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Abstract

The vibratory bowl feeder is the oldest and still most common ap-
proach to the automated feeding (orienting) of industrial parts. In this
paper we consider a class of vibratory bowl filters that can be described
by removing polygonal sections from the track; we refer to this class of
filters as traps.

For an n-sided polygonal part and an m-sided polygonal trap, we give
an O(n?mlogn) algorithm to decide whether the part in a specific orien-
tation will safely move across the trap or will fall through the trap and
thus be filtered out. For an n-sided convex polygonal part and m-sided
convex polygonal trap, this bound is improved to O((n 4+ m)logn).

Furthermore, we show how to design various trap shapes, ranging from
simple traps to general polygons which will filter out all but one of the
different stable orientations of a given part. Although the run times of
our design algorithms are exponential in the number of trap parameters,
many industrial part feeders use few-parameter traps (balconies, canyons,
slots); in these cases the running times of our algorithms range from linear
to low degree polynomial.

1 Introduction

A part feeder takes in a stream of identical parts in arbitrary orientations and
outputs them in a uniform orientation. We consider the problem of sensorless
orientation of parts, in which the initial orientation of the part is assumed to
be unknown. In sensorless manipulation, parts are positioned and/or oriented
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Figure 1: Vibratory bowl feeder track (Boothroyd et al., 1982).

using passive mechanical compliance. The input is a description of the part
shape and the output is a sequence of open-loop actions that moves a part
from an unknown initial orientation into a unique final orientation. Among
the sensorless part feeders considered in literature are the parallel-jaw gripper
(Chen and Ierardi, 1995; Goldberg, 1993), the single pushing jaw (Akella and
Mason, 1992; Lynch and Mason, 1996; Mason, 1982; Peshkin and Sanderson,
1988a), the conveyor belt with a sequence of (stationary) fences placed along
its sides (Berretty et al., 1998; Brokowski et al., 1995; Peshkin and Sanderson,
1988b; Wiegley et al., 1997), the conveyor belt with a single rotational fence
(Akella et al., 2000), the tilting tray (Erdmann and Mason, 1988; Natarajan,
1989), vibratory plates and programmable vector fields (Bohringer et al., 2000).

The oldest and still most common approach to automated feeding is the
vibratory bowl feeder. It consists of a bowl filled with parts surrounded by a
helical metal track (Boothroyd et al., 1982; Boothroyd and Dewhurst, 1983).
The bowl and track undergo an asymmetric helical vibration that causes parts
to move up the track, where they encounter a sequence of mechanical devices
such as wiper blades, grooves and traps. Most of these devices are filters that
serve to reject (force back to the bottom of the bowl) parts in all orientations
except for the desired one. Thus, a stream of oriented parts emerges at the top
after successfully running the gauntlet. In this paper, we present a framework
to filter polygonal parts on a track using traps. A trap is described by removing
polygonal sections from the track. A picture of a section of the feeder track
is given in Figure 1. The parts move from the right to the left on the feeder
track. Parts in undesired orientations fall back into the bowl, other orientations
remain supported.

Vibratory bowl feeders “are the versatile, rugged, day-in, day-out workhorses
that shoulder the bulk of all automatic part feeding operations” (Riley, 1983).



Chapter 5 of Riley’s handbook provides a detailed taxonomy of industrial part
feeding mechanisms and notes that bowl design currently relies on human trial-
and-error and often requires substantial debugging on the assembly line. Spe-
cific to these vibratory bowls, researchers have used simulation (Berkowitz and
Canny, 1996; Jakiela and Krishnasamy, 1993; Maul and Thomas, 1997), heuris-
tics (Lim et al., 1994), and genetic algorithms (Christiansen et al., 1996) to
design traps. Perhaps closest in spirit to our work is M. Caine’s PhD the-
sis (Caine, 1994) which develops geometric analysis tools to help designers by
rendering the configuration-space for a given combination of part, trap, and
obstacle. Caine also gives some heuristics to design feeder track features. In
this paper, we do not propose heuristics or user guided design to define traps,
but rather give algorithms that are guaranteed to always find a trap of a pre-
ferred shape, if such a trap exists. Very recent results furthering our geometric
approach of trap design were reported in a paper by Agarwal et al. (Agarwal
et al., 2001). Agarwal et al. observed that the running time of our algorithm in
Section 3 can be improved. Moreover, they show how to find a family of part
geometry derived shapes, if such trap shapes exist.

Consider a part feeding system that accepts as input a set of part orientations
Y. Based on a definition by Akella et al (Akella et al., 2000), we might say that
a system has the feeding property if there exists some orientation ¢, usually in
>, such that the system outputs parts only in orientation o. This paper reports
on algorithms that design traps with the feeding property. To the extent of our
knowledge, these are the first results in systematic design of feeder traps.

This paper is organized as follows. In Section 2 we give a geometric model
of the bowl feeder; this model is the basis for our algorithms. In Section 3 we
analyse whether a part in a given orientation will safely move across the trap,
or will be filtered out and fall back into the bowl. For a polygonal part with n
vertices and a polygonal trap with m vertices, the resulting algorithm runs in
O(n?mlogn) time. This can be improved to O((n+m)logn) time if the part and
the trap are convex. In Section 4 we give algorithms for designing traps in the
feeder track. We construct, for example, a gap, which is a rectilinear interruption
of the track. Given the geometry of the part, we compute in O(n?logn) time
how long the gap should be to establish a feeder. This bound is reduced to
O(n?) for convex parts. We also consider other trap shapes: the balcony, the
canyon, the slot, and conclude with a general approach for designing general
polygonal traps. Several algorithms of our paper have been implemented, and
the resulting traps have been succesfully tested in an experimental setup. The
experiments, accompanied by a discussion of the assumptions implied by our
geometric model are reported in Section 5. We conclude this paper in Section 6.

2 Preliminaries

In this section we discuss the geometric properties of the bowl feeder. The
geometric model we will present is designed to reflect important characteristics
of the bowl feeder. In Section 5, we describe experiments with a real feeder that



uses traps generated with our model and the discrepancies between our model
and part feeding in practice.

In this paper, we address the problem in the plane. Throughout this paper,
P denotes a 2-dimensional polygonal part. The 2-dimensional polygonal trap
in the track is denoted by T. The number of vertices of P is denoted by n. The
number of vertices of T is denoted by m.

A subset S of the plane is called convez if and only if for any pair of points
p,q € S the line segment (p,q) is completely contained in S. The convex hull,
CH(S), of a set S is the smallest convex set that contains S. We denote the
interior of a set S by int(.5).

The part has a center-of-mass ¢, which lies inside the convex hull of the part.
At ¢, a fixed coordinate frame is attached, which identifies the zero orientation
of the part. The track is slightly tilted towards the railing so the part remains
in contact with the railing as it moves along the railing. The radius function
for the part characterizes the stable orientations of the part against the railing
(Goldberg, 1993).

Definition 2.1 The radius of a part at an angle 0 is the distance from the
center-of-mass to the line tangent to the part, and orthogonally intersecting the
ray from the center-of-mass in the direction of 0.

Each stable orientation of P corresponds to a local minimum in the radius
function. The stable orientations of a part can easily be computed in linear
time from the description of the part (Mason, 1982). The orientation of a part
is identified by the angle between the reference frame and the y-axis. In our
model, the possible orientation of the part is restricted to O(n) different, stable
orientations.

