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Abstract

Many of the most fundamental examples in probability involve the pose statistics of coins and dice as they are dropped on a
flat surface. For these parts, the probability assigned to each stable face is justified based on part symmetry, although most
gamblers are familiar with the possibility of loaded dice. Our goal is to develop a science base for part feeding, where parts
arrive in random orientations. We consider the following problem: given part geometry and parameters such as center of
mass, estimate the probability of encountering each stable pose of the part.

We describe three estimators for solving this problem for polyhedral parts with known center of mass. The first estimator
uses a quasi-static motion model that is computed in timeO(n logn) for a part withn vertices. The second, estimator has
the same time complexity but takes into account a measure of dynamic stability based on perturbation. The third estimator
uses repeated Monte Carlo experiments with a mechanics simulation package. Using a robot and computer vision system,
we performed 3595 physical drop experiments using four real parts and determined the final orientation. We compare this
data to the results from each estimator. We believe this is the first paper to systematically compare alternative estimators and
to correlate their performance with statistically significant experiments on industrial parts.

1 Introduction

Our motivation for studying pose statistics is to develop a science base for part feeding.Part feeders, which singulate
and orient parts prior to packing and insertion, are critical components of autmated assembly lines and one of the biggest
obstacles to flexible assembly. Flexible assembly systems can be rapidly reconfigured to handle new or changed parts, which
can dramatically reduce the time and costs needed to bring new products to market.

We consider the following problem, treating one part in isolation and assuming that the worksurface is flat and much larger
than the part. For a rigid partP with known center of mass and inertia tensor, denote then faces of its convex hullH byF1,
. . . ,Fn.
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We treat part orientations as equivalent if one can be transformed to another with a rotation about the gravity axis in the
world frame. We refer to the set of equivalent orientations as aposeof the part. To represent each pose, we attach a body
frame to the part with origin at its center of mass. The unit gravity vectorg in this frame corresponds to a point on the unit
sphere in the body frame. Such a point uniquely defines a pose of the part. Thus we represent the space of part poses with
S, the unit sphere. LetPinitial be the initial probability density function on this space of poses andP�nal be the probability
density function after the part comes to rest on the worksurface. For a polyhedral part, the part must come to rest on one of
the faces of of its convex hull, soP�nal can be specified byp1, . . . ,pn, wherepi is the probability that partP has the final
pose with faceFi in contact with the worksurface.

Estimating Pose Statistics (EPS)Assume partP is repeatedly dropped from a known distribution of poses,Pinitial onto a
flat worksurface. EstimateP�nal:

We consider three estimators for solving this problem for polyhedral parts. We start with an estimate based on a quasi-
static motion model first reported in [38]. Next we describe aperturbed quasi-staticestimator that incorporates a model of
dynamic stability. We then introduce a third estimator based on repeated Monte Carlo simulation experiments usingImpulse,
a mechanics simulation package [26, 27, 25]. We discuss impulse-based simulation, a paradigm for efficient simulation, and
present its model for frictional collisions.

Figure 1: A flexible parts feeding workcell using machine vision, a high-speed robot arm, and pivoting gripper.

To evaluate these estimators, we used the robot and computer vision system shown in Figure 1 to perform 3595 physical
drop trials using the four real parts shown in Figure 2. In each trial the system determined the part’s final orientation. We
compare this data to the results from each estimator. (This data was used as a benchmark for an alternative simulation system
as described in [12]).
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Figure 2: Top: CAD models of the four parts used in the experiments. From left to right: insulator cap, large white, rectangular black,

and square black stereo buttons. Bottom: Photographs of the rectangular black stereo button in its seven stable states.

We find that dynamic simulation provides the most accurate results, but requires significantly more computation time.
This paper is a revised and updated version of [24].

2 Related Work

An excellent introduction to mechanical parts feeders can be found in Boothroyd’s book [6], which describes vibratory bowl
feeders in detail as well as non-vibratory feeders such as the magnetic and revolving hook feeders. Sony introduced a novel
approach using random motion of parts over part-specific pallets [35, 28].

