw grasping with point contacts 
in  [23]. In the current paper, we consider non-point 
contacts and solve for optimal jaws based on 
trapezoidal modules.  

 
3 DESIGN PROBLEM DEFINITION 
We assume the part can be treated as a rigid extrusion 
of a polygon; both the part and the jaws are rigid; part 
geometry and location of the COM and the jaws are 
known; part motion is sufficiently slow to apply 
quasi-static analysis.    

We consider the following design problem. The 
input is the n-sided convex projection of an extruded 
polygonal part, its COM, its initial and desired 
orientations, ε vertex clearance radius, µt, µs: friction 
coefficients between gripper-part and part-surface, 
respectively. The output is a pair of gripper jaws, 
each specified by a list of trapezoidal modules. 

Figure 1 illustrates an optimal solution. Without 
loss of generality, we assume the part rotates 
counterclockwise. Each jaw consists of a vertical 
base-plate and a set of trapezoidal modules arranged 
on the base-plate. To facilitate jaw machining and 
installation, we consider a class of trapezoidal jaw 
modules. Each jaw module is determined by the 
locations of two vertices that make contact with the 
part. The line segment between these two vertices 
represents an accessible segment on an edge of the 
part at its desired orientation.  The objective is to find 
the set of accessible segments with maximum total 
length.  

We can define the problem, called OPTIMIZE-
JAWS, using a nonlinear programming model: 
 
max:  total length of linear contact area between 

part and gripper at desired orientation 
s. t.:  1. pushing is successful;  

2. toppling is successful;  
3. no jamming occurs; 
4. no liftoff occurs; 
5. no collisions on part motion trajectory; 
6. final grasp is secure. 
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Figure 2 Notation. 
 

As shown in Figure 2, the part sits on a flat 
work-surface at a stable initial orientation. We define 
the World frame, W, to be a Cartesian coordinate 
system originating at pivot point P with X-axis on the 
surface pointing right, Z-axis vertical to the surface 
pointing up. 

The COM is a distance ρ from the origin and 
angle η from the +X direction at its initial 
orientation. The pushing contact, A’, is a distance zA’ 
from the surface; the toppling contact, A, is a distance 
zA from the surface.  

Starting from the pivot, we consider each edge of 
the part in counter-clockwise order, namely e1, e2, …, 
en. The edge ei, with vertices vi at (xi, zi) and v(i+1) at 
(x(i+1), z(i+1)), is in direction ψi from the X-axis. The 
surface friction cone half-angle is αs = tan-1µs, and the 
toppling (pushing) friction cone half-angle is αt =  
tan-1µt. 

Let Ft, Fp, and Fs denote the contact force at A, 
A’, and the surface, respectively, and ft, fp, and fs 
denote the direction of the corresponding contact 
force. We also denote the direction at the left edge of 



 

the toppling (/ pushing / surface) friction cone as ftl 
(/fpl / fsl) and the right edge as  ftr (/fpr / fsr). Let fg 
denote the vertical line through the part’s COM. Let 
aIb denote the intersection of line a and line b, where 
a and b can be anyone of ftl, fpl, fsl, ftr, fpr, fsr, fg ft, fp, 
and fs. 

Let θ denote the rotation angle of the part; 
initially θ =0 and finally θ =θd. Let θt denote the 
rotation angle where the COM is right above P; 
therefore, θt = π /2 -η. We partition edge ei by wi that 
is the distance from vertex vi. Therefore, a point on ei 
can be expressed as (xi+ wi cos ψi, zi+ wi sin ψi).  

We say an edge ek is visible if it can be seen from 
+X direction; invisible, otherwise. Therefore, ek is 
visible if 0 < ψk +θ < π; ek is invisible if π < ψk +θ < 
2π. Notice that A can only make contact with visible 
edges and A’ with invisible edges. 
 
4 ALGORITHM 
We develop a numerical algorithm to find the optimal 
jaw design. The algorithm is based on an efficient 
enumeration of feasible designs that exploits part 
geometry and a graphical force analysis.  

The feasible region for the optimization problem 
is a curve plane defined by (zA, zA’, L), where L is a 
function of (zA, zA’) and represents the total contact 
length between the part and the gripper at the desired 
final orientation. We approximate the maximal 
(optimal) point of this plane by sampling the plane. 

 
4.1 Location of Contacts 

The contacts could switch edges as the part rolls. 
Therefore, we have to check which edge the contacts 
keep touch with at the different part rotation angle θ.  