In reality, the part is mobile, and slides across a stationary trap in the
positive z-direction. It is, however, easier to describe the solutions by viewing
the part as stationary, and slide the trap underneath the part (which is obviously
equivalent). We assume that the railing of the track is aligned with the z-axis.
Throughout the motion of the trap, c is on the y-axis at a fixed distance ¢, from
the railing, and the part’s orientation does not change.

All figures in this paper have the railing is coincident with the horizontal
axis, and the trap is supposed to move in the negative x-direction. The railing
is depicted at the bottom of the figures (see e.g. Figure 2).

A placement of the trap, i.e., its horizontal displacement, is denoted by a
single value, q. We denote the set of points of the plane covered by trap T at
placement g by T'(q). The supported area of the part above a trap at placement
qis S(q) = P —int(T(q)).

We define how to decide whether a part above a trap in a given placement
will fall into the bowl or remain safely on the track. The following definition
states that a part is safe if there are three points in P surrounding the center-
of-mass that are supported.



Definition 2.2 Let P be a part with center-of-mass c. Let T be a trap. The
part P is safe above the trap at placement q if and only if there exists a triangle
Ay, tyts With ¢ € Ay 1514, and t1,ta,t3 € S(q). Otherwise, the part is unsafe.

The following lemmas give us easy ways to decide whether the part is safe
or not.

Lemma 2.3 P above T'(q) is safe if and only if c € CH(S(q)).

Proof: (=) Let P be safe. There is a triangle Ay, 4, +,, With t1,2,t3 € S(q),
and ¢ € A. Clearly, t1,t2,t3 € CH(S(q)), and, consequently, we have ¢ €
CH(S5(q))-

(<) c € CH(S(q)). We construct a triangle by computing a triangulation of
CH(S(q)). Clearly there is one triangle in the triangulation which contains c.
Furthermore, the vertices of CH(S(q)) are in S(q). O

Lemma 2.4 P above T(q) is safe if and only if there is no line £ through ¢ with
CH(S(q)) in the open half plane defined by £.

Proof: Follows immediately from the previous lemma, because ¢ € CH(S(q)).
O

A critical placement of the trap is a placement where ¢ lies on the boundary
of CH(S(q)). It follows from Lemma 2.4 that a critical placement can also be
characterized by a line through ¢ which touches the boundary of CH(S(q)), that
bounds a half place containing S(g). The following lemma gives a third way to
characterize a critical placement.

Lemma 2.5 Let P be a part above a trap T'(q). Let ¢ be not in the interior of
CH(S(q)). Let p; and p, be two rays emanating from c. Let the left side of p,
be tangent to CH(S(q)) and let the right side of p, be tangent to CH(S(q)). The
placement of T is critical if and only if the angle between p; and p, is 7, or c is
a vertex of CH(S(q)).

Since c lies in the interior of P, we note that if T" is convex, ¢ never is a vertex
of CH(S(q)). Figure 2 depicts a safe part and a trap together with the convex
hull of the supported surface. The notion of safeness gives us a tool to formalize
whether a part in a given orientation will survive a given trap. We assume that
if the part is unsafe at some placement of the trap, it is rejected and will fall
back into the bowl. For many simple trap shapes this assumption is justified.

Definition 2.6 Let P be a part with center-of-mass ¢ in a given orientation.
Let T be a trap. The part P is fed if for all placements q, P is safe above T(q).
Otherwise, P is rejected.



Figure 2: The part P and its center-of-mass ¢ above a trap T at different
placements ¢ and ¢’. Placement g corresponds to a unsafe placement. Placement
¢ is safe. CH(S(q)) and CH(S(q")) are shaded. The half plane, bounded by line
£ through ¢, which contains CH(S(q)) is depicted as well.

A trap T has a critical shape for orientation o, if T' feeds P in orientation o,
and T has at least one critical placement.

The ultimate goal is to find a trap which will feed only one of the possible
orientations of P. A trap with this property is said to have the feeding property
(Akella et al., 2000).

3 Analyzing a trap

In this section, we analyse the safeness of a part above a given trap. In the
first subsection, we discuss the general case of a polygonal part above a moving
polygonal trap. In the second subsection, we give an algorithm with an improved
running time, that only deals with convex parts and traps.

3.1 General polygonal traps and parts

In this section we discuss how to test an orientation of a polygonal part against
a polygonal trap in the track. From Section 2 we know that there are at most
O(n) different possible orientations for the part on the track. We consider one
of these O(n) stable orientations of the part. We answer the question whether
P in this specific orientation is fed or rejected. We first give a general algorithm
that solves the problem in O(n?mlogn) time. Then, we give an improved
algorithm that works for convex parts and convex traps, and solves the problem
in O((n 4+ m)logn) time.



Figure 3: The part P and its center-of-mass ¢ above a trap 1" at placement gq.
The extremal rays are drawn for all edges of P. For edge e, ¢, (¢) and ¢F(q)
are shown.

To determine whether a part will survive a given trap, we sweep the trap un-
derneath the part and check if safeness is retained during the sweep. Lemma 2.4
gives us the idea of the algorithm. Namely, we check whether at any moment
during the sweep all points of the convex hull of the supported area are in an
open half plane through c. If this is not the case, the part is safe.

We distinguish three types of vertices in the arrangement of the two possibly
intersecting polygons T" and P: the vertices of P, the vertices of T" and the
vertices due to the intersections of an edge of P and an edge of T

The convex hull CH(S(q)) is equal to the convex hull of a subset of these
vertices. Recall that S(q) = P—int(T'(¢)). The vertices of P can only contribute
to CH(S(q)) if they are not in T'. The trap T" does not contribute to CH(S(q)),
but we have to take into account the intersection points of edges of P and T
In general, it is not necessary to take into account every intersection between
edges of T and edges of P. It is sufficient, by definition of the convex hull, to
only use the (at most) two outermost intersections of each edge of the part.

We compute, for each edge e of the part, the angles of a rays emanating from
¢ through the edge’s left- and rightmost point of support during the sweep—
for vertical edges, we compute these angles for the lowest and highest point of
support. We call these rays extremal rays. We are interested whether there is
a half-plane bounded by a line through ¢ which contains all the extremal rays.
In other words, whether at any time during the sweep, there is a single angular
interval greater than =, containing no rays. In the following, we first analyze
the complexity of the motions of the rays during the sweep, and then give an
algorithm to answer the question of safeness.

The defining features of T" and P of these extremal points change during the



sweep of the trap. We define ray-angle functions ¢, and ¢F. These functions
give a mapping from the amount of shift of the trap, to the angles of extremal
rays, see Figure 3. An edge e need not be supported at all times during the
sweep. Hence, these functions are only partially defined. We will argue that
the total combinatorial complexity of ¢, and ¢ is O(m). We note that the
intersection of the edge e and a feature of T leads to a constant complexity
curved part of one of the functions. The total combinatorial complexity of ¢_
and ¢ is therefore bounded by the number of features of T', which is O(m).

Now consider a graph of all ray-angle functions of all edges of P in the
(z, ¢)-plane. Here, an x-value corresponds to the amount of shift of the trap.
A vertical line in the graph, i.e. a line with a fixed z-value intersects O(n)
functions. If the distance between two function values is greater than m for
some x, then the part is unsafe at the corresponding position of the trap, and
hence rejected.