Although there is a substantial body of research in feeder design, practitioners still rely on instinct and rules-of-thumb
[19]. Part feeders are responsible for up to 30% of the cost and 50% of workcell failures [29, 6]. Thus systematic feeder
design remains one of the biggest obstacles to automated manufacturing.

One of the earliest systematic efforts to model part feeding was Erdmann and Mason’s analysis of the mechanics of a
part moving in a tilting tray [14]. This was followed by a number of efforts to rigorously model mechanics and uncertainty
[15, 7, 2, 20, 8]. A closely related example is Peshkin and Sanderson’s study of feeding parts on a conveyor belt as they
move against a sequence of passive fences [31]; this model was extended in a sequence of papers [1, 37, 4].

A variety of sensor-based (robotic) alternatives to mechanical bowl feeders have been proposed. For example, [22] propose
an optical silhouette sensor with air nozzle to reject all but the desired pose on a feeder track. Carlisleet. al. [9] proposed
a flexible part feeding system that combines machine vision with a high-speed robot arm. In contrast to custom-designed
hardware such as the bowl feeder, only software is changed when a new part is to be fed. The idea is that a collection of like
parts are randomly scattered on a flat worktable where they are subject to the force of gravity. An overhead vision system
determines the position and orientation of each part. The robot arm then picks up each part and moves it into a desired final
position and orientation as illustrated in Figure 1. A recent paper [16] outlines how feeder throughput can be estimated based
on estimates of pose statistics, conveyor speed, and arm cycle time. Similar feeder designs are described in [10, 39].

To facilitate the design of parts feeders, researchers have considered configuration space models [14, 7, 2, 8], simulation
[17, 3, 23], heuristics [19], and genetic algorithms [11]. The latter paper made use of our preliminary results in estimating
pose statistics.
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Boothroyd noted that the feedrate for a parts feeder is based on pose statistics [6]. He gave a quasi-static estimator for
rectangular and cylindrical parts. Sanderson showed that robot assembly can be analyzed in terms of pose statistics [34].
[38] improved on the Boothroyd estimator by treating the convex hull of any polyhedral part and propagating probability
from unstable faces. The resulting estimate is a good first approximation to experimental distributions but do not take into
account effects such as bouncing, vibrations, collisions, and friction. An estimator based on face area and height of the center
of mass was reported in [30] but tested only with rectangular parts.

3 The Quasi-static Estimator

In our first model, we ignore part inertia and velocity, treating part motion as quasi-static. We consider the part’s initial pose
to be uniformly distributed over the unit sphereS as explained in the previous section. After computing the part’s convex
hull H , the idea is to project the facets ofH onto a sphere centered at the center of massc. If F� is the projection of faceF ,
the ratio of the area ofF� to the total surface area of the sphere gives the probability that the part will land on faceF under
quasi-static conditions.

Assuming triangular faces, the ratio in question is given by

A =
�0 + �1 + �2 � �

4�
(1)

where the�i are the interior angles ofF� (see Figure 3).

The�i are computed as follows. Letdc0 =
p
c2 + v20 , dc1 =

p
c2 + v21 , andd01 =

p
v20 + v21 . Using standard notation

for triangles, let�2 be the arc that results from projecting the line fromv0 to v1 onto the sphere (note that arcs are measured
by the angle subtended at the center of the sphere). One can solve for�2 using the law of cosines,

d201 = d2c0 + d2c1 � 2dc0dc1 cos �2; (2)

and�0 and�1 are found similarly. Given all the�i, �2 can be found using the spherical law of cosines,

cos �2 = cos �0 cos �1 + sin �0 sin �1 cos�2; (3)

and analogous computations give�0 and�1.

This procedure results in an initial estimate of eachpi. To treat faces ofH that are statically unstable, we project the center
of mass onto the plane of each faceFi. If the projected point lies outside faceFi, gravity will cause the part to topple over to
adjacent faceFj . In this casepi is added topj , andpi is set to zero.

To facilitate this propagation, we define thequasi-static graph(QSG) to be a directed graph in which each node corre-
sponds to one facet of the convex hullH . The QSG has a directed link from nodei to nodej if and only if facetFi topples
to facetFj and they share one common edge. Clearly, the QSG is acyclic. We propagate probability along the QSG using a
breadth-first traverse.