We first consider the location of A’. It keeps 
touch with a invisible edge ek at θ if xk sinθ  + zk cosθ  
>  zA’ > xk+1 sinθ  + zk+1 cosθ. 

Therefore, we can find the corresponding xA’ by: 
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The location of the toppling contact (xA, zA) can 
be derived in a similar way [24]. 

 
4.2 Pushing Constraints 

To guarantee the linear translation of the part on 
the surface during pushing, neither toppling nor 
jamming could occur.  

To eliminate the pushing contact that may result 
in jamming, Fp should overcome the friction between 
the part and the surface. By static analysis, 

ω = ψi + π/2 ±  αt    # 2      
Mg – Fp sin ω  =  N # 3 
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Therefore, given the pushing contact makes 
contact with edge ei, to guarantee no jamming 
equation  #6 must be satisfied. 
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Figure 3 Condition to prevent toppling.  

 
To prevent the part from toppling during the 

pushing phase,  we begin by constructing a Lynch-
like triangle with vertices P1, P2, and P3 as shown in 
Figure 4. P1(xp1, zp1) is gIsl, P2(xp2, zp2) is P, and P3(xp3, 
zp3) is gIsr. From these definitions we have: 

xp1  = s,  # 7 
zp1  = (x2-s)/µs,  # 8 
xp2 = 0,  # 9 
zp2 = x2,    # 10 
xp3  = s,  # 11 
zp3 = - (x2-s)/µs,    # 12 

where s = ρ cosη. # 13 
To guarantee the pushing contact does not roll 

the part clockwise, every force in the pushing friction 
cone must not make a positive moment (i.e., the 
contact force passes around the triangle in a 
clockwise fashion.) respect to the P1P2P3 triangle 
[14]. Therefore, fpl must pass below the highest 
vertex of the triangle.  

Let 1wi denote the edge contact on ei where fpl 
passes exactly through point P1. We find 1wi by 
projecting a line from P1 at the angle of fpl until it 
intersects the edge of the part:  
1wi = ( zi  - (x2-s)/µt - (xi  - s) tan βil) /(cos ψi tan βil - 
sin ψi),                 # 14 
where βil = ψi + π/2 + αt.  

The contacts for fpl passing through P2 and P3 are 
given by: 
2wi=( zi -x2 -xi tan βil) /(cos ψi tan βil - sin ψi), # 15 
3wi = ( zi  + (x2-s)/µt - (xi  - s) tan βil) /(cos ψi tan βil - 
sin ψi).                 # 16 

To guarantee the pushing contact on an edge ei 
cannot roll the part clockwise, the following 
inequality must be satisfied: 

i zA’ < DHi = zi  + wHi sinψi,  # 17 
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Similarly, to guarantee the pushing contact does 

not roll the part counter-clockwise, the following 
inequality must be satisfied: 

i zA’ > DLi = zi  + wLi sinψi,  # 18 
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In summary, to guarantee linear translation of the 

part without toppling and jamming, inequality #6, 
#17, and  #18 must be satisfied if the pushing contact 
makes contact with edge ei. 

 
4.3 Toppling Constraints 

During toppling, the part rotates about P. The 
system of forces on the part: Fp, Ft, Fs, and the part’s 
weight Mg, must generate a negative moment on the 
part with respective to P. The contact forces lie on 
the edge of the corresponding friction cones. Since P 
slides to the right, the contact force from the surface 
is on the direction of fsl. Ft is on the direction of ftl if 
xA > 0; ftr if xA < 0. Fp is on the direction of fpr if xA’ > 
0; fpl if xA’ < 0 [24].  

Given the part  stays on the surface and the height 
of A’, the toppling function [23], Hj(θ), is the 
minimum height at θ that A in contact with edge ej 
must be in order to roll the part instantaneously, 
where θ = 0 ~θd during toppling. 

Consider an area in W defined by linear edges. 
Let a toppling area denote an area such that toppling 
is guaranteed if Ft makes a negative moment about 
every point in the area. When θ <θt, there only exists 
a toppling area. We derive the toppling function 
depending on the direction of Fp, i.e., xA’ > 0 or xA’ < 
0 (see [24] for details).  

 
4.4 Jamming Constraints 

The part continues to rotate after it has reached 
θt, and jamming may occur due to  friction.  

