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Abstract

This paper explores a game-theoretic approach to aulomatic planning
of sensor-based robotic manipulation programs. To win the game, the
robot must provably attain a specified task state. The robot moves by
choosing a control signal, and natre moves by choosing a sensor signal.
Planning is accomplished by searching the game tree. In some task
domains, the approach provides a straightforward method of reasoning
about uncerainty, non-deterministic actions, and imperfect sensors. We
demonstrate the approach in two different task domains; orienting an
object using an instrumented tilting tray; and orienting and and grasping

an object with an instrumenied parallel-jaw gripper.

1 Introduction

This paper approaches robotic manipulation as a game being played be-
tween the robot and nature. To win the game, the robot must attain a task
state that provably satisfies a specified goal, such as uniquely orienting
a polygonal object or achieving a stable grasp. The robot chooses the
motor signals, and nature chooses the sensor data. To plan for the worst
case, the robot must search the game tree for a winning strategy.

Our approach treats manipulation planning as a tree search. Uncertainty
in the robot's world model, error in the robot’s actions, and noisy sensors,
are all explicitly modeled and accounted for in the construction of the tree.
We are implementing planners for two different task domains. First, 10
extend Erdmann and Mason's (1986) work on orienting objects with tilting
trays, we have incorporated the use of sensory feedback. Second, based
on Brost's (1986) earlier work on planning parallel-jaw grasping motions,
we have implemented a system that plans a sequence of squeezes (o orient
and ultimately grasp an object, using measurements of finger separation
when appropriate.

The rules of the manipulation game are determined by the actions and
sensory events that are possible from any given state of the task. To
avoid combinatorial explosion, it is imperative that we consider only those
actions and sensory events that have different effects. In some cases, it
is possible 1o reduce the number of altenatives from infinity 1o a small
finite number without compromising the planner’s scope.

1.1 Previous work

Our approach originates in the desire to construct plans that model un-
cerainty in the robot’s model of the world. Taylor (1976) describes a
system thar predicts possibile uncertainties, using them to choose among
altemative strategies, and to adjust the parameters of the chosen strat-
egy. Brooks' (1982) system verifies and re-works robot plans, based on
bounds on uncertainty. Brooks' work can be viewed as complementary
10 the present paper, since Brooks' plans use sensory information in a
continuous fashion, rather than for conditional branching. Our plans use
sensory data exclusively for conditional branching.

A formal framework for planning in the presence of uncertainty is de-
veloped in Lozano-Pérez, Mason, and Taylor (1984), Mason (1984), Erd-
mann (1986), Buckley (1987), and Donald (1986). Buckley provides the
link to the present paper by his use of AND/OR graphs. Buckley applied
the approach 0 planning of generalized damper and generalized spring
motions, The present paper adopts Buckley's notation for AND/OR graphs,
explores the general application of the idea, and illustrates the concept
with implementations in two task domains.

The present paper describes planners for two different task domains: tray-
tilng and squeeze-grasping. Tray-tilting is the process of onenting a
planar object in a tray by moving the tray through a sequence of ult
angles, and squecze-grasping is the orienting and grasping of a planar
object by a sequence of squeezes with a parallel-jaw gnpper. The first
work on tray-tilting was Grossman and Blasgen (1975), followed by Erd-
mann and Mason (1986). For earlier work on the mechanics of pushing,
and squeeze-grasping in particular, see Mason (1986), Mani and Wilson
(1984), Brost (1986), and Peshkin (1985).

Our work is also related to the problem of choosing tactile probe motions
0 determine the position and onentation of an object (Grossman and
Blasgen 1975, Grimson and Lozano-Pérez 1984, Grimson 1986, Ellis
1987). The problem is casily cast as an AND/OR graph search. Ellis’
ambiguiry tree is similar, but describes the interpretation of probe data,
with the probe sequence fixed, yielding a pure AND tree.

2 Example

We will begin with a simple example, contrived to illustrate the basic
concepts and avoid the many complications. Consider a rectangular object
in the plane, constrained to have one of its edges aligned with a fixed
reference line. Due to the symmetry of the block, we will distinguish
two states, SHORT and TALL. The robot can rotate the block through 90
degrees, which tums a SHORT into a TALL, and vice versa. An optical
interrupt type sensor is mounted so as to detect the block's state (see
Figure 1).