The number of vertices and edges ofP are bothO(n). We compute the convex hull inO(n logn) time. As a planar graph,
the convex hull ofP hasO(n) faces and interior angles. Thus we can compute the projected areas inO(n) time because we
only visit each interior angle once and can build the QSG inO(n) time, because we just have to check the center of mass
against the edges twice. It takesO(n) time to do a breadth-first traverse of this graph. Therefore the total time to compute
the probabilities isO(n logn).
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Figure 3: Computing initial probabilities for each face.

4 Perturbed Quasi-Static (PQS) Estimate

Since the quasi-static analysis does not model dynamic disturbances, it often overestimates the probability of landing on
a facet that is stable but easily dislodged by small vibration. In this section we describe a modification to the quasi-static
estimate that considers a “perturbation region” around each edge of a stable face. Consider two facets of the part’s convex
hull, Fi andFj , and the bounding edgee between them. Letg be the downward vector from the part’s center of mass. In the
quasi-static estimate, we assume that ifg intersectsFi when in contact, the part will remain on facetFi. However, dynamic
energy may cause the part to rotate across edgee wheng points inside facetFi but close to edgee (Figure 4). The spherical
projection of the perturbation region that falls inside of the face yields a heuristic estimate of how likely the part is to topple
from Fi to Fj across their shared edge. We call�pij the “perturbation probability” for each pair of adjacent faces (each
edge). We use these to compute a “perturbed quasi-static” (PQS) estimate in timeO(n logn) which agrees better with the
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data from experiments.
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Figure 4: Under the perturbed-quasi-static model, the part remains on facetFi, sinceg intersectsFi. However dynamic effects make it

likely that the part will topple onto facetFj . To model this, we consider a “perturbation region” around the common edge using a cone of

disturbance vectors.

We consider perturbations to the gravity vector that form a right cone of half-angle� with apex at the part’s center of mass.
The value of� depends on how far dynamic forces can tilt the gravity vector. If we sweep the gravity vectorg along the part
edgee, the perturbation cone sweeps out a perturbation region around the edge.

To compute the perturbation probability, we consider the triangle formed by edgee and two edges from its endpoints to the
projected center of mass on facetFi. Call thisT . When we projectT onto the unit sphere, we denote the arc corresponding
to e with a. If we translate the plane defined by the center of massc and the arca until it intersects the sphere with a new arc
a0 such that the spherical distance betweena0 anda is �, the spherical region� betweena0 anda is the spherical projection
of the perturbation region (Figure 5(c)).
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Figure 5: (a) Perturbations to the gravity vector form a cone. (b) Perturbation region for one part edge. (c) Perturbation probability for

each edge, using the PQS model.

If we denote any point on the unit sphere by a vectorr = (x; y; z), which is parameterized by:

8<
:

x = sin' cos �

y = sin' sin �

z = cos'

(4)

then the area of� is:

� =

Z Z



jjN('; �)jjd'd�; (5)

where
 is the corresponding region in terms of' and�, andN('; �) is the fundamental vector product of the surface,
r0' � r0�. As we cannot solve this integral in closed form, we approximate the projected perturbation region by the area of a
rectangle of lengthjaj and width�.

We transfer perturbation probability between adjacent facets and then propagate down the QSG as in the quasi-static
estimate. We transfer�pij from facetFi to adjacent facetFj if Fj is unstable or ifFi has a lower initial probability
under the quasi-static estimate. The first condition insures that the perturbation probability will wind up at a stable facet
after propagating through the QSG. Both conditions reflect the intuition that parts will tend to roll toward more stable
states. The only extra computation is finding the probabilities ofO(n) perturbation regions and transferring the perturbation
probabilities. Therefore the PQS estimate has time complexity:O(n logn).
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The parameter� in the PQS estimate depends on how far the part is dropped, how much mechanical energy it can store,
the coefficients of friction and restitution, and other physical and dynamic properties. In our physical experiments, the drop
heights and materials were constant, so we used data from the first physical experiment to choose a reasonable value: in this
case� = 20�. We used this same� value to estimate the distribution for all parts.