Given the part  stays on the surface and the height 
of A’, the jamming function [23], Jj(θ), is the 
minimum height at θ that A in contact with edge ej 
must be in order to guarantee no jamming.  

Let a jamming area denote an area such that no 
jamming is guaranteed if Ft does not make a positive 
moment about every point in the area. We consider 
the jamming function by investigating the location of 
A’. We divide quadrant II of W into four zones by fg 
and fsl. Therefore, A’ must lie in one of these zones 
during toppling.  

We first check which zone A’ belongs to at θ. 
Then we check if there exists a jamming area or a 
toppling area. Finally, we derive the jamming 
function if a jamming area exists and the toppling 
function if a toppling area exists (see [24] for details).  

4.5 Liftoff Constraints 
As the part rotates, it may be lifted off from the 

surface. We now find the condition that insures the 
contact between the part and the surface.  

In rolling phase, we only need to consider the 
cases where: ψi > π + αs - αt if xA’ < 0; or ψi > π + αs 
+ αt if xA’ > 0 because there is no toppling area 
otherwise. In these cases, the part keeps contact with 
the surface if and only if Ft makes negative moment 
about the line segment between gIp and pIs [24]. 
Therefore, the toppling constraints  include the non-
liftoff conditions when θ <θt. 

When θ >θt, we assume the part is just about to 
be lifted off from the surface if a jamming area exists. 
Therefore, we have: 

Fp cos αi  + Ft cos αj = 0,  # 19 
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To guarantee non-liftoff, forces must satisfy: 
Fp sin αi + Ft sin αj – G < 0,  # 20 

Therefore, tan αi - tan αj < 0.  
Notice that when both Fp and Ft point down, i.e. 

π < αi  < 2π and π < αj  < 2π, the inequality is always 
true; when both Fp and Ft point up, i.e. 2π < αi  < 3π 
and 0 < αj  < π, the inequality is always false. 

 
4.6 Toppling Graph 

Our analysis involves the graphical construction 
of a set of functions. All of these functions are 
piecewise sinusoidal and dependent on θ. They map 
from part orientation to height: S1→ℜℜ +, where S1 is 
the set of planar orientations. The functions include 
vertex functions, toppling functions, and jamming 
functions. The toppling graph [22], which consists of 
these functions, helps us to identify the range of the 
contact permits toppling.  

 
4.7 Trajectory Analysis 

Once the part has been toppled to θd, the jaws 
must stop the part’s rotation and securely hold it. We 
want to maximize the contact between the part and 
the jaws for the most robust performance.  

During toppling, the part is constrained by two 
contacts and the surface. We first consider the motion 
trajectory of the visible edges. We take the toppling 
contact as a fixed point; therefore, the part motion is 
constrained by A and the surface (see Figure 4). The 
motion trajectory of the invisible edges can be 
obtained by the same method taking A’ as a fixed 
point; therefore, the part motion is constrained by A’ 
and the surface.  

The part performs both rotation and linear 
translation during toppling. We decompose the part 
motion into pure rotation and pure linear translation. 
The part first rotates about P to semi-position, and 
then translates to actual-position. Let (θ xj, θ zj) and (θ 

x’j, θ z’j) denote the actual-position and the semi-
position of vertex vj after the part is toppled by θ, 



 

respectively. Let (d xj, d zj) and (d x’j, d z’j) denote the 
actual-position and the semi-position of vertex vj after 
the part is toppled to its desired orientation, 
respectively. Let θxt and dxt denote the distance 
between the actual-position and the semi-position of 
any point after the part is toppled by θ and θd, 
respectively. 

No obstacle (any portion of the jaws) can block 
the motion trajectory of the part during toppling. We 
developed quasi-vertex functions to represent the 
motion trajectory of vertices. Given zA, the quasi-
vertex function Qjk(θ, zA) indicates the location of vk 
in Fj as the part rotates. 
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Figure 4 Frame Fj notation. 
 

We define a frame of reference Fj at the desired 
orientation of the part. As shown in Figure 5, Fj 
originates at vj. The Z-axis of Fj is the interior normal 
of edge e( j-1), and the X-axis is on edge e( j-1) obeying 
the right-hand rule. We obtain Qjk(θ, zA) by 
transforming the motion trajectory of vk in W to Fj. 