We can summarize the options of the robot as follows: at any given
time it can decide to rotate the block 1o its other state, an action we



Figurs 2: Task graph and solution sub-graph for the example,

will call ROTATE, or it can consult the seascr, obtaining either a0 cra
1 depending on whether the light beam s broken, or not, respectively.
We will assume that the block’s state is initially unknown, and the goal
is to force the biock into the SHORT state. Starting with the rectangle in
either of two orieatations, we construct a graph (Figure 2) that captures
every possible sequence of events in the task, An initial ROTATE changes
nothing, the object state is still unkpown, An initial SENSE determines
the object state, after which it can be megningfully ROTATEed. Additional
SENSES are redundant. A strategy to accomplish the given task can be
expressed as a sub-graph of the task graph, as shown in the figure,

The key feanures of the task graph are:

o Each node is a set of possible world states,

o Each action, and each sensory event, is a transition from a set
of possible initial world states (o a set of possible resultant world
siates.

o The graph has an AND/OR stucture. The robot can choose its ac-
tions, and can guarantee a win if any of its actions lead to a win,
But natre chooses the sensory outcomes, so the planner must en-
sure that all sensary cutcomes lead to a win,

mmmmodﬂwuim.mmmmmamo!pmibh
world states, rot a specific world state, Hence a search node does not
fepresent a state of the world, but rather the state of the robot’s modal
of the world during plan execution (Brooks 1982; Lozano-Pérez, Mason,
and Taylor 1984). The distinction is subtle, but important. It is useless
loachicveadeshedsmeoflhcwoddlnlmom:lhemboxmusthmw
that the goal is achieved. Hence we search not for a specified world state,
but for a specified mode! state. In principle, we can encode the state of
the robot's world model, i.e. summarize all information available to the
robot, as the set of states consistent with this information, Hence our
search nodes are defined by a set of possible states of the world,

Figure 3: The example with ambiguous sensing.

For many problems, it may be impossible, or inadvisable, to boil the
robot’s world model down to a set of all possible world states. For
example, we might have a system that calibrates the location of a palles,
using touch probe information obtained through a sequence of guarded
moves. The sensible thing is to collect the information, then apply a single
routine that predicts the pallet location, rather than computing a set of all
passible pallet locations after each probe. To express such strategies in a
graph, we could augment the state encoded at a node to fully represent
the computational state of the robot’s world model (Brooks 1982).

Besides representing uncertain knowledge of the state of the world, we
have to represent and reason about under-determined actions and noisy
seasers. For instance, we can modify our earlier example by introducing
noise in our sensory data. Suppose that the optical sensor’s location is
oot precisely known, with the consequence that a broken beam is incon-
clusive, althcugh an unbroken beam still implies a state of SHORT. The
resulting graph is shown in Figure 3. In this case, there is no winning
straiegy, because the senscr might never give the robot any information.
This example shows a shortcoming of our worst-case approach to plan-
ning. We might want to consider a strategy that tries to get lucky, i.e.
kopes that nature cooperates. In principle, the graphs can be extended us-
ing probabilistic models of actions and sensors to construct prodabilistic
plans. )

When we tum our attention from contrived examples 10 more realistic
task domains, planning becomes more complicated. The example above
is contrived to have a finits number of world states, a finite number of
actions, and a finite number of sensory events. In more realistic prob-
lems, we often must deal with continuous spaces of task state, action, and
sensory data. Modeling uncertainty, actions, and sensing, are accardingly
more complicated, The most striking difference is the combinatorial na-
ure of the search, especially when branching factors of the order of the
continyum are contemplated. This paper deals with continuous spaces of
choices in two ways. First, we partition a continuous space of actions into
classes that have identical effect Continuous spaces of action were han-
dled thus by Brost (1986) and by Erdmann and Mason (1986). Second,
we deal with continuous spaces of sensory events by sampling. There
are many variations; we simply sample the space at a Gixed, fairly coarse,
resolution. Other possibilities are discussed later in the paper.
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3 Graphs and searching

A planning problem is defined by the task state space, the seasory and
action functions, a set of possible initial states, and a set of goals, with
cach goal expressed as a set of states. We adopt the following notation:

X the task siate space, i.e. the set of passible
states of the physical world,

D the sensor space, i.e. the set of possible seasor
data.

v the action space, L.e. the set of possible actions.