The computation time on SPARC20 is less than 1 second for all 4 parts. About90% of this is used for constructing the
convex hull. It is important to keep in mind that the PQS is a heuristic estimate. We do not make any claims that this
captures the intricate physics of dynamic collisions. A better heuristic may be possible by more sophisticated propagation
of perturbation probabilities which we are now exploring. A full treatment of dynamic effects, at the price of increased
computation, is described in the next section.

5 Dynamic simulation

To obtain more accurate pose distribution predictions, one could perform full dynamic simulations of the dropped part over
many trials. This seems prohibitive for two reasons. First, the interaction between the part and environment is very collision
intensive, and it is notoriously difficult to model the dynamics of collisions with friction [21]. Second, dynamic simulation
is much slower than the previous described estimators, and so obtaining a statistically significant number of trials may take
too long.

Mirtich and Canny have studiedimpulse-basedsimulation, a paradigm for dynamic simulation that addresses these prob-
lems. The method handles frictional collisions in a natural way, and for general 3D rigid body simulation, the simulator
Impulsehas the fastest execution times reported in the literature [27].

5.1 Computing frictional collisions

Details aboutImpulse, and a comparison of constraint- and impulse-based simulation are in [26, 27]. In the latter paradigm,
all interactions between simulated bodies are affected through frictional collisions, thus a good collision model is crucial
to physical accuracy. Our model is similar to that of Routh [33], although we derive equations which are more amenable
to numerical integration. Keller also gives an excellent treatment [18], and Bhatt and Koechling give a classification of
frictional collisions, based on the flow patterns of tangential contact velocity [5]. Finally, Wang and Mason have studied
two-dimensional impact dynamics for robotic applications, based on Routh’s approach [36].

Consider two rigid bodies coming into contact as shown in Figure 6. Each bodyi has a known massmi, inertia tensorJi,
linear center of mass velocityvi, and an angular velocity!i. If ri is the offset vector of the contact point relative to bodyi’s
center of mass, then the absolute velocityui of the contact point on bodyi is given by

ui = vi +!i � ri (6)

and the relative contact velocityu at the contact point is given by

u = u1 � u2 (7)

Define a collision coordinate system with thez-axis aligned with the contact normal and directed from body 2 to body 1.
If the surfaces are not smooth, the normal can be approximated by the displacement vector between the closest points on
the bodies. In this coordinate system, the objects are colliding ifu has negativez (i.e. normal) component. In this case, a
pair of collision impulses (p and�p) must be applied to prevent interpenetration; the goal is to computep. We assume:
infinitesimal collision time, the Coulomb friction model, and Poisson’s hypothesis for restitution.
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Figure 6: A collision between two rigid bodies.

Infinitesimal collision time implies the positions of the two bodies may be treated as constant during the collision. Since
p is an impulsive force, the velocities of the bodies change during the course of the collision. Because the frictional forces
depend on the relative sliding velocity, the velocity profileduring the collision must be analyzed.

Let 
 denote a collision parameter which starts at 0 and increases monotonically during the collision. All body velocities
as well as the relative velocity at the contact point are functions of
. Letp(
) be the total impulse imparted up to point
 in
the collision. From basic physics,

�v1(
) =
1

m1

p(
) (8)

�!1(
) = J
�1
1 [r1 � p(
)] : (9)

Applying (6) gives

�u1 =

�
1

m1

I� ~r1J
�1
1 ~r1

�
p(
) (10)
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whereI is the3 � 3 identity matrix and~r1 is the canonical skew-symmetric matrix corresponding tor1. Computing�u2
analogously (�p is used instead ofp), and applying (7) gives

�u =

��
1

m1

+
1

m2

�
I� ~r1J

�1
1 ~r1 � ~r2J

�1
2 ~r2

�
| {z }

K

p(
) (11)

The 3 � 3 matrix K is symmetric. More importantly, the infinitesimal collision time assumption impliesri andJi are
constant during a collision, henceK is also constant. We can differentiate (11) with respect to
, obtaining

u0 = Kp0 (12)