We check this condition using a frequently used geometric technique called
a sweep line algorithm. We sweep a vertical line ¢ across the graph in the (x, ¢)-
plane. While we do so, we keep track of the ray-angle functions intersecting ¢.
The description of the ray-angle functions intersecting the sweep line is called
the status of the sweep line. For details on sweep line algorithms, we refer to
the book of De Berg et al. (de Berg et al., 1997).

During the sweep, the status needs to be updated at specific values of z.
The values at which we update the status of ¢ are called events. First, there
are events for z-values at which there is an endpoint of a segment of a ray-angle
function, since at these values a ray-angle function must be inserted into or
removed from the status structure. Also, there are events when two ray-angle
functions change order. Finally, there are events at which two neighboring ray-
angle functions have distance .

When we process an event, we first check which type of event we are dealing
with. If the event is due to two neighboring ray-angle functions becoming m
apart, we check whether the two functions are indeed still neighboring. In this
case, the part is unsafe, and we reject it. An event due to a begin- or endpoint of
a ray-angle function segment forces insertion or deletion of a ray-angle function
in the status structure. The last kind of event raises the need to update the
order of the values of the ray-angle functions in the status structure. From the
changes in the status structure, we compute new events.

The reader might have noticed that it can occur that, due to an update of
the status structure, the events which correspond to two rays which make an
angle of m become invalid. We do not remove them from the set of upcoming
events, but we recheck, as mentioned before, the validity of these events at the
moment they are processed.

In our case, the status structure is implemented as balanced binary tree
storing the order in which the ray-angle functions are intersected by the sweep
line. Since there are O(n) ray-angle functions present in the intersection with
the sweep line, the updates and checks take O(logn) time. The events are stored
in a priority queue. For adjacent functions, we compute their intersections, and
the z-value for which they are 7w apart, and enqueue these events.



There are O(n) partially defined ray-angle functions of combinatorial com-
plexity O(m). Each pair of ray-angle functions intersect at most O(m) times.
Thus each pair of ray-angle functions introduces O(m) events. There are O(n?)
pairs of ray-angle functions. Hence, the total number of events is bounded by
O(n?*m).

Theorem 3.1 Let P be a polygonal part with n vertices, and T be a polygonal
trap with m vertices. We can report whether P is rejected or fed in O(n?*mlogn)
time.

3.2 Convex traps and parts

In the case of a convex part and a convex trap the problem can be solved more
efficiently. In this section we give three lemmas which result in an O((n +
m)logn) algorithm for this case. First, it is shown that the vertices resulting
from the intersecting edges of the part and the trap are sufficient to compute
safeness of the part. Lemma 3.2 shows that we no longer need to consider the
supported area of the part outside the trap, but we can confine with S(¢)N7T(q).
Secondly, Lemma 3.3 and 3.4 show that there are only few events, and moreover
these events can be processed efficiently, leading to the faster algorithm.

Lemma 3.2 Let P be a convex part with center-of-mass ¢ at the origin, and
T(q) be a convex trap at placement q. P is safe if and only if c is in the convex
hull of the vertices of S(q) NT(q) orc ¢ T(q).

Proof: (=) Trivial.

(<) We elaborate on the case that ¢ € CH(S(q)) NT'(q), because if ¢ ¢ T(q)
the part is evidently safe. We will show that CH(S(¢q) N T(q)) = CH(S(q)) N
T(q). We prove this by contradiction. Let us assume that there is a point p in
CH(S(g)) N T(g) which is not in CH(S(¢) NT(g)). This point is in CH(S(q)).
Consequently, there are two points p’ and p” in S(g), such that p lies on the
edge p/,p”. Furthermore, p’ and p” have to lie outside CH(S(q)) N T, since
otherwise p is in CH(S(q))NT(q) also. But, since P is convex, any point on this
edge is contained in P, and the intersection points of p’, p”" with the boundary
of CH(S(q)) NT(q) are evidence for p to lie inside CH(S(q)) N T(q). 0

We restrict ourselves to the part of the motion when ¢ € T(q), which is a
necessary condition for unsafeness of the part. We maintain rays emanating
from ¢, intersecting the vertices of CH(S(q) N T(q)), and check whether the
angular distance between any pair of neigboring rays remains smaller than 7.
We shall not explicitly construct the graph of ray-angle functions, but rather
maintain the ordered set of vertices which are intersected by the rays.

We need events for each ¢ at which the ordered set of vertices of CH(S(g) N
T(q)) changes combinatorially. The set could change due to appearance of
disappearance of vertices from S(q) N7 (g), or when three vertices of S(q)NT(q)
become collinear. The following lemma tells us that any event will coincide with
a edge-vertex crossing of P and T'(q).



Figure 4: The four possible events types.

Lemma 3.3 The combinatorial structure of CH(S(q)NT'(q)) only changes when
a vertex of T(q) move across an edge of P, or an edge of T'(q) moves across a
vertex of P.

Proof: Suppose that the combinatorial description of CH(S(¢)NT(¢q)) changes
when there is no vertex-edge crossing. Clearly, no intersection point of P and
T(q) appears or disappears. Thus, the combinatorial change is due to the
collinearity of the three moving intersection points, v1, v2 and vz. These three
points move along three edges of T, e1, e and e3. Consequently, there has to
be a line intersecting a convex shape through three edges, which is impossible.
This completes the proof by contradiction. O

Hence, there are four possible events where we need to update the combinatorial
description of CH(S(q) NT(q)) (see Figure 4).

1. An edge of T'(¢) moves across a vertex of P, introducing or deleting a

vertex of CH(S(q) NT'(q)).

2. A vertex of T(q) moves across an edge of P, introducing or deleting a

vertex of CH(S(q) NT(q)).

3. An edge of T'(g) moves across a vertex of P, changing the defining edges
of a vertex.

4. An edge of T'(q) moves across an edge of P, changing the defining edges
of a vertex.

Lemma 3.4 The events require each a constant complexity update of CH(S(q)N
T(q))-

Proof: The convex hull before the event is denoted by CH(S(q) N T(q)),
and after the event by CH(S(¢') NT(¢)).

Case 1. Let v denote the vertex appearing or disappearing from the boundary
of CH(S(q)NT(q)). Let us assume that v appears on the boundary of the convex
hull. The other case is similar. We show that CH(S(q) N T(¢q)) changes locally,
i.e. an edge (v1,v2) changes into two edges (v1,v) and (v,v2). Suppose on the

10



Figure 5: An illustration of Case 1 of the proof of Lemma 3.4.

contrary, that some of the vertices from the boundary of CH(S(¢q) N T(q)) do
not appear on the boundary of CH(S(¢')NT(q’)), because they are covered by v
(Figure 5). Let vg, v, v, be the neighboring vertices on CH(S(¢') NT(¢')), after
insertion of v. Vertices covered by v are vertices inside the triangle v,, v, vy. Let
ve be a covered vertex. Recall that the vertices of CH(S(q) N T(q)), as well as
the vertices of CH(S(¢') N T(q’)) are on the boundary of T(q), resp T'(¢'), so
Va, Up, Ve, and v, are on the boundary of a convex polygon. But, v, lies in the
interior of the triangle v,, v, vy, therefore v, cannot exist and it follows that the
transition from CH(S(q) NT(q)) to CH(S(¢") N T(q")) is indeed local.

Case 2. A vertex of CH(S(¢)NT(q)) is split into two vertices, or two vertices
merge. This is a local change.

Case 3 and 4. The edges defining a vertex change. The direction of the
motion of the vertex changes, but the trajectory remains continuous. This is a
local change as well. O

By appropriately storing the ordered set of vertices of the convex hull, we can
locate the place where the update is necessary in logarithmic time. Hence,
the events can be handled in logarithmic time. After preprocessing, we know at
which placements of the trap, edges of the trap coincide with vertices of the part
and vice versa. Therefore, maintaining the convex hull requires O((n+m)logn)
time.

During the motion of the trap, ¢ always has the same distance to the rail-
ing. Therefore, at any moment during the motion, there are only two edges of
CH(S(¢) NT(q)) that ¢ can possibly cross. The intersecting edges of the trap
and the part defining these edges might change, though. Every time the descrip-
tion of a relevant edge changes, a new event is generated for the placement at
which the center-of-mass will cross the new edge. This is accomplished without
increasing the asymptotic running time. From the motion of the center-of-mass,

11



and the motion of the relevant edges we derive placements of the trap at which
the center-of-mass leaves the convex hull. We add these placements as extra
events. We handle such events as follows. We first check whether the event is
still valid, by checking the relevance of the edge associated with the event. If so,
we report rejection of the part, otherwise, we discard the event. This gives no
extra overhead to the algorithm. The following theorem summarizes the result.

Theorem 3.5 Let P be a convex polygonal part and let T be a convex polygonal
trap. We can report whether P is rejected or fed by T in O((n+ m)logn) time.

4 Design of traps

In this section, we discuss the design of traps. Given a particular part and a
collection of traps (e.g. all rectangular traps) the goals is to find a trap in the
collection that satisfy the feeding property, i.e. that allow the part to be fed
in only one orientation. We start with various collections of rectilinear traps
in Sections 4.1 through 4.4 with increasing numbers of degrees of freedom and
conclude with general polygonal traps in Section 4.5.

Figure 6 shows a picture of the rectilinear traps we shall present in the next
four subsections; balconies, gaps, canyons, and slots. Each with the parameters
that define them. The goal of these subsections is to find values for these
parameters such that the shape of the resulting trap rejects every orientation of
the part, except one.

Clearly, a trap which is entirely contained in another trap will feed all ori-
entations of the latter, and possibly more. For a general pair of traps, on the
contrary, neither the first trap need to be contained in the other, nor vice versa.
Consequently, it is hard to order different traps based on the rejection or feed-
ability of traps.

We can, however, for a given orientation o of P, subdivide the parameter
space of all possible trap shapes into shapes that feed P in orientation o, and
shapes that reject P in orientation o.

On the boundaries of the different regions of the subdivision, we find critical
trap shapes, which feed the part, but have critical placements—only slightly
enlarging such a critical trap shape will turn the critical placement into an
unsafe placement, turning the trap into a trap that rejects the part. Combining
the subdivisions of the trap shapes for different orientations will, on its turn,
lead to trap shapes for which only one orientation is fed.

4.1 Balconies

A balcony is an interruption of the upper part of the supporting area of the
track. The lower boundary, e;, of this interruption is parallel to the railing. The
starting and closing edges of the interruption, e,, and e, are orthogonal to the
railing. The length of the interruption exceeds the diameter of the part, so that
the part can impossibly simultaneously intersect e; and e.. A balcony shape is

12



(a) railing (b)

Figure 6: The four rectilinear traps of this section: (a) a balcony; (b) a gap; (¢)
a canyon; and (d) a slot. The thick lines at the bottom of the pictures depict
the railing. The line at the top depicts the edge of the track at the inside of the
bowl. The traps are dashed.
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given by the balcony width, p, which is the distance between e; and the railing
(see Figure 6(a)).

We assume that the part is in a fixed stable orientation, so one of its convex
hull edges is aligned with the railing. We want to identify a critical balcony. If
we start decreasing the balcony width p from the width of the track to zero,
then initially the trap will move across the part without causing the part to
fall through. At a certain balcony width the part will not survive the balcony,
and this clearly remains to be the case for smaller balcony widths. We refer to
the smallest balcony width for which the part survives as the critical balcony
width for this orientation of the part. If the critical balcony width p of one
stable orientation o is smaller than the critical balcony widths of all other stable
orientations then a balcony of width slightly larger than p (but smaller than all
other critical balcony widths) will reject all stable orientations but o. Hence,
this balcony width has the feeding property.

In the following, we show that the critical balcony width for orientation o
corresponds to the distance of the center-of-mass ¢ to the railing. We denote by
H, the half plane extending downward from e;. We observe that PN H C S(q)
for any placement ¢ of T'. Equality holds for placements for which P is between
es and e.. The part in orientation o is fed by T if and only if P is safe for
all placements of T. Since PN H C S(q) for any placement ¢ of T, P is fed
if and only if P is safe for placements g of T for which P is between e, and
e., and PN H = S(q). Consequently, by Lemma 2.3, P is fed if and only if
ceCH(PNH).

A balcony T for which the width p equals the distance of ¢ to the railing for
P in orientation ¢ has ¢ on the boundary of CH(PNH). Thus, placements g of T'
for which P is between e, and e, have ¢ on the boundary of CH(S(q)) are critical
placements, but still feed P in orientation o. The distance of ¢ to the railing
equals the radius of P in direction o. Therefore, the critical balcony width for
P in orientation o is radius(c). Summarizing, there exists a balcony with the
feeding property if the open interval between the two smallest radii of all stable
orientations of P is non-empty, i.e. there is a unique orientation for which the
radius is minimal. Since we can compute all radii of P in linear time (Mason,
1982), we can determine the balcony widths which have the feeding property in
linear time as well.

Theorem 4.1 In O(n) time we can design a balcony with the feeding property
for a polygonal part with n vertices, or report that no such balcony ezists.

Proof: The stable orientations and radii corresponding to these orienta-
tions of P are computed in linear time. If there is a unique orientation for which
the radius is minimal, the feeder is constructed using a balcony slightly higher
than this minimum radius. Otherwise, we will always end up with two or more
orientations. m|

Note that the railing of the track always touches the part at the convex hull.
Therefore, the given analysis holds for both convex and non-convex parts. The
only parts we cannot feed with a balcony are parts for which the minimal radius
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is not unique. We might also use a balcony at the other side of the track, facing
the railing. This ‘reverse’ balcony can be used to select part orientations with
a radius greater than the width of the reverse balcony. The combination of a
balcony and a reverse balcony in succession on the feeder track is very powerful.
Actually, we can select any radius p, by first rejecting orientations with radii
greater than p, and then rejecting orientations with radii smaller than p. So
only parts for which each radius occurs more than once cannot be handled in
this way.

4.2 Gaps

A gap is an interruption of the supporting area that spans the entire width of
the track. Both its boundaries are perpendicular to the railing. The shape of a
gap can thus be characterized solely by the distance v between these two parallel
boundaries. We shall refer to this distance as the gap length (see Figure 6(b)).

We again assume that the part is in a fixed stable orientation, so one of its
convex hull edges is aligned with the railing. We want to identify a critical gap.
If we start increasing the gap length v from zero to infinity, then initially the
trap will move across the part without causing the part to fall through. At a
certain gap length the part will not survive the gap, and this clearly remains
to be the case for all larger gap lengths. We refer to the largest gap length
for which the part survives as the critical gap length for this orientation of the
part. If the critical gap length v of one stable orientation o is larger than the
critical gap lengths of all other stable orientations then a gap of length slightly
smaller than + (but larger than all other critical gap lengths) will reject all
stable orientations but o. Hence this gap length has the feeding property. If
the largest critical gap length does not correspond to a unique orientation of
the part, then there is no gap that can reject all but one orientation of the part,
and there exists no gap with the feeding property.

The part is safe if and only if there is a supported triangle around the center-
of-mass. This implies that, when the part is unsafe, the supported area of the
part is contained in a half-plane that does not contain the center-of-mass. We
distinguish two different types of unsafe, or critical, placements of the part:

1. The supported area of the part is intersected by at most one edge of the
gap.

2. The supported area of the part is intersected by both edges of the gap.

In the first type of unsafe placements, the part is only supported to the left
(or the right) of the vertical axis through the center-of-mass. For the second
type of unsafe placements, the supports are contained in a half-plane below
(or above) the center-of-mass. The corresponding critical placements also have
supports on a line through the center-of-mass. In Figure 7, four types of unsafe
placements are given.

The critical gap length for a stable orientation o equals the smallest gap
length associated with the critical placements of the trap of the two types. The
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Figure 7: The types of unsafe placements of a part above a gap. CH(S(q)) is
grey. (a) The supports are to the left of the center-of-mass. (b) The supports are
to the right of the center-of-mass. (c) The supports are in a half-plane below the
center-of-mass. (d) The supports are in a half-plane above the center-of-mass.

first type of placement does not exist as long as the length of the gap does not
exceed the radii of the part in the direction ¢ — 7/2 and o + 7/2. Clearly,
if one of these radii is less than the gap length, then the part will fall either
forward or backward. Thus, the critical gap length is at most min{radius(c —
%),radius(o + 7)}. It is a bit harder to compute the shortest gap length for
which the second type of placement does not occur.

We start by investigating how the supports of the part can be contained in a
half-plane below the center-of-mass (the case for the supports above the center-
of-mass is similar). Lemma 2.5 is the base for our analysis throughout the rest of
this section. We let p; and p,., be two rays emanating from the center-of-mass c,
such that S(q) is tangent to the left side of p;, and the right side of p,. Figure 8
shows a part at a critical placement of the gap that is supported by two sides
of the gap.

The supported area of the part now consists of two regions, one to the left
of the gap, and one to the right of the gap. The center-of-mass is in the gap.
The widest gap length for which these two regions exist is the gap length which
exactly spans the part, supporting the left- and rightmost pieces of the part.
Unless c is on the line through the outermost vertices of P, this gap length will
not correspond to a critical placement—p; and p, will make an angle unequal
7, and the part will be unsupported.

Concludingly, we will have to narrow the gap, until we reach a critical place-
ment, i.e. until the angle between the two rays emanating from ¢ make an angle
of m.

We define a function ¢;, which links v; to the angle of p; with the positive
vertical axis. See Figure 8. The function ¢, is defined similarly. Intuitively,
moving the left edge of the gap towards ¢, makes the angle of the left ray with
the vertical axis smaller, and moving the rightmost edge of the gap towards c,
will make the angle of the right ray with the vertical axis smaller. We search
for the combination of both motions, for which the rays emanating from c even-
tually make an angle of 7. In the following, we shall validate the intuition,
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Figure 8: A critical placement of the gap for the part. p; and p, are rays
emanating from ¢, touching CH(S(q)) on either side.

and show how to compute the different gap lengths which correspond to critical
placements.

An important first observation is that p; will always touch CH(S(q)) at the
top. Hence, only the points of P with the maximum y-value for each z-value are
important. The union of these points is called the upper envelope of the part.
The upper envelope can be computed in O(nlogn) time, using an algorithm for
computing the upper envelope of line segments by Hershberger (Hershberger,
1989).

The second observation is that supported points of P for ; are also sup-
ported for v/ with v/ < ;. Hence, the supported area to the left of ¢ only
increases as 7; decreases, and consequently, ¢; is monotonic.

From the two observations, it follows that a geometric representation of ¢;
can be computed in two stages. First, we compute the upper envelope of P.
Second, we transform the upper envelope into a shape for which the value of
pi(71) coincides with the intersection of the vertical line at distance ~; from the
vertical axis. We call this shape the upper tangent envelope.

The upper tangent envelope for the left side of P can be incrementally con-
structed traversing the vertices of the upper hull of P from left to right. We
start the traversal at the leftmost vertex v, of P. The upper tangent envelope
is given by the line segment (vy, ¢).

As we travel along a vertex v;, there are two possibilities to augment the
upper tangent envelope. We consider the line segment (v;_1,v;). If the segment
lies (partially) above the upper tangent envelope computed so far, we add two
segments to the upper tangent envelope: the segment of (v;_1,v;) above the
upper tangent envelope, and (v;,c¢). Otherwise, we discard v;. We stop at the
artificial vertex at the intersection of the vertical axis (through ¢) and P.
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Figure 9: The angle of p; with the vertical axis for a given ~;. The upper tangent
envelope of the part is dashed.

The upper tangent envelope is a representation of ¢; and ¢,. The value of
¢1(1) is given by the angle of the ray emanating from ¢ to the intersection of
the vertical line at distance ; from the vertical axis.

The next step is to find all values of ; and ~,. for which |¢;(7;) — & (7)| = 7.
We start with 4; at vy, and find the value of v, for which |¢;(v;) — ér (V)| = 7.
We decrease the value of v;, while maintaining |¢;(v) — ¢r ()| = 7. From
the monotonicity of ¢; and ¢, it follows that, doing this, -, never needs to be
decreased. Hence, we can in a single traversal of the edges of the left side of
the upper tangent envelope, find corresponding edges of the right side of the
tangent envelope for which there are values 7; and -, with critical placements
of the trap.

Using elementary trigonometry, we compute for each discovered pair of edges
the minimal gap length for which there is a critical placement. Altogether, this
takes linear time in the complexity of the upper tangent envelope.

Lemma 4.2 For any orientation of the part, the critical gap length can be com-
puted in O(nlogn) time.

Theorem 4.3 In O(n?logn) time we can design a gap with the feeding property
for a polygonal part with n vertices, or report that no such gap exists.

Proof: The stable orientations of P are computed in O(n) time. For each
stable orientation we compute the critical gap length. If the minimum of the
critical gap length corresponds to a unique orientation, the feeder is constructed
using the minimum critical gap length. Otherwise, we will always end up with
two or more orientations. O

If the part is convex, the upper tangent envelope of the upper hull of the part
is simply the boundary of the part. This allows for a faster computation of the
feeder gap length. The critical gap length of a given orientation can now be
computed in linear time.
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Theorem 4.4 In O(n?) time we can design a gap with the feeding property for
a convex polygonal part with n vertices, or report that no such gap exists.

Proof: The stable orientations of P are computed in linear time. For each
stable orientation we compute the critical gap length. If the minimum if the
critical gap lengths is unique, the feeder is constructed using the minimum criti-
cal gap length. Otherwise, we will always end up with two or more orientations.
O

4.3 Canyons

A canyon is a rectangular interruption of the supporting area of the track. The
lower and upper boundary, e; and e,, of this interruption are parallel to the
railing. The starting and closing boundary, e; and e, of the interruption are
orthogonal to the railing. The length of the interruption exceeds the diameter
of the part. Hence, there is no placement ¢ of a canyon for which both ey and
e. intersect S(q) (see Figure 6(c)).

We assume that the part is in a fixed stable orientation, and seek for critical
canyons. To this end, we characterize unsafe and critical placements of a canyon.
The following lemma allows us to restrict ourselves to placements ¢ of the canyon
for which e; and e, do not intersect S(q).