Icx the set of possible initial states.

Gcx the ith goal.

a:Ux X—P(X) thetask state-transition function, expressing the
effect of actions,

$: X = P(D) the sensor function, expressing the meaning of
sensary data,

where P(-) is the power set, to express the multi-valued character of
actions and measurements.

Each planning problem is transformed (nto a graph search problem. A
nodo in the graph is a set of possible task states, ie. a subset of X, A
node encodes the robot's knowledge of the task stats during execution of
the plan, Hence the initial node is the set of possible initial states 7, and
success is achisved by reaching any subset of any goal G;. Actions and
sensory events cause transitions among the nodes of the graph:

Va PR) the nodes of the tnsk graph

_— a relation on the nodes V, defining the action
arcs for action u. Xy—X; iff a: (4, X1) = Xa.

< a relation cn the nodes V, defining the sensing
arcs for sensar datum d, Xy ~X; iff s~}(d)N
X1 = Xa.

Here, and throughout the paper, we are treating action and sensing as
mutzally exclusive concepts, Some problems, though, treat action and
sensing as indivisible. For example, the guarded moves described by
Lozano-Pérez, Mason, and Taylor (1984) involve choices by the robot
snd by nature. Buckley's formulation of the AND/OR graph uses sensor
data interpreted during the motion w define aliernative result nodes for the
motion. Another example combining choices by the robot with chaices by
nature is when the robot has two different sensors to choose between. Our
formulation of the graph is casily generalized to deal with such sinsations,
but this paper focuses on the extreme cases: pure seasing and pure action.

A solution © a planning problem can be described by a subgraph of the
task graph. The subgraph should tead to a goal in finite time, 30 Cycles
and infinite subgraphs are not allowed. Each nods (except leaf nodes)
should include exactly one outgoing action arc, or all of the outgoing
sensing arcs, reflecting the AND/OR structure of the problem. We will
seck solutions that minimize the worst-case number of arcs, Le. we seek
the scluton sub-graph that minimizes the maximum path-length, We
presently employ a breadth-first search, hashing the nodes for efficiency.
Simple searches converge in a few seconds on a Symbolics 3600.

e 45° Y 180°

Figure 5: A typical set of tilt actions (Erdmann and Mason 1986).

4 Automatic planning of sensor-based tray-tiltin
programs

Our first application is the problem of crienting an object with an instru-
mented tilting tray. A polygonal object slides freely in a rectangular tray,
which is instrumented with simple optical-interrupt sensors, The robot
can tilt the ray at any angle desired and query the sensors. The object
slides and rolls along the sides and into and out of the comers. Stan-
ing from an initially unknown ocientation, the problem is to obtain any
complesely determined orientation and position. In the modeling of the
mechanics of tray-tilting we follow Erdmann and Mason (1986), which
should be consulted for more details. Briefly:

¢ A rigid polygonal cbject, with known shape and center of mass,
slides about in a rectangular planar tray.

o The forces acting on the object are gravity, forces of constraint, and
friction. Coulomb friction occurs between the object and the tray
walls. Friction with the tray bottom is negligible.

o The system is quasi-static: inertial and impact forces are negligible.

o The object is initially in one of a finite number of stable orientations,
in the middle of one of the tray walls.

o The attitude of the tray is directly controllable.

To complete the problem definition, we must define the allowed sensory
modalities:

e A light beam passes parallel (o each wall, The sensor reports
whether the beam is broken or not

o The distance from the beam (o the wall lies in some known interval,

For any given crientation of the object against some wall, there are three
possibilities, illustrated in Figure 4. If the object’s profile is definitely less
than the sensor’s distance from the wall, a 1 is obtained. If the object’s
profile is definitely greater than the sensor’s distance from the wall, a 0 is
obtained. If the object’s profile falls inside the interval of possible sensor
distances, we cannot predict which sensor datum will occur,

The first probiem is to characterize the possible states of the task. For the
tray-tilting task domain, we can get by with a @nite aumber of possible
configurations. By definidon, the initial set of configurations is finite. If
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Figure 6: A typical set of sensor events.

wo avoid motions that move the object into the center of the tray, and
if we wait long enough for the object to complete its motion, then the
number of possible configurations remains finite.