5.1.1 Sliding mode

While the tangential component ofu is nonzero, the bodies are sliding relative to each other, andp0 is completely con-
strained. Let�(
) be the relative direction of sliding during the collision, that is� = arg(ux+ iuy). Also choose
 to bepz,
the accumulated normal component of impulse. Under Coulomb friction, one finds that

p0 =

2
4 �� cos �
�� sin �

1

3
5 : (13)

Expressing the right hand side of (13) in terms ofu and substituting into (12) gives2
664

u0x

u0y

u0z

3
775 =K

2
6664
�� uxp

u2
x
+u2

y

�� uyp
u2
x
+u2

y

1

3
7775 : (14)

This nonlinear differential equation foru is valid as long as the bodies are sliding relative to each other. By integrating the
equation with respect to the collision parameter
 (i.e. pz), one can tracku during the course of the collision. Projections of
the trajectories into theux-uy plane are shown in Figure 7 for a particularK.

The basic impulse calculation algorithm proceeds as follows. After computing the initialu and verifying thatuz is nega-
tive,u is numerically integrated using (14) (pz is the independent variable). During integration,uz increases, reaching zero
at the point of maximum compression. At this point,pz is the normal impulse applied during compression, and multiplying
it by (1 + e) gives its terminating value, by Poisson’s hypothesis for restitution. The integration continues to the terminating
value, andp is recovered by inverting (11).

5.1.2 Sticking mode

Sticking occurs if the relative tangential velocity ever vanishes during integration of (14). In this case, Coulomb friction
requires that the frictional force lie within the friction cone, although its direction is not specified. When sticking is detected,
the system first checks whether it is a stable sticking condition by settingu = (0; 0; �)T in (12), and solving forp0. One can
choose� such thatp0 is of the formp0 = (�; �; 1)T . If

�2 + �2 � �2; (15)

a frictional force lying within the friction cone can maintain sticking, and soux = uy = 0 andp0 = (�; �; 1)T for the
duration of the collision.

If �2 + �2 > �2, the friction is not sufficient to maintain sticking, and sliding immediately resumes in a direction�e of
the ray emanating from the origin in the tangential velocity plot (In Figure 7,�e � 45�). This ray always exists and is unique
in cases of instable sticking.
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Figure 7: Trajectories of the the tangential components of the system (14) for a particularK. The crosses indicate different initial sliding

velocities.

5.2 Additional dynamic considerations

The dynamic simulation can take into account parameters that are not considered by the quasi-static and perturbed quasi-
static estimators. The flexible feeder system shown in Figure 1 dumps parts from an upper belt onto a lower belt in order
to singulate them. Final poses are measured on the lower belt. The precise drop height between belts at the time of the
simulation experiments is unknown. We estimate it at 12.0 cm. The horizontal velocity of the parts as they leave the upper
belt was estimated at 5.0 cm/s. The coefficients of friction and restitution were both estimated to be 0.3.

Since the parts are in a stable resting state on the upper belt, before being dropped onto the lower belt, the initial distribution
of orientations is not uniform, but similar to the final (initially unknown) distribution. To model this, the initial orientations
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for the first 20 drops are chosen randomly, assuming a uniform distribution overS. Thus we bootstrap the process by
estimating the initial pose distribution.

For all remaining drops, the initial (upper belt) poses are chosen from the current estimate of the final pose distribution;
the results of each simulation run are then used to re-estimate the initial conditions. A slight perturbation (a rotation of up
to 1.5 degrees about a randomly chosen axis) is also applied to the initial pose to introduce noise into the system due to belt
vibration. This number is purely a guess; it was not tuned during the experiments, but no attempt was made to estimate it
scientifically.

The 20 initial drop tests do not necessarily lead to a unique stationary distribution of intial poses. One improvement
over the method used in our experiments would be to verify a proposed initial distribution by performing some small, fixed
number of drop tests using it. If the intial and final distributions match well, the initial distribution is at least stationary and
therefore a reasonable guess. Otherwsie, the bootstrapping and verification should be repeated. Alternatively, one could
perform the boostrapping and verification steps multiple times, and choose the most stationary distribution to seed the initial
distribution for the rest of the drop tests.