We know that d xt = d xA - d x’A, where d xA = xA 
since A is fixed. A makes contact with edge em if d z’m 
<  zA < d z’m+1 . Therefore, we can find d x’A, and then 
we obtain: 
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So the transformation matrix FjTW is given by: 
FjTW = [WTFj]
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We next describe the motion trajectory of vertex 

vk in W numerically. At each sampling θ, we compute 
the position of vk: 
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<  zA < θ z’l+1. Thus, quasi-vertex function Qjk(θ, zA) 
for vertex vk can be shown to be: 

Qjk(θ) = 







),(

),(

Ajkz

Ajkx

zQ

zQ

θ
θ  

= 



















+−++−+−−

+−++−+−

−−

−−

)cos()''()sin()''(

)sin()''()cos()''(

11

11

djjdkdjtdtjdk

djjdkdjtdtjdk

zzxxxx

zzxxxx

θψθψ

θψθψ

θθθ

θθθ  

# 24 
The line segment, connecting two corresponding 

points of Qjk(θ, zA) and Qj(k+1)(θ, zA) at the same 
rotation angle, represents the configuration of edge ek 
in Fj. We denote it by the quasi-edge function Ejk(θ, 
zA). Figure 5 illustrates Q43(θ, zA) and Q44(θ, zA), and 
E43(θ, zA) for the sample part given zA’ = 0.5cm and zA 
= 3.65cm. 
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Figure 5 Quasi-vertex functions (a) and quasi-edge functions (b). 
 

We obtain an accessibility graph of Fj by 
combining Qjk(θ, zA)’s for all the visible vertices vk’s 
into one graph. We say a portion of an edge is an 
accessible segment if the gripper can contact this 
portion at the desired final orientation of the part 
without blocking its motion trajectory. Therefore, the 
portion of edge e( j-1) is accessible if there is no 
intersection between the quasi-edge functions and 
this portion of X-axis in the accessibility graph of Fj. 
Figure 5 illustrates the accessibility graph of F4 based 
on the sample part given zA’ = 0.5cm and zA = 
3.65cm. 
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Figure 6 The accessibility graph of F4. 

 
Starting from any point of Qjk(θ, zA)’s in the 

accessibility graph of Fj with zQjk(θ, zA) < 0, we 
search the trajectory of ek and the neighbor edges 
recursively to find all the intersections between the 
corresponding quasi-edge functions and X-axis. We 
obtain the accessible segment on edge e( j-1) by 
eliminating those intersections. Repeating this 



 

analysis on all the edges of the part, we get the set of 
accessible segments for the pair of (zA, zA’). 

Additionally, we require the jaws to achieve a 
form-closure grasp on the part. It is well known that 
to check the form-closure grasps is equivalent to 
solving a system of equations [18]. We find the 
optimal design by ranking the form-closure check 
survivors based upon the total length of contact. 
Figure 7 demo nstrates the optimal design with 
maximal L for the sample part where zA’ = 0.5cm and 
zA = 22.6cm. 

 
Figure 7 An example: the optimal jaw design. 
 

Given the n-sided convex projection of an 
extruded polygonal part, our algorithm takes O(n2) to 
find a pair of feasible (zA, zA’). For each (zA, zA’), we 
apply O(n3) time trajectory analysis to find the set of 
the accessible segments. Therefore, the running time 
is O(n5).  

 
5. IMPLEMENTATION RESULTS  
We conducted a physical experiment using an 
AdeptOne industrial robot and a parallel-jaw gripper 
with jaws designed using the methodology described 
in this paper. The part and the jaws were machined 
from aluminum. The corresponding friction cone half 
angles are αt = 5° ± 2°, and αp = 5° ± 2°.  

As illustrated in Figure 1, the part begins at 
stable orientation (a). Its desired orientation (d) for 
assembly is at θ =25°. We choose A and A’ at zA = 
5.5cm and zA’ = 0.4cm, respectively. The analysis 
yields the optimal jaw design with L = 16.2cm.  
 
6. DISCUSSION AND FUTURE WORK  
Gripper jaw design has been ad-hoc and particularly 
challenging when the part's natural resting pose 
differs from the desired grip/insertion pose. In this 
paper we describe a new approach to this problem 
where the gripper jaws guide the part into alignment 
and achieve the maximal linear contact with the part 
at its desired orientation.  

Our next objective is to validate performance of 
the modular jaw designs in terms of reliability and 
variation in shape, mass distribution, and friction. We 
will then extend the approach to non-extruded 3D 
parts.    
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