A typical tiling action is shown in Figure 5. Initially there are two pos-
sible configurations of the block in the tray. Two different choices of
1ift angle are shown, with the corresponding result nodes. Searching the
graph requires that the effect of a tilt action be predicted automatically,
using the methods (in fact, using the actyal code) described in Erdmann
and Mason (1986) and Erdmann (1984). An interesting type of indeter-
minacy eaters when Coulomb friction and rigid bodies are allowed in
Newtonian mechanics. Multiple solutions are possible, and there may
even be situations that admit no solutions.! Erdmann’s system finds mul-
tiple solutions, Since the nodes of the task graph are represented by a set
of wortd states, multiple solutions are easily accommodated in the task
graph. We have not cbserved any cases without solutions, and do not
know whether they can occur. The result nods would be the empty set,
i.e. there are no world states consisient with such an action. The meaning
of such a situation is that our assumptions of the mechanics of the world
are inconsistent, and hence our planner is invalid. This is one case of
what we have come 10 call “confusing nodes™ a node which is in some
way beyond the scope of the planner, and must perforce be avoided.

Figure 6 shows a typical sensory operation, [If the beam is broken, we
construct the result node by climinating every configuration in the initial
node that is too short to break the beam. If the beam is rot broken, the
result node is obtained by eliminating every configuration that is too tall to
not break the beam. Some coafigurations, on the fuzzy edge between short
and tall, will appear in both resuliant nodes. ‘The most straightforward
implementation of sensor interpretation is to begin by computing off-line,
for every possible sensor datum, the set of world states consistent with that
datum. Now, during the search, we can interpret any hypothetical sensor
datum by intersecting the set of possible states with those consisteat with
the sensor datum, as previously computed. This is only feasible with
very simple sensors, such as our optical interrupt sensor. At the opposite
extreme, computer vision, for instance, it is not practical to enumerats
and interpret every possible image, even if we do it off-line!

It should be apparent that the demonstration system is not limited to
the optical internmpt sensors, which were introduced for concreteness. In
fact, the available sensors are actally described to the system by their
interpretations, i.e. by a mapping from some seasor data space to sets of
consistent world states.

"The existence of problems admitting ro soluticn consistent with New-
ton's laws, rigid bodies, and Coulomb friction, has been widely accepied
for some time. Lbtsiedt (1981) for example, describes such a problem,
but see Mason and Wang (1987) for a solution to Latstedt’s problem.
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Figure 7: Typical solutions, with sensing (below) and without (above).

At this writing, the planner seems to be running reliably, but we have
not tested it systematically, nor have we tested the plans generated by the
planner. A typical case is shown in Figure 7, which shows two plans,
one with sensing and one without. The goal nodes are circled. All arcs
other than those in e sclution have been suppressed for readability.
For each node, one outgoing arc indicates an action; two oulgoing arcs
indicates a sensory operation, The planner seems to work very well on
randomly-generated polygons, although there are some polygons that are
not crieatable,

§ Automatic planning of sensor-based squeeze-
grasping programs

Our second example application is the problem of planning a sequence
of squeezes to completely orient and grasp an object, with sensory data
arising from measurement of the finger separation at the completion of
a squeeze. The mechanics closely follows the work of Brost (1986),
which addresses the problem of planning a single squeeze without sensory
feedback. Our assumptions are:

e The cbject is a rigid planar polygon, in planar metion.
o The two fingers are infinitely broad, rigid, parallel haif-planes, ap-
proaching from arbitrarily far away.

o The finger motions are symmetric: the tngential components of
velocity are equal, and the normal components are cpposite, but
equal in magnitude, The motions coatinue until further motion
would imply distortion of the object.
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Piguro 8: A squocze-grasp diagram (Brost 1986).

o The forces acting oa the object are gravity, normal (0 the suppon
plane, contact with the support plane, and contacts with the fingers.
All contact forces observe Coulomb'’s law. We assume ths static
and dynamic coefficients of friction ars equal.

o The system s quasi-static: inertial and impact forces are negligible.