6 Experimental results

All of the estimators described in this paper were applied to four test parts. The parts were all small, plastic, rigid parts, of
the type typically used in automated assembly as shown in Figure 2. For the dynamic simulation, 2000 drops were simulated
requiring approximately two hours of computation per part.

Part #1 is an insulator cap purchased at a local hardware store. Parts #2, #3, and #4 are pushbuttons designed for a
commercial car stereo system. Geometric models of each part were constructed by measuring the parts with a ruler. Centers
of mass and moments of inertia for the parts were computed automatically byImpulse.

The system shown in Figure 1 was used to perform 3595 physical drop trials. Tables 1 through 4 show the results. All
quantities in the tables are percentages.

The error percentages included in the tables indicate the overall performance of each estimator for each sample part. They
are computed as the average deviation of the estimator’s predictions from the physical test percentage, weighted by the
frequency with which that state actually occurs.

Let p1; : : : ; pn represent the probability of each ofn states, as measured in the physical test. Leta1; : : : ; an represent the
corresponding probabilities computed by one of the estimators. The error percentage for that estimator is given by

e = 100
nX
i=1

pi jai � pij: (16)

6.1 Discussion

The quasi-static and perturbed quasi-static estimators are extremely fast, requiring less than a second of computation time
for parts with 50 facets. Dynamic simulation is slower; for each part, 2000 drops were simulated, taking approximately two
hours per part. The data presented in Tables 1 through 4 bring out several interesting points concerning the accuracy of the
estimators’ predictions.

The perturbed quasi-static estimator’s predictions are consistently more accurate than those of the quasi-static estimator,
and the added computation time is negligible. Hence, the perturbed quasi-static estimator should always be chosen over the
quasi-static one.
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Quasi- P’turbed Dynamic Physical
Pose Static Q–S Sim. Testsa

1 30.5 46.5 41.9 46.0
2 37.3 30.2 26.2 27.1
3 19.6 19.8 28.3 19.7
4 8.3 3.5 3.0 5.0
5 4.2 0.0 0.8 2.2

error 10.1 1.2 4.0 –

a1036 trials

Table 1: Orange insulator cap data.

Quasi- P’turbed Dynamic Physical
Pose Static Q–S Sim. Testsa

1 34.5 48.8 71.7 75.8
2 39.9 30.6 20.9 13.8
3 19.2 20.5 7.4 10.5
4 6.3 0.0 0.1 0.0

error 35.8 23.8 4.4 –

a545 trials

Table 2: White stereo button data.

The dynamic simulation estimator is the most accurate for all sample parts, except the insulator cap (Table 1), for which the
perturbed quasi-static estimator slightly outperforms it. The dynamic simulation estimator’s prediction accuracy is also the
most consistent; the composite error is less than 5% in all cases. Nonetheless, a penalty of three to four orders of magnitude
in execution time must be paid for this added accuracy; whether this is appropriate or not depends on the situation.

In an interactive setting, where a designer is perhaps editing the CAD model of a part in order to improve feeder throughput,

Quasi- P’turbed Dynamic Physical
Pose Static Q–S Sim. Testsa

1 36.2 47.3 54.1 56.0
2 16.0 25.5 24.1 24.5
3 17.4 17.0 14.0 13.6
4 8.1 1.2 1.4 4.4
5 10.6 4.5 5.3 1.4
6 7.5 4.4 1.0 0.3
7 4.3 0.0 0.3 0.0

error 14.0 5.8 1.4 –

a1099 trials

Table 3: Rectangular black stereo button data.
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Quasi- P’turbed Dynamic Physical
Pose Static Q–S Sim. Testsa

1 35.7 46.6 68.4 62.2
2 17.5 15.5 16.6 15.2
3 12.1 17.0 6.1 11.0
4 7.2 8.6 6.0 4.7
5 3.9 1.6 2.7 3.1
6 5.6 1.5 0.0 2.8
7 3.8 3.9 0.3 0.5
8 4.2 1.7 0.0 0.0
9 3.0 2.3 0.0 0.0
10 2..6 0.7 0.0 0.0
11 2.2 0.0 0.0 0.0
12 2.1 0.5 0.0 0.0

error 17.2 10.7 4.8 –

a915 trials

Table 4: Square black stereo button data.

the perturbed quasi-static estimator is clearly the best choice. The designer need only wait seconds to see how changing a
part’s CAD model alters the pose distribution and feeder throughput.

The dynamic simulation estimator is useful for obtaining a more accurate estimate once the design has been determined,
or for analyzing the effects of more subtle design changes. It models several factors that are not considered by the standard
and perturbed quasi-static estimators, including: friction, collisions with energy loss, mass moments of inertia, height of
drop, and initial conditions of the part prior to drop. To study the effects of varying these parameters, dynamic simulation is
appropriate.

The quasi-static methods are based on a uniform distribution of initial orientations. In the common case where the true
distribution is unknown, this is a reasonable guess. In contrast, dynamic simulation can produce results for other distributions
just by choosing the random initial orientations from the distribution. If knowledge about the distribution is known, dynamic
simulation has an added accuracy advantage over the quasi-static methods.

Our simulation experiments involved 2000 drop tests. Often, fewer trials may be sufficient, reducing the computational
cost of this method. Suppose the true (unknown) probability that a part lands in a particular pose isp. The number of
times the part lands in this pose overn trials is a binomial random variable, which may often be approximated by a normal
distribution1. A confidence intervalstatement is of the form: “p lies within the range(� � �; � + �), with 100(1 � �)%
certainty.” Here,� is the probability estimate obtained from then trials,� is the allowable error tolerance, and� is thelevel
of the statistical test. Given� and�, one can bound the number of trials necessary by

n =
��1(1� �

2
)

2�
; (17)

where�(x) is the cumulative normal distribution function. For example, to pinpoint the probability of a particular final pose
to within 5%, with 90% certainty,� = 0:05 and� = 0:10. From (17), 385 trials are sufficient. See [13] for more information.

1A common rule of thumb is that the normal approximation is valid if the numbers of successes and failures during the trial series both
exceed five [13].
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7 Summary

Predicting the pose distribution of rigid parts dropped onto a flat surface is important in evaluating part designs for assembly.
These distributions are necessary to estimate feeder throughput, which can then be used to determine how many robots
and assembly lines are required to meet specified production rates. This can greatly reduce the time required to set-up or
changeover automated factories and hence allow new products to be more rapidly brought to market.

We have presented three estimators for predicting the pose distributions of rigid parts dropped onto a flat surface. We have
compared the predictions from these estimators to physical test results, and believe that this is the first systematic comparison
of pose estimators with experiments using real industrial parts.

Our results indicate that a perturbed quasi-static estimator, based on a refinement of the quasi-static estimator presented
in [38], produces significantly more accurate results, with negligible added computation time. The perturbed quasi-static
estimator certainly has the highest accuracy to execution time ratio of all three estimators studied. The third estimator, based
on dynamic simulation of the dropped parts using the simulatorImpulse, generally gives the most accurate predictions, with
averaged errors under 5% for all four test parts. This estimator can also be used to study sensitivities to parameters not
modeled by the other estimators, such as the coefficient of friction or the initial part velocity. However, this estimator takes
one to two hours to generate predictions, as opposed to under a second required by the standard and perturbed quasi-static
estimators. In an interactive setting, the quasi-static estimator is the method of choice, providing reasonably good predictions
very quickly. The dynamic simulation estimator might find application later in the design cycle, where more careful analysis
is required.

This work in estimating pose statistics complements other ongoing work in automated assembly. Rao, Kriegman, and
Goldberg have studied the use of a pivoting gripper for Adept’s flexible feeder; assuming part pose is known, they give an
O(m2n logn) estimator to generate pivot grasps for a part withn faces andm stable configurations [32].

The perturbed quasi-static estimator described in this paper has been incorporated into a commercial simulation package
where it is used to predict part behavior for rapid design of modular workcells such as the one shown in figure 1. In the future,
part pose statistics can be used in CAD systems, allowing users to alter the design of parts to achieve a desired distribution
of poses.
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