Lemma 4.5 Let P be part. Let T be a canyon. Suppose there is an unsafe
placement q of T, with (es Ue.) N S(q) # @. There exists an unsafe placement
q of T with (esUe.)NS(¢) =2.

Proof: We suppose without loss of generality that e; N1 S(q) # @. Let S,(q)
denote the area of S(q) above e,, Si(q) denote the area of S(q) below e;, and
Sc(q) the area of S(g) between es and e.. The canyon is longer than the length
diameter of the part, so there exists a placement ¢’ for which P lies between e,
and e, and clearly (e;Ue.)NS(¢') # 2. S(¢) = (Su(q)USi(q)) C S(q). Hence,
any triangle that certifies the safeness of P at placement ¢’ of T also exists in
S(g), and consequently certifies the safeness at placement ¢. This implies, by as-
sumption that when P is unsafe at ¢, P is unsafe at placement ¢’ of T' as well. O

A consequence of Lemma 4.5 is that a canyon can be characterized by dis-
tances p and v of respectively the lower and upper boundary from the rail-
ing. Moreover, a critical canyon is characterized by a critical placement ¢ with
(esUec) NS(g) = @. In the remainder of this section we focus on placements
q with (es Ue.) N S(q) = @. We distinguish two types of unsafe, or critical,
placements.

1. The supported area of the part is intersected by at most one edge of the
canyon.

2. The supported area of the part is intersected by both edges of the canyon.
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Figure 10: A critical placement ¢ for the depicted part. p; and p, are rays
emanating from ¢, touching CH(S(g)) on either side.

In the first type of unsafe placements, the part is only supported above the
(or below) a horizontal line through the center-of-mass. For the second type
of unsafe placements, the supports are contained in a half-plane to the left (or
the right) the center-of-mass. The corresponding critical placements also have
supports on a line through the center-of-mass.

We denote the height of P in orientation o by h. Recall that the y-coordinate
of ¢ is denoted by c,. The first type of unsafe placements exists when p = 0
and v > ¢y, or when i < ¢, and v > h. It is a bit harder to compute the second
type of critical placements, but they might exist when 0 < ¢, <v < h.

We suppose that S(g) lies in a half plane to the right of ¢ (the other case is
similar). We derive the dependency between p and v in a way which is rather
similar to the discussion in Section 4.2.

The supported area of the part, S(q) consists of two regions. One region is
above the canyon, and the other is below the canyon. We let p; and p,., be two
rays emanating from the ¢, such that S(q) is tangent to the left side of p;, and
the right side of p,. The canyon is at a critical placement if the angle between
p1 and p, is . This situation is depicted in Figure 10.

We define two functions, ¢; and ¢,., which link i to the angle of p; with the
horizontal axis, and link v to angle of p, with the horizontal axis. We make two
observations which will shortly lead to a graphical representation of ¢; and ¢,..
Firstly, we observe that p; and p, always touch CH(S(q)) at one of a leftmost
point for any y-value. Secondly, we observe that the supported area of the part
only increases as we increase p—causing p; to rotate in clockwise direction—or
decrease v—causing p, to rotate in counterclockwise direction.

Hence, ¢; and ¢, are monotonic and their representation is given by the left
tangent envelope of the part. The left tangent envelope can be computed in
O(nlogn) time, similar to the upper tangent envelope of Section 4.2.
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Figure 11: (a) The border of a single orientation. (b) The graph of borders of
multiple orientations.

The next step is to derive the dependency of v on u from the left tangent
envelope. We start with © = 0, and compute v for which |¢;(u) — ¢ (v)| = 7.
Next, we increase p while maintaining the collinearity of the rays. From the
monotonicity of ¢; and ¢, it follows that we never have to decrease v in this
proces. We find a linear number of pairs of edges of the left tangent envelope
which are simultaneously intersected by the two rays. For every pair of edges, we
can compute the dependency between i and v, using elementary trigonometry.

We gathered every combination of p and v for all critical placements of
a canyon for a part in a given orientation. The next step is to combine the
combinations for every orientation and select the combinations which only feed
one orientation.

To find pairs (u,v) which satisfy the feeding property, we draw a graph of
all critical canyon shapes (u,v) for every orientation of P. The graph consists
of O(n) curved segments per stable orientation of the part. The segments are
connected and the relation between p and v is monotonic. We call a connected
sequence of these segments a border. We draw the border for all possible orien-
tations in the (u,v)-plane of all possible canyon shapes.

The border for an orientation o divides the (u,r)-plane into a feeding and
a rejecting region for . We recall that from the monotonicity of ¢;, and ¢,
it follows that a canyon (u,v) that does not have a critical placement for P
in orientation o rejects P in orientation o if there is a critical placement of a
canyon (u', "), with 4 > p/ and v > v/, The canyon (u, ) feeds P in orientation
o otherwise. Hence, in the graph, the area above the border of o correspond to
canyons that reject P in orientation o, and the area below the border to canyons
that feed P in orientation o.

Our ultimate goal is to get a pair (u,v) that has the feeding property, i.e.
the corresponding canyon feeds only one orientation of the part. A valid pair of
(1, v) must lie above the border of all but one orientations of the part.
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The computation of pairs that have the feeding property can be carried out
by first finding the uppermost points of all borders in the graph, and then finding
the one but uppermost points of all borders. In Figure 11 a picture of the border
of a single orientation, and the intersecting borders of multiple orientations is
depicted. The shape that follows the uppermost points of the graph is called the
graph’s upper envelope, as the reader might recollect. We compute the upper
envelope by means of an algorithm of Hershberger (Hershberger, 1989) which
computes the upper envelope of a set of segments that intersect pairwise at most
k times. The combinatorial complexity of the upper envelope is ©(Ax12(n?)),
where \s(n?) is the maximum length of a Davenport-Schinzel sequence of or-
der s on n? symbols (see e.g. (Sharir and Agarwal, 1995)). The algorithm of
Hershberger runs in O(Aj41(n?)logn) time. After having computed the upper
envelope, we strip the upper envelope from the graph, and run the algorithm of
Hershberger again to find the one but uppermost points. In our case, each pair
of segments intersect at most twice. Since A\3(n?) = n?a(n), where a(n) is the
extremely slowly growing inverse Ackermann function, we obtain the following
theorem.

Theorem 4.6 In O(n?a(n)logn) time we can design a canyon with the feeding
property for a polygonal part with n wvertices, or report that mo such canyon
exrists.

In the convex case, the running time remains the same, since the final step
which computes the upper envelope dominates the running time of our algo-
rithm.

4.4 Slots

A slot is a rectangular interruption of the supporting area of the track. The
lower and upper boundary, e; and e,, of this interruption are parallel to the
railing. The starting and closing boundary, es and e., of the interruption are
orthogonal to the railing. The distances of the lower and upper boundary from
the railing, are specified by p and v respectively. The length of the interruption
is v (see Figure 6(d)).

The strategy to determine critical placements of the part is a combination
of the approach of Section 4.2 and 4.3. We distinguish two types of unsafe, or
critical, placements.

1. The supported area of the part is intersected by at most one edge of the
slot.

2. The supported area of the part is intersected by more than one edge of
the slot.

In order to characterize the critical placements of a slot, we recall Lemma 2.5.

A slot T is at a critical placement ¢ if there are two rays emanating from ¢ in
opposite direction, which are both tangent to CH(S(q)).
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Figure 12: A critical slot shape for the depicted part. Parameters v and p
establish a critical placement certified by the rays. Increasing v still yields a
critical slot shape.

Since only two rays determine a critical placement, two edges of the slot are
sufficient to determine a critical placement. Consequently, at most two out of
three of the parameters which describe a slot are necessary to describe a critical
slot. In other words, each critical slot has at least one parameter which is ‘free’,
i.e. there is at least one parameter which can be varied without affecting the
criticality of the slot shape. Figure 12 shows a critical slot shape with free
parameter v; increasing v still yields a critical slot shape.

A slot shape is given by the triple (u,v,vy). We embed the space of all slot
shapes in R3 and generalize the idea of a 2-dimensional graph of borders in
R? from Section 4.3 to surfaces of critical slot shapes in R3. This collection
of surfaces subdivides the space of all slot shapes into regions of feeding and
rejecting slots.

The computation of critical slot shapes for P in orientation o is rather similar
to the computation of the critical gap lengths, or canyon shapes of the previous
sections. For any pair of boundary edges of the slot, we determine the relation
between the angle of collinear rays touching CH(S(g)), and the corresponding
slot parameters. This results in a collection of O(n) critical surfaces in the space
of slot shapes.

We briefly discuss an algorithm which computes the resulting subdivision of
R3. For each orientation there are O(n) surfaces of constant algebraic complex-
ity. Thus the arrangement consists of O(n?) surfaces in a 3-dimensional space.
We can compute sample points of the cells in the subdivision, using an algorithm
by Basu et al. (Basu et al., 1996). This algorithm also computes at which side
of the surfaces the sample points are located, hence we can determine which
orientations are fed, and which orientations are rejected for any sample point.
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Lemma 4.7 gives the computation time and the number of points computed by
their algorithm.

Lemma 4.7 (Basu et al., 1996) Let P = {Pi,..., P} a set of surfaces of
constant algebraic degree d in R'. Then there exists an algorithm that outputs
sample points of all semi-algebraically connected components induced by the set
P. The complezity of the algorithm is bounded by +1d°W.

In our case | = 3 and £ = n? Hence, in O(n®) time we can compute

representatives covering all combinatorially different slot shapes. For each rep-
resentative, we test whether it has the feeding property. If there does not exist
such a representative, there is no slot shape that has the feeding property. The
following theorem summarizes the result of this section.

Theorem 4.8 In O(n®) time we can design a slot with the feeding property for
a polygonal part with n vertices, or report that no such slot exists.

The running time of the algorithm of this section can most likely be im-
proved. The main goal of the presentation of the slot feeder is, however, to give
an introduction to computing trap shapes from subdivisions of higher dimen-
sional trap shape spaces. In the next section, we shall compute traps with an
arbitrary number of degrees of freedom.

4.5 General polygonal traps

In this section we will show how to design a general trap. Our goal here is not
to provide an optimal algorithm, but to give a general framework.

The proposed general trap is a polygon with k vertices. The position of each
vertex of the polygon is specified by two parameters. This implies that a general
polygon can be specified by 2k parameters.

The problem of this section is as follows. Let P be a polygonal part and let
k be an integer. Design a polygonal trap with k vertices such that P is rejected
by the trap in all but one stable orientation, as the trap moves across P. Like
in the previous sections, we construct a subdivision of the space of possible trap
shapes. Since a trap shape is determined by 2k parameters, the trap shape
space in this section is R?*. The computations which lead to a subdivision of
the trap shape space will be carried out in a larger dimensional space. More
specifically, the computations will be carried out in an FEuclidean space which
is spanned by the 2k parameters of the trap: the position of the part and the
(z,y)-plane.

We compute surfaces which correspond to critical placements of the trap.
We follow an approach which is related to robot motion planning, using a cell
decomposition. We refer the reader to Latombe’s book (Latombe, 1991) for an
overview of robot motion planning, and to the paper of Schwartz and Sharir
(Schwartz and Sharir, 1983) on a solution to the general motion planning prob-
lem, using an arrangement of higher-dimensional, algebraic surfaces.
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railing

Figure 13: An general polygonal trap. The position of the vertices are parame-
terized.

Our approach to compute the safe placements of the part uses Tarski sets,
which are semi-algebraic sets. For ease of presentation, we again describe the
problem as if the part will remain stationary during the motion, and the trap
moves across the part.

We shall denote the trap, specified by a 2k-dimensional vector 7 € R2*,
at position ¢ € R, by T-(g). Let Ajng(r, (q))(-) be the defining formula of the
translated trap in R? x R?*, i.e. Aine(T, (g)) (), v € R? is true if and only if
v € int(T-(q)). Let Ap(-) be the defining formula of the part in R?, i.e. Ap(v),
v € R? is true if and only if v € P. We assume that Ap(-) and Aing(T, (¢)) () are
semi-algebraic sets.

The intersection of the part and the supporting area of the track, P —
int(T'(¢q)) is denoted by the following Tarski set Sj.

Sl = {(U’T, Q) € R2k+3 | AP(”) A _'Aint(T.r(q))('U)}'

To determine the safe placements of the part, we take points of Si, and
interpolate between points with the same ¢ and s, i.e. we construct the convex
hull of the supported area of the part in the direction of the plane for each trap
size and trap position. This leads to the set

Sy ={(v,7,q) € R*T3 | I/ ¢ R®F" € R?Ti € [0, 1] :
v="0"+ (1 -39 A
(W, 1,q9) €S A (W', T,q) € S}
Remember that a placement is safe, if its center-of-mass is inside the convex
hull of the supported area of the part. The safe trap shapes in R?* are the

shapes for which there exist no unsafe placement of the trap. A few easy trans-
formations transform the set Sy into a lower-dimensional arrangement which
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captures the safeness of the part. The only portion of the arrangement that is
of interest is the portion which corresponds to the center-of-mass of P. There-
fore, we intersect Sy with the (2k + 1)-dimensional space corresponding to the
position of the center-of-mass. This results in

Ss={(r,q) € R4+ (¢,7,q) € 8o}

If, during the motion, the center-of-mass is not supported at some placement,
the part is rejected. Therefore, we project the complement of the arrangement,
onto R?* | obtaining

Si={reR¥* |35 0,1]:(7,q) ¢ S3}.

We now have a description of a subdivision of the trap shape space R?* for a
single stable orientation into fed and rejected cells. For each orientation of the
part, we compute this arrangement. The next step is to merge the m different
Sy arrangements, and find a cell for which all but one orientation is rejected.
Let us denote Sy for orientation ¢ by S4(7). In the remainder of this section, we
discuss how to compute a trap which only feeds the first stable orientation of the
part, and reject all other orientations of the part, if such a trap shape exists.
Repeating this procedure for the other orientations completes our extensive
search for a feeder. Possible trap shapes which feed the first orientation are
given by

Ss={r€84(1)|Yo€[2,...,m]: T ¢&S8s(0)}.

Note that o is not a real algebraic variable, and its universal quantifier
represents an ordinary for-loop. Unfortunately, the remaining quantifiers found
in the expansion of S4(47) are harder to deal with.

To be able to eliminate these quantifiers, we first transform S into an equiv-
alent sentence with the quantifiers to the left. This is standard procedure and
can be found in e.g. the book of Mishra (Mishra, 1993). We denote the result-
ing formula by S. Traditionally, elimination of the quantifiers in S can be done
by Collins’ decomposition (Collins, 1975) which is a (doubly) exponential algo-
rithm in the number of vertices of the trap. The output of Collins’ algorithm
are the cells in the arrangement in R?* of any dimension.

We can improve the running time of the quantifier elimination algorithm,
using recent techniques from real algebraic geometry. For a survey, we refer
the reader to Heintz et al. (Heintz et al., 1991), the book of Mishra (Mishra,
1993), and a paper by Chazelle (Chazelle, 1994). For a comprehensive intro-
ductory discussion to the results cited in the following, we refer to the thesis of
Basu (Basu, 1996).

We observe several interesting properties of our formula S. Although the
number of free variables of S is only bounded by O(k)—the number of vertices
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of the trap—the number of quantified variables is bounded by a constant. Also,
the degree d of the polynomials in S is bounded by a constant.

If we would settle for only the semi-algebraic description of the surfaces
(without decomposing the space of possible trap shapes into connected compo-
nents), we could use the recent algorithm of Basu (Basu, 1999), which benefits
from the special properties of our set S, and uses singly exponential time in our
case. The following lemma states that we can remove the quantifiers from our
formula S by computing a set of surfaces which induces a fine subdivision of the
trap shape space which is equivalent to our formula S.

Lemma 4.9 (Basu, 1999) Let | and w be constants, and P = {p1,... ,p¢},
be as set of & polynomials each of constant degree d, in | + k wvariables, with
coefficients in a real closed field R and

(YY) = (QuX) - (@XM F(p1, ..., pe),

a first-order formula, where Q; € {V,3}, Q; # Qi+1, Y = (Y1,...,Y) is a
block of k free variables, X1 is a block of a constant number of variables, and
F(p1,...p¢)is a quantifier-free Boolean formula with atomic predicates of the
form @;(Y, X! ... X)) {<,>}0. Moreover, let every polynomial in P depend
on at most a constant number of the Y;’s. Then, there exists an equivalent set
of surfaces, W(Y) of size E9MdOW)|F|, where |F| is the length of the formula
F. The algebraic degrees of the surfaces in U(Y) are bounded by a constant.

In our case, &, and |F| are O(knm) = O(kn?), and & is two times the number
parameters of the trap. Hence, there is a constant ¢, such that the output of
the algorithm of Basu is a quantifier free formula of size O((kn)¢d°®)) and
has constant degree polynomials. The algorithm uses O((kn)°d®*)) arithmetic
operations. The polynomials in the quantifier free formula represent surfaces of
constant degree in the trap shape space. The output of the algorithm is a set
of surfaces which subdivide the space of possible trap shapes into regions for
which the sets of rejected and fed orientations are fixed.

From Lemma 4.7 it follows that we can compute sample points in every
connected component of the subdivision. We fill in the variables of Lemma 4.9.
From the number of surfaces, it follows & = O((kn)¢d®*®). The surfaces are em-
bedded in R?*, hence I = 2k. We conclude that we can compute representatives
covering all combinatorially different k-vertex trap shapes using O((nk)O**)
arithmetic operations. For each representative, we test whether the resulting
trap only feeds the first orientation of P. If there does not exist such a repre-
sentative, there is no k-vertex polygon which only feeds the first orientation of
P. Repeating the algorithm for each stable orientation of P yields the following
result.

Theorem 4.10 In O((nk;)o(kZ)) time we can design a polygonal trap with k
vertices with the feeding property for a polygonal part with n vertices, or report
that no such trap exists.
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5 Experimental results

The trap design algorithms in this paper assume the geometric model presented
in Section 2. How well do the resulting traps perform in practice? We discuss
some of the differences between theory and practice and then describe laboratory
experiments with a physical feeder (Berretty et al., 1999).

Our model of the bowl feeder makes several simplifying assumptions. First,
we assume that parts are singulated, ie. that they do not tangle or nest together,
which would create hybrid shapes with varying boundaries and centers of mass.
Second, we assume that part motion along the track is frictionless, continuous
and quasi-static. This approximates the true motion in a vibratory bowl, which
uses submillimeter helical vibrations to cause parts to advance along the track
via a series of microscopic hops. Since these hops are very small with respect
to the part dimensions, our assumptions are reasonable. Larger magnitude
vibrations could induce discontinuities in the position of the part that could
allow it to “hop across” a trap, especially if the trap is designed with tight
tolerances. Third, we assume all motion is planar: parts with non-zero vertical
extent can become jammed in a trap as they fall. Last, we assume that the
outer (vertical) track railing is linear and not curved as is the case with bowl
feeders that have circular railings. If this curvature is small with respect to part
dimensions, our linear assumption is reasonable. We encourage future research
that can relax some of the assumptions above.

To study the behavior of our traps in practice, we tested two traps in the
laboratory (Berretty et al., 1999). Our experimental track, shown in Figure 14,
uses a commercial inline vibratory platform from Automation Devices Inc. The
platform generates an asymmetric vibration at variable amplitudes that moves
parts along the track. The parts are standard fluorescent lightbulb sockets,
approximately 2 inches in length. We assume that parts are singulated and that
the same part face lies on the feeder track. Projecting the part onto the track
yields a polygonal shape that we provide as input to our trap design algorithms.
The two traps were designed along the line of thought of the discussion at
the end of Section 4.1; two traps were combined to enable us to choose the
orientation to be fed. The balcony rejects orientations with radius larger than
the fed orientation. The slot was designed to retain the fed orientation and reject
the remaining orientations. The balcony and slot output from the algorithms
was cut into sheetmetal with a milling machine and attached to the vibratory
platform.

In a controlled series of 100 trials with each of the part’s stable orientations,
we experienced no failures: all undesired part orientations were properly rejected
by the pair of traps. The traps never jammed; they successfully rejected many
out-of-plane part orientations not modelled by the algorithms. Failures were
observed in cases when parts were not singulated: pairs of overlapping parts
could be arranged to slip past the traps. Also, residual glue from a price label
caused one part to violate our motion model.
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Figure 14: Part on track and railing mounted on Model 5300A.1 (T-18) vibra-
tory platform from Automation Devices, Inc. Approximate length 18 inches.
The traps were designed by our algorithm and cut with a milling machine. The
feeder successfully feeds a stream of these parts.
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6 Discussion

In this paper, we have presented a geometric framework for the trap design
problem, and reported algorithms for the analysis and design of various traps for
polygonal parts moving across a feeder track. We are not aware of any previous
geometric algorithms for the systematic design of vibratory bowl feeder traps.

Some of our algorithms have been implemented and various traps have been
shown to work, both in simulation and in practice (Berretty et al., 1999). Many
open problems remain. First, optimality of the algorithms has not been proven
and we expect that some of the algorithms can be improved. In particular
it would be interesting to improve the bounds for general polygonal parts. A
second question involves the notion of uncertainty in part shape and motion of
the part. For a preliminary treatment of this issue, see (Berretty, 2000).

These results for geometric trap design suggest a variety of new research
problems. We want to extend these results to parts with curved edges and
to extend the treatment to a full three-dimensional analysis. One approach
to three-dimensional parts is to consider each stable orientation of the three-
dimensional part as a distinct two-dimensional footprint, and then to design a
sequence of traps that feeds only one footprint in one orientation. We will also
treat out-of-plane effects, where three-dimensional volumes begin to fall into a
trap but become wedged. It would be helpful to know what part geometries
cannot be fed using traps, and to develop design algorithms that combine traps
withother bowl feeeder devices such as steps and wiper blades.
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