Brost assumes that the initial object orientation falls within some known
interval of angles, that the coefficient of friction is known to fall in some
known interval, and that the angle of inger motion is controlled to within
known tolerances. These assumptions result in a two-parameter family of
actions—only the finger arientation, relative to the cbject, and the direc-
tion of finger motions, measured as an angle relative to one of the finger’s
faces, are necessary to predict the object’s motion. Brost’s analysis leads
to simpls diagrams, partitioning the two-parameter family of possible ac-
tons into equivalence classes that will rotats the object to a completely
determined orieatation (see Figure 8).

We will extend Brost’s results in two ways. First, we have to extend the
planning from a single action to sequences of actions. Second, we have
10 model the sensory operations and incorporats them in the planning. To
simplify the constructions we will assume that the coefficient of friction
is known exactly, and that the finger motions can be controlled perfectly.
To incorporate Brost's methods dealing with these emors would distract
us from our main goal, which is to incorporate senser-based strategies.

To plan sequences of squeezes, we have (o represent sets of orientations
moare general than Brost's integvals, For example, let the initial orientation
of a rectangle be completely unconstrained, and consider the orientations
possible after one squeeze, represented as a ses of points on the unit circle.
Typically, there will be four isolated poinis, comresponding to the four
aligned orientations of the rectangle, and four intervals, comesponding o
four possible cocked configurations. We will model the set of possible
mmwamuumcrmasmmmmmmmgmm

In considering sequences, rather than isolated squeczes, we introduce
another complication. Brost’s diagrams, such as the diagram of Figure 8,
idmﬁﬁedregiomﬂmmldmﬂnobjeabasmsledmmined
grientation. How«.wehavemmalmmdidmﬂtyngiomofmm
W.MMmmmmem.wwmmgm
be useful in a sequence. Figure 9 shows a diagram that is similar o
Bm’sdhmmmdhfathamupandaivedmnmt'smm
but which identifies all distinct operations, not just those that orient the
object completely and immediately.

In ordes 10 reduce the number of choices of actions from a continuum to
a finite number, we need to identify entire classes that can be represented
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Figuse 9: The patitioned space of squeezes.
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Figure 10: The partial order holding among the squeezes of Figure 9.

as a single chaice. Both Brost (1986) and Exdmann and Mason (1986)
partiticned their acticn spaces into a finite number of equivalence classes.
In Figure 9 regions A, C, G and E are cquivalence classes, ie. every
acticn gives the same result and can be represented by a single node
apiece. Regions 8, D, F and H illustrate a refinement on the use of
equivalence classes, Under cenain conditions discussed later, we can
mmwdathatmpmpetsupetmofotlmmdu. For example, the
continuum of nodes arising from actions in region 8 are all supersets of
the nodes arising from regions A and £, and can be pruned.

Themghmolﬂm9mhbdedwmmwmwymeqma-
ience classes, or whether a subset relation holds. Each region labeled “a™
is an equivalence class, and each region labeled “<,” or “2,” is wially
ordercd. Both of these types of region can be represented by a single node
in the graph. Although we have not encountered one yet, there can also
be unordered classes of actions, which in principle should not be pruned.
These are several approaches 1o unordered continua of actions; at present
we are simply pruning them. Depending on our results, we may sample
them. The ordering among the actions of Figure 9 is shown in Figure 10.
It is a partia) order, with two minimal elements. If we encountered this
siteation in a search, we would consider the two minimal actions only.

This leaves us with the problem of modelling sensory operations. We
assume that the finger separation sensor measures the distance between the
fingers with a tolerance of 1 mm.? To interpret such data, consider the
typical construction of Figure 11, showing finger separation as a function
of object crientation, For a measwed finger separation of d, the true
finger separation lies in an interval (d— 1.d+ 1] mm, and the feasible

*The sensar is implemented by a Sony Magnascale position transducer
that is pant of the Lord hand. The real sensor has micron resolution, and
will no doubt have accuracy much bester than &1 mm,
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Figure 11: For the triangle, finger separation as a function of object
orientation.

object orientaticns are obtained by inverting the function shown in the
diagram.,

During the planning stage, this sensory model leads to an infinite branch-
ing factor, and needs to be amended. We will divide the sensor range
into m equal intervals, and will ignore any information beyond this coarse
sampling of the sensory data. Other possible approaches are discussed
later in tho paper.

At the time of this writing, we have implemented the computation that
predicts the outcoms of a tilting operation, but not the senscry modeling
component.

6 Continua of actions and sensor operations

A key property of task graphs is to have a finits branching factor, and, in
practice; this branching factor should be as small as possible. Obvicusly,
a finite branching factor occurs when the seasor data spoce D and the
action space U are finite. A finite branching factor is also obtained whea
the sk staws space X is finite, since there are oaly a finite number of
possible search nodes. Even when the sensor space, action space, and
staze space are all continuous, it may be possible to cbtain small finits
branching factors. The key method is (o define a dominance relation
among altemative actions. The dominance relation is defined as follows:
for a given search node X;, we say that an action u dominates an action
v, 4 < v, T a( X)) € a(v,X). If there is a fnite set of actions that
dominate the entire class of actions U, then we have a finite branching
factor at nods X;.

Figure 12 illustrates different types of dominance relations among a con-
tinuum of actions, for a given search node X;. For each action u, we
have plotted the comresponding result X,. In this case, the action space U
falls into three continua, one comprised of equivalent actions, cne with
the actions ordered, and cae with the actions unordered. We can choose
any action from the class of equivalent actions, and we can choose the
minimal action from the ordered actions, but each action in the unordered
continuum is different, and potentially useful,

Although we have had no occasion (0 use it, a similar construction exists
for altemative sensory events, with the sense of the relation reversed.
From a nods X;, we will say that sensory datum d dominates sensory
datum ¢ X 5~ (d)N X; 2 s~ '(e) N X;, wrilten d >, ¢. The reason for the
reversed sense is that we are dealing with the opponent’s move. In the
case of action, we can choose the best, i.e. most specific outcome. In
the case of sensing, we must anticipate the worst, i.c. most ambiguous
ouscome. For action, we seek a finits set of minimal nodes. For sensing,
we seek g Gnito set of maximal nodes.

It is evident that pruning away dominated nodes does not affect the exis-
tence of a solution sub-graph. Suppose we are contemplating two different
actions « and v from a given node, with results X,, and X,, and suppose
that 4 <, v, ie. X, G X,. The relation between the two nodes is that X,
is more specific than X,, i.e. the robot has more information at node X,.
If there is a plan startng from X,, then there is also a plan, indeed, the

acTion & 4
g———d
mm[ o
—R E —
xoexm —
N =
amsLr X,

Figure 12: Equivalent, ordered, and unordered continua of actions.

same plan, staring from the more specific node X,. Hence, pruning X,
will not affect the existence of a plan.

A more dificult question is whether pruning a dominated node affects the
search for, rather than the existence of, a solution sub-graph. We require
our search procedurs (o have the following propesty:

If a search from nods X, succeeds, and if X, C X,, then a
search from node X, will also succeed.

Le., we require that our planner cannot be foiled by giving it more specific
pre-conditions. We refer to this property as “pre-condition monotonicity”—
the scope of the planner is monotonic non-decreasing as the pre-conditions
become mare specific.

Pre-condition monotonicity may seem to be a propesty that any respectable
planner would have, but it is not as trivial a property as it may seem.
Exhaustive breadth-first search, pruning dominated nodes, would seem to
have this property, but not if an unordered continuum of nodes occurs.
Suppose state A leads 10 a continuum of result states, and suppose state
B leads to the union taken over this continuum, no matter which action is
applied. Suppose that a solution is easily found from the union. Starting
from node {A, B8}, the search would obtain a single node, the union of
the continuum, and would proceed easily to a solution. Starting from
node {A), however, the search would cbtain the continuum, and never
converge on the sclution.

The searches implemented for the tray-tilting and squeezing domains de-
pert from the ideal exhaustive search, by neglecting certain nodes, which
wo have been referring (o as “confusing nodes™. There are four different
situations that give rise to confusing nodes:

o Duo (o the possibility of inconsistencics in Newtonian mechanics
with Coulomb friction and rigid bodies, we may someday generate a
null node. By definition, the empty set is a subset of all sets, hence
the rull sequence satisfies any goal, and pre-<conditdon monotonicity
holds. There is a paradox, though, becauss this reasoning suggests
that a planner should steer the task state toward inconsistencies in
Newton+Coulomb+rigid body mechanics, The philosophical diffi-
culties apply not only to nodes that have links to the null node, but
to supersets of nodes (other than the null node) that have links to
the null node. Presumably cur theory doesn't tell us all possible
outcomes, (n certain degeneraie situations. (Either that, or there are
states of the physical world that truly have no possible outcomes,
which should surely be avoided at all costs,) We ought to aveid
situations where our theory mighs be deficient, not just sicuations
where our theory is certain to be deficient.

o Qur representation of the tray-tilting task state requires that all pos-
sible configurations at a node have contact with a common wall. If
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an action would lead to a multi-wall rode that violates this restric-
don, the node is labeled “confusing,” and pruned. A multi-wall
nods is more ambiguous than its single-wall subset nodes. If an
inital node leads to a multi-wall result, 3 more ambiguous initial
node leads (0 a more ambiguous multi-wall result, 50 pre-condition
monotonicity seems o hold.

o The tray-tilting planner aveids sliding an object Into the center of
the tray, losing all contacts. If a sequence of actions leads from an
initial nods to a no-contact node, the same will occur stasting from
a more ambiguous Initial node, Pre-condition monotonicity seems
to hold.

o In the squeezing domain, we prune all the nodes in an unordered
continuum of ations. The same example we constructed above,
to illustrate the limitations of exhaustive breadth-first search, can
also be applied to show that a search that prunes the nodes of an
unordered continuum does not satisfy pre-condition monotonicity.

This leaves us in an interesting position. We are justified in pruning
dominated nodes, as long as the pruning in every instance produces a
finite branching factoe, If an un-pruneable continuum arises at any point
during a search, our earlier prunings might have prevented us from finding
a solution. At this point, variant search strategies might be considered,
but we have not pursued them yet.

Action and seasing continua are important in many problems. As an ex-
treme example, consider the shooting gallery problem: a point bear, either
alive or dead, is at some location on the real line. A sensor tells the exact
location of the bear, and an acticn (shooting), given the exact focation of
the bear, changes the state from alive to dead. The possible initial states
are any live state, and the goal state is any dead state, The solution is
obvious: took and shoot, aiming the gun at the location returned by the
sensor. Unfortunately, fcllowing the initial sensory operation we obtain
a completely unordered continuum of nodes. Further, we know that this
continuum is not full of superfluous nodes—pruning of any nodes in the
continuum would lead to an incomect plans, A number of approaches
suggest themselves,

One approach is to allow nodes in the search that do not camrespond to &
definits set of states, but rather correspond to some undetsrmined set of
states, presumably using symbolic descriptions depending on one o more
parameters, We would have a two-step plan: locate the bear, then shoot
at the bear’s location, The node between the two steps would represent
the stats of the execution-time model, but with a parameter, representing
the bear’s location, that would be resolved at executicn time, ratker than
at planning time. Similarly, the shooting action would be expressed in
terms of the parameter.

The introduction of such symbolic descriptions into plan graphs corre-
spoads to the introduction of variables into robot programs, and has been
studied by Taylor (1976) and Brocks (1982). In our example, the sens-
ing operation would set a runtime variable modelling the bear's position,
which would then be passed as a parameter to the gunlaying function.
More gencrally, we must augment our planning states to encode both the
locus of the bear, (iLe., the set of places it may be at plan execution time)
and the decermination of the bear (i.e., how accurately the runtime vari-
ables will model its true location). Within this paradigm, sensing actions
modify the detesmination attributes of planning states and manipulation
actions modify both locus and determination auributes, This interrels-
tonship becomes clearer if we consider the extended shooting gallery
problem in which “loaking” retirns a short interval of positions in which
the bear might be, and the bear will be killed if and only if the gun’s aim-
ing point is accurate within some (other) specified interval. The initial
focus of the bear is some (long) interval on the real line. In the absence of
other information, the determination is the same interval, Looking leaves
the bear locus unchanged but reduces the determination interval to that of
the seasor. If this interval is short enough, then a single point-and-shoot
straiegy will suffice, if we can verify that all points in the bear locus are
within range of the gun. Otherwise, it will be necessary to (re several
shots to cover the determination interval or 0 use some other actions
(“beating the bush™) (o drive the bear into range. Further complexities

arise if the bear is not sedentary, so that shooting and missing may cause
him to run away from the shot, thus restricting the locus but possibly
lengthening the determination interval,

A more realistic examplo is the squecze-grasping problem. Measure-
ments of fnger separation lead to unordered contnua, which might be
mare appropriately addressed with program variables. The straighifor-
ward approach is (o measure the finger separation and use an inverse
trigonometric function (o determine the possible crientations. If an un-
ambiguous answer is obmined, the hand can simply be rotated to the
comrect arientation. An ambiguous answer might still require search to
funher reduce the possibie orientations.

A second approach to the shooting-gallery problem is to redefine our
acticns. We could wrap up the look and shoot sequence by defining a
singls action, called “point the gun at the bear.” In fact, we have done
precisely the same thing in our definitions of the tray-tilting and squeeze-
grasping domains. In reality, cur actions are implemented using sensory
data from joint encoders. The servos hide their sensory data from our
plarner. In cffect, this is equivalent to the idea of using a symbolic

of the entire continuum of nodes, but with the hard part done
off-line in the definiticn of the problem.

A third approach is to pursus a more interactive, less contemplative ap-
proach to manipulation. If the robot were o just take a look, and then
maks a plan, the problem is trivial. Sensing is good during execution,
and for the same reasons is good during planning: it eliminates lots of
states, What isn’t clear is why the robot decides to take a look—unless
there is a plan at a more abstract level.

The fourth and simplest approach to continuza, begides the option of just
pruning them, is to sample. This describes a wide variety of search
strategies, corresponding o the large variety of different ways of mapping
an infinite set into a Gnite set. Some examples are:

o Ignore the information, and construct a node that is the union over
all nodes in the continuum. For a continuum of actions, this means
applying any action, and forgeuing which one was applied! For a
continuum of sensing, the original node is obtained, and is equiva-
lent to doing nothing,

o Fixed resolution sampling. The sensor range or action space is
divided into a finite number of regions. For a sensing continuum,
the result nodes must be constructed by taking the union over each
region. For an action continuum, any action from the region could
be selected.

e Varisble resolution sampling. The sensor range or action space is
first divided into a finite number of regions, but at a later point of
the search may be divided into smaller regions.

A useful view of the variable resolution approach is that we begin by
using the first bit of the sensor dawm (or action), and, if not successful,
we try again with the second bit, and so forth. This still allows many
different sampling approaches, corresponding to the infinity of possible
binary encodings of the sensor range or action space.

7 Stochastic models

There is one extension of our work which might be very instructive. So
far, we represent uncertainty in task state by a set of possible tasks. If
we introduce probability distributions, we may be abls to plan strategies
more effectively, More importantly, we may be able to quantify and com-
pare the effectiveness of different manipulation and sensing technigues in
solving a task. We will briefly sketch the extension.

To begin, we require an a priori probability distribution, rather than just
an initial set of possible states. The origin of the a priori distribution
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is context dependent, but in many cases we would probably assume a
uniform distribution over our present initial set.

The difficult part is extending the mechanics so that probability distriba-
tions are obtained, rather than the set of possible result states. When the
mechanics are deterministic, this is straightforward in principle. When
the mechanics are noa-deterministic, ¢.g. when a given tilt angle and a
completely decermined orientation can lead (o two different orlentations,
it will be necessary (o assign probabilities to the altemative events. This
might be done empirically, it might be founded on analysis of a more
detailed model (such as an elastic model of the object in the tray), or it

might be hypothesized with no rationate.

The goal criteria could be unchanged, requiring that a goal be achieved
with complete uncertainty. Or, if desired, goal satisfaction might be mod-
ified to allow specified confidence levels, e.g. a strategy represents a so-
lution if it will orient the object with probability 0.99. Different objective
criteria are possible for choosing among altemative solution strategies.
Instead of our present minimum worst-case number of cperations, we
might consider minimizing the expected number of operations.

The chief attraction of this approach is that it allows us (o quantify the
uncerwinty at a node, and o quantify the effect of an action or seasory
operation. For each node we would computs an entropy t0 measuse the
uncertainty, and for each link we would compute the change in entropy,
measuring in bits the reduction (if any) of uncertainty. (See Sanderson
(1984) for the use cf entropy in robotic agsembly.) We would then be