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Abstract— Parallel-jaw robot grippers can grasp almost any
object and are ubiquitous in industry. Although the shape,
texture, and compliance of gripper jaw surfaces affect grasp
robustness, almost all commercially available grippers provide
a pair of rectangular, planar, rigid jaw surfaces. Practitioners
often modify these surfaces with a variety of ad-hoc methods
such as adding rubber caps and/or wrapping with textured
tape. This paper explores data-driven optimization of gripper
jaw surfaces over a design space based on shape, texture,
and compliance using rapid prototyping. In total, 37 jaw
surface design variations were created using 3D printed casting
molds and silicon rubber. The designs were evaluated with
1377 physical grasp experiments using a 4-axis robot (with
automated reset). These tests evaluate grasp robustness as the
probability that the jaws will acquire, lift, and hold a training
set of objects at nominal grasp configurations computed by
Dex-Net 1.0. Hill-climbing in parameter space yielded a grid
pattern of 0.03 inch void depth and 0.0375 inch void width on
a silicone polymer with durometer of A30. We then evaluated
performance of this design using an ABB YuMi robot grasping
a set of eight difficult-to-grasp 3D printed objects in 80 grasps
with four gripper surfaces. The factory-provided gripper tips
succeeded in 28.7% of the 80 trials, increasing to 68.7% when
the tips were wrapped with tape. Gripper tips with gecko-
inspired surfaces succeeded in 80.0% of trials, and gripper tips
with the designed silicone surfaces succeeded in 93.7% of trials.

I. INTRODUCTION

”Building more general hands for robots that re-
quire very little customization, that can dynami-
cally grasp millions of different sized and shaped
objects, that can do so quickly, that have a long
lifetime over millions of cycles, and that just work
would have significant impact on deployment of
robots in factories, in fulfillment centers, and in
homes.” - Rod Brooks, February 2017 [1]

Parallel-jaw grippers are widely used in the current gen-
eration of human-compliant robots, such as Sawyer from
Rethink Robotics [2] or the YuMi from ABB [3], due to their
low complexity, long lifetime, and ability to precisely manip-
ulate objects [4]. Despite the intention that these robots be
used in unstructured environments, such as homes and ware-
house order fulfillment centers, most robots come equipped
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Fig. 1: Top: Grasp robustness for 37 gripper surfaces was evaluated
using a 4-dof robot with a custom ”reset” mechanism that includes
an activated rewind mechanism and cable that lifts and replaces the
object onto the worksurface in an upright position after each grasp.
Bottom: Each gripper surface was cast in silicone polymer using
custom 3D-printed molds.

with parallel-jaw grippers that conform to the industrial
paradigm of planar, rigid jaws [5]. Robots operating in these
unstructured environments may benefit from compliant end-
effectors that are designed to successfully manipulate a wide
variety of shapes and textures while resisting torques due to
contact and gravity [6].

We explore options for adding compliant and high-friction
jaw surfaces to standard parallel-jaw grippers. A variety
of designs have been proposed such as rubber coverings,
polymer pancakes [7], and human-inspired skin, bone, nail
structures [8, 9], and gecko-inspired surfaces that resist
tangential foces [10]. The design process for these surfaces
has been largely guided by human intuition and optimization
in simulation [11], and often only one or a small number of
designs have been physically realized due to the time and
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material cost of manufacturing. However, the gripper/object
surface interaction is difficult to predict in simulation and
requires modeling assumptions that may not be met in
practice [12].

Inspired by recent advances in 3D printing and rapid
prototyping, we explore the possibility of guiding the design
process empirically by evaluating success on a physical
system for a large number of prototype fingertip designs. Our
primary contribution is an extensive evaluation of gripper
surface texture and stiffness for compliant robotic fingers (as
shown in dark blue in Fig. 1) across 37 iterations of surface
features (Fig. 4). Each design was parametrized and proto-
typed using 3D printing and molded silicone. We iteratively
evaluated the probability of grasp success for our design
set, inspired by resampling-based optimization methods such
as zooming [13] and the cross entropy method [14], and
expanded our design set around the most promising design
from the previous evaluations. We collected between 21 and
35 grasp trials for each design across three 3D printed objects
on a 4-dof Zymark Zymate robot for a total of 1377 total
evaluations.
Initial Assumptions: The Series Type A Pro 3D printers
extrude Polylactic Acid (PLA). Platinum-cure silicon rubber
was used for a compliant material because it is robust,
easy to manufacture and can be washed. Grasps were tested
with a Zymark Zymate 2 laboratory robot (equipped with
parallel jaws) with positional uncertainty of up to 5mm and
a pointcloud-based vision system with positional error of up
to 1cm. Known objects from the Dex-Net 1.0 dataset [15]
were used to test grasps.

II. RELATED WORK

A. Related work in gripper design

An important tool for design inspiration is the idea of
utilizing nature as a model. This technique, known as
biomimicry, is highly useful for robotic gripper design. Two
specific areas this design concept has been applied to are
structural and surface features.

Structurally, a typical industrial robotic finger consists of
a single, uniform, rigid material throughout, regardless of its
shape. However, anthropomorphic observations reveal that
human fingers consist of several layers: bone, soft tissue,
skin, and nails, where each of these characteristics provide a
unique function for human grasping. To increase the ability
of a robotic hand, Murakami et al. [8] explored adding
a hard nail with a strain gauge to a fingertip covered by
soft elastic. Hosoda et al. evaluated these characteristics
as well by using a metal bar and two types of silicone
rubber to replicate the bone-body-skin structure [9]. To
study the benefits of compliance on surface contact gripping,
Berselli et al. designed and tested soft fingertip covers with
four varied internal geometric structures, relying on rapid
prototyping for inexpensive fingertip production [16]. Addi-
tionally, in both [9] and [17], embedded strain gauges were
added (randomly and strategically-placed, respectively) into
silicone gripper pads to replicate sense of touch and provide
useful tactile feedback during manipulation. All of these

anthropomorphic-inspired designs revealed the effectiveness
of utilizing multiple structural materials, geometries, and
features when designing grippers for manipulation purposes.

Nature-inspired surface features have been investigated for
their various attractive properties. Initially motivated by the
fingerprint surfaces on human hands, Cutkosky et al. found
that textured and compliant gripper surfaces improved object
handling [18]. Research stemming from fingerprint analysis
has led to the development of gecko-inspired adhesives,
which replicate the strong adhesion gecko feet possess [19].
Pairing this material with grippers is a successful technique
for manipulation. For example, Hawkes et al. developed
grippers that use shear adhesion of gecko-inspired fibrillar
film micro-structures to grasp curved objects [20].

From the previous work on bio-inspired adhesion, it has
been suggested that interface geometry is important for ad-
hesion. To try and provide insight on adhesion mechanisms,
uniform surface patterns were explored by Crosby et al. [7].
Described as polymer ’pancakes’, tests were run for surfaces
with a range of cylindrical posts with varying heights,
diameters, and grid-spacing. These patterned dimensions
were linked to material properties which increase grip force
for sliding contact; from this, adhesion effect relationships
were extracted between surface dimensions and material
properties. This conceptual surface feature inspired initial
design concepts in Section III.

Fig. 2: The 37 gripper surface designs, with 3D printed molds (in
white) used for fabrication.

B. Designing from Soft Contact Model Results

One strategy for compliant robotic finger design is to use
analytic soft contact models [21]. These models take into
account contact area and tangential friction forces in addition
to normal friction forces, where the Soft Contact Model
utilizes the power law to relate contact radius to the normal
force exerted by compliant fingertips.

Design research in this area has focused on matching
empirical results to the analytic contact models. For example,
Han et al. [22] developed a model for maximum static
friction on human fingers by first measuring friction of
a human finger and fitting the data to the Hertz contact
model. The friction model’s results were then compared to
resulting friction properties of a silicone finger. Similarly,



Fig. 3: Difficult-to-grasp objects selected from the online part database ’Thingiverse’. The ‘Pipe Connector’ (206g) and ‘End Stop Holder’
(287g) were specifically chosen to investigate resistance to torque over curved and flat surfaces respectively. The ‘Vase’ (155g) object
was chosen because of its convex and concave surfaces. For reference, the vase is 15.8 cm tall.

Kao and Yang [23] derived an expression for nonlinear
stiffness of soft finger contact from the power law theory
(also presented as a generalized Hertzian contact theory),
which was compared to experimental results of force tests.
Controzzi et al. [24] developed a 3D finite element model to
simulate internal behavior of a proposed finger prototype. In
this work, they compared the results of their modeled finger
to the experimental results of the physically prototyped finger
and a real finger. In comparison, we explore the use of a
data-driven design approach to potentially reduce modeling
errors.

C. Optimization Methods

This work is also closely related to work on optimization
methods for gripper design. Convex optimization of gripper
parameters may be desirable when such a parametrization
is available [11, 25]. However, many design problems have
more than one locally optimal solution. Methods for non-
convex optimization can be difficult to apply in design
because of the limited opportunity to iterate on physical
prototypes. Techniques for gripper design include simu-
lated annealing [26], gradient descent [27], nonlinear pro-
gramming [28], evolutionary algorithms [29], and sequen-
tial convex programming [30]. Recently Ruiz and Mayol-
Cuevas [31] compared four predefined compliant robot hand
designs using performance across 3600 physical gripper-
object interactions to avoid accumulating errors due to unre-
alistic modeling assumptions. In comparison, we iteratively
use performance on physical trials to update the set of
designs to test, optimizing over gripper tip texture and
stiffness.

On a physical system, multiple trials may be needed to
evaluate success due to imprecision in sensing and con-
trol. Past research in robotics has focused on optimizing
a sampled estimate of an objective [32, 33]. To minimize
the number of samples, Multi-Armed Bandits [34] and
Bayesian Optimization [35] can adaptively allocate samples
to more promising alternatives over a predefined design
space. Our method was inspired by resampling-based op-
timization methods such as zooming [13] and the cross
entropy method [14], which iteratively resample the design
space in more promising regions and allow us to adaptively
allocate manufacturing effort to more promising designs. In
particular, we iteratively evaluated the success for a design
set on a physical robot and resampled the design set around
the design with the highest sample mean as discussed in

Section IV.

III. PROBLEM FORMULATION

We consider the problem of finding a parallel-jaw fingertip
design that maximizes the likelihood that a grasp is success-
ful on a physical system. We assume that the probability of
success for a particular design and grasp is stationary; e.g.
the robot’s control and perception calibration is constant over
time.

Our design problem had the following attributes: probabil-
ity of success could be determined quickly through experi-
mental trials, fabrication could be iterated quickly using rapid
prototyping, and the space of parameters was relatively small.
We note that our empirical design approach can only be
expected to work in design problems with similar properties
to that of the fingertip design discussed in this paper - a
design space with a small number of parameters, a short
cycle time for fabrication and testing, and a clearly-defined
success criterion.

Our objective was to maximize the mean likelihood of
success for grasps in our training set over a space of possible
designs, which we formalize below for concreteness.

A. Design Space

Let D be the design space, a set of parameters specifying
all possible designs. For example, D ⊂ Z×R could represent
the width of dots and depth of the fingertip surface structures.
We assumed the design space is bounded and fixed. We
called an element d ∈ D a design.

B. Object and Parallel-Jaw Grasping Model

Let O be an object to grasp with center of mass z ∈ R3.
For clarity, we assumed the vertices of the mesh are specified
with respect to a reference frame TO = (RO, tO) ∈ SE(3)
centered on z and oriented along the principal axes of the
object [15].

We parametrized parallel-jaw grasps as g = (x,v, θ)
where x ∈ R3 is the grasp center, v ∈ S2 is the grasp axis,
and θ ∈ S is the approach angle. We assumed a Bernoulli
distribution P modeling the probability of achieving a suc-
cessful grasp on a given object due to imprecision in sensing
and actuation.

Let Γ = {(g1,O1), ..., (gn,On)} be a given set of training
grasps and objects sampled from a larger set of test objects,
for which the design should be expected to perform well.
For example Γ could contain grasps sampled on a set of
industrial parts.



C. Design Objective

Let Si(d) be a binary random variable measuring the
success of using design d to execute grasp gi on Oi. Our goal
was to find the design that maximizes the mean likelihood
of success for grasps in our test set (shown in Figure 3):

d∗ = argmax
d∈D

1

n

n∑
i=1

P (Si(d) = 1) (1)

which is the expected number of successes for a uniform
distribution over the dataset Γ.

D. Methodology

Solving Equation 1 may be very difficult in practice due
to the large number of possible designs, grasps, and objects.
Our approach to this problem was inspired by resampling
optimization methods [13, 14], which iteratively evaluate a
set of points and resample near the best points. We first
formed an initial discrete set of designs sampled from a
number of concepts, such as different surface features and
fingertip geometries. We then evaluated the probability of
success for all designs on all grasps and objects in our
training set by sampling. Specifically, we estimated the
probability of success by taking the percentage of successes
over m total trials

PS(d,gi,Oi) =
1

m

m∑
j=1

1(Ŝi,j(d) = 1)

where Ŝi,j(d) is the j-th sample of Si(d) and 1(·) is
the indicator function. We then expanded our design set
by sampling a grid of design parameters around the best
performing design from the initial set. Finally, we repeatedly
evaluated and resampled for k rounds, choosing the design
with the highest sample mean as d̂∗ at termination. We used
k = 3 and m = 3 in our experiments based on the amount
of time to run each trial and round of evaluations.

IV. EXPERIMENTAL DETAILS

A. Fabrication of Gripper Surfaces

Molds were created with Series 1 Pro Type A 3D printers
from Polylactic acid (PLA) filament. This manufacturing
step limited the resolution of surface textures to 0.1 mm. 3D
printed mounts on the parallel jaws of the robot allowed for
quick swapping of grippers for testing and minimized the
development cost per iteration. Each gripper had an identical
base printed from PLA filament to index into the mount. The
base served as a hard plastic structure for the soft silicone
rubber tips to be cast around. The unique texture surface was
created by casting the base in 3D printed molds (Fig. 5).

B. Dataset

Our design test set Γ consisted of seven total grasps across
three objects (Fig. 3). The dataset was selected to test (a)
resistance to torques about the principal grasp axis, which are
difficult to resist with two fingers [5], and (b) adaptivity to
varying geometric features such as concavities, convexities,
and ridges.

TABLE I: Silicone Rubber Properties (Manufactured by Smooth-
On)

Silicone Rubber Softness
(Durometer)

Stiffness
(Elongation at Break %)

Mold Star 30 30A 339%
Dragon Skin 30 30A 364%
Dragon Skin 10 10A 1000%
Eco Flex 00-20 00-20 845%

The two grasps on the end stop holder and pipe connector
were chosen to test (a) torque resistance and the five grasps
on the vase were chosen to test (b) geometric adaptivity.
Each object was also labeled with a single stable pose on the
table chosen for reachability with our 4 degree of freedom
arm. All grasps were hand-selected from a set of contact
points generated using the antipodal grasp sampling of Dex-
Net 1.0 [15], and the approach axis was constrained to be
parallel to the table for the given stable pose.

C. Experimental Platform

Grasping trials were run on a Zymark Zymate 2 robot
with 4 degrees of freedom plus gripper control and a rotating
turntable for 5 total controllable degrees of freedom (Fig. 1).
To begin an experiment, a test object was placed onto the
workspace table in a pre-defined stable pose and attached
to a reset mechanism. For each grasp trial, a PrimeSense
Carmine 1.09 depth sensor was used to register the pose of
the object. After registration, the robot proceeded to perform
a chosen grasp by planning a straight line trajectory to the
desired grasp pose, moving to the pose, and closing its jaws.
The robot then attempted to raise the object by 17.5mm, at
which point the PrimeSense camera took a color picture for
labeling. This concluded a single trial. To begin the next trial,
the reset mechanism then raised and lowered the test object
back to the known stable pose on the work table.

Registration was performed using convolutional neural
networks for a coarse pose estimate [36] and Iterated Closest
Point matching with a weighted point-to-plane objective [37]
for fine pose estimation in the plane of the table. The regis-
tration system had a mean X translational error of 4.2mm, a
mean Y translational error of 1.0 mm, and a mean angular
error of 5.1◦ in the plane. The standard deviations were
3.1mm, 3.3mm, and 8.6◦ for X translation, Y translation,
and rotation in the plane, respectively.

D. Grasp Success Criteria

Each grasp was considered a success or failure based
on the criteria illustrated in Fig. 6. We considered a grasp
attempt a failure if it fell into one of three modes:

1) Drop: The gripper failed to lift/hold the object.
2) Slip: The gripper lifted the object but the object rotated

by more than 10 degrees about the principal grasp axis.
3) Cage: The gripper lifted the object upright but leveraged

a part of the gripper other than the fingertip surface.
Therefore a grasp was considered successful if it lifted the
object in an upright position using only the fingertips.



Fig. 4: Initial explorations for gripper surfaces were made for conceptual designs based on related work and the manufacturing limits
of the 3D printers. Within each class of patterns were different surfaces with differences in parameters. Initial designs were compared
against default rigid grippers and grippers covered in adhesive tape (as shown in orange at right).

Fig. 5: Fingertips were cast around a PLA ’bone’ structure at the
center of each finger. Mold components were 3D printed from PLA.

Fig. 6: Examples of the three failure cases.

To provide labels for each grasp, we collected a single
image of the grasp after the arm had attempted to lift the
object for each grasp trial. Then, a single human labeler was
shown the image of each grasp and asked to label the grasp
as a success or failure based on the above criteria or reject the
datapoint. Datapoints were rejected if the robot pushed the
object out of the way and thus failure could not be attributed
to the fingertips themselves.

V. DESIGN EVALUATION

The study included k = 3 rounds of design evaluation. Our
design space D consisted of the following parameters: cur-
vature of the fingertip, angular resolution of spoke webbing
patterns, radial resolution of concentric patterns, fingertip
softness, and depth, shape, and width of gridded fingertip
indentations. The cross-sectional dimensions of the fingertip
were modeled after the dimensions of the human thumb
(width = 0.8in, height = 1.1in, and depth = 0.35in).

A. Round 1: Initial Design Concepts

Initial design concepts were chosen to reflect a study
of related works (Section II). Designs were intended to
maximally resist torque around the fingertip surface. Designs
1 through 7 (Fig. 4) were parametrized by radius of surface
curvature (radius = 0.93, 1.36, 2.68, flat, -2.68, -1.36, -
0.93 in). Designs 8 through 16 (Fig. 4) were parametrized
by width of surface features, distance between features, and
depth of the surface features. For each design, we evaluated
each of the 7 grasps in Fig. 3 for m = 3 for a total of 21
binary success trials per design. As a baseline, standard rigid
flat grippers and flat grippers with silicone tape underwent
the same evaluation (Fig. 4). Design 12, which had a grid of
square surface indentations reminiscent of a waffle, had an
86% probability of success as the best in moment test and
second best in geometric test and was chosen for expansion.

B. Round 2: First Parametrized Grid Expansion

In the second round, a 3x3x3 grid-search was employed to
explore the parametric design space near initial design 12.
These 27 design permutations investigated the relationship
between gripper stiffness (elongation at 100% strain), void
depth, and void width.



Fig. 7: The first round of parametric expansion investigates the
effect of material stiffness, void depth, and void width on the most
successful design from the initial set (Fig. 4) through a 3x3x3 cube
of possibilities. Success was found to be linked to lower stiffness
and diminished void width.

Parameters Explored:
Materials: Dragon Skin 30 (DS30), Mold Star 30 (MS30),
and a 50:50 mixture between DS30 and MS30.
Void Width: 0.03 0.0375 0.045 in.
Void Depth: 0.03, 0.05, 0.07 in.

Again, for each design we evaluated each of the 7 grasps
in Fig. 3 for m = 3 samples. The results of the second
round are illustrated in Fig. 7. The results suggest that lower
stiffness materials and shallower indentation depth performed
better. The best performing design had the same indentation
depth and width as design 12 with lower stiffness, which had
a 90% probability of success.

C. Round 3: Second Parametrized Grid Expansion

In this grid expansion, we investigated the square indented
gripper with further exploration of void depth. We also
explored material softness.

Parameters Explored:
Materials: Dragon Skin 30, Dragon Skin 10, Eco-Flex 00-20.
Void Depth: 0.02, 0.03 in.

We were forced to use a backup Zymark robot in our
design evaluations because the robot we tested on in the

first two rounds malfunctioned. Thus, we ran the same 7
grasps but with m = 5 samples each instead of 3 because
we found that the backup robot was noisier and we needed
to reject more samples for each design. The results are
illustrated in Fig. 8. We found that further softening the
material and reducing the depth of the indentations decreased
the probability of success. Furthermore, all designs had a
lower probability of success on the backup robot.

The most successful design d̂∗ was the winner of round
two, which had a void depth of 0.03in, a void width of
0.0375in, and a durometer of A30.

Fig. 8: A second round of parametric expansion further explored
the effect of smaller void depth and material softness on grasping
success. The most successful design was fabricated four more
times and tested on the same conditions to verify manufacturing
repeatability (shown at right in dark blue).

D. Manufacturing Repeatability

We made 4 additional copies of d̂∗ and evaluated the
probability of success for each independently in order to
measure the repeatability of our manufacturing process. The
results are illustrated in the right panel of Fig. 8. We found
that the designs have different success probabilities ranging
from 47% to 65% with a mean of 55% and a standard
deviation of approximately 7%. This suggests that variability
in our manufacturing process affects the success of the
design. However, even in the worst case the design had a
higher estimated success probability than the other designs
from the second grid expansion.

E. Manufacturing and Evaluation Time

Considerable time was saved throughout this process by
using rapid prototyping to make many unique molds and us-
ing a reset mechanism to autonomously test the grippers with
a real robot. The manufacturing process to create 16 unique
grippers in the initial design phase took approximately 11.5
hours, including a 10 hour time period where the operator
had to wait for the machine to print and the silicone to
set. During grasp evaluation, each grasp took approximately
1.5 minutes to execute. With 1377 total grasps, the total
grasp experiment time was 31 hours. However, the reset
mechanism allowed the test to be run autonomously, so the



operator only spent about 2 hours changing grippers between
tests.

F. Comparing four gripper tip surfaces on 320 grasp trials.

The highest-performing gripper surface was evaluated us-
ing eight 3D printed objects using the ABB Yumi industrial
robot (Fig. 9. The factory-provided gripper tips succeeded
in 28.7% of the 80 trials, increasing to 68.7% when the tips
were wrapped with tape. Gripper tips with gecko-inspired
surfaces succeeded in 80.0% of trials, and gripper tips with
the designed silicone surfaces succeeded in 93.7% of trials.
(Fig. 10).

Fig. 9: (above) After the gripper tip surface design process, an ABB
Yumi industrial robot was used to compare four gripper tip surfaces
using a test set of eight objects: 80 trials for each gripper tip surface.
(below) The four gripper tip surfaces from left to right: ABB default
grippers, ABB grippers wrapped with electrical tape, the silicone
design described above, and the gecko-inspired tip surfaces.

VI. DISCUSSION AND FUTURE WORK

We evaluated gripper surface texture and stiffness for
compliant robotic fingertips across 37 iterations of individual
conceptual surface features and 1377 grasping evaluations in
a hill-climbing approach to optimizing gripper tip surfaces.
We do not claim to have found the optimal gripper in this
space but performance was slightly higher than that with
gecko-inspired surfaces designed to resist tangential forces.
The difference in performance may be attributed to the rough
surfaces of the 3D printed objects, as well as the torsional

Fig. 10: Results of 320 grasp trials: 80 trials with each gripper
surface.

loading of the gripper. Gecko adhesive is optimized for
smooth surfaces, and shear activated adhesion is directional
which results in a rotational slip failure mode. In future work,
we will continue to explore the design space using Multi-
Armed Bandit search methods and explore the addition of
embedded force sensors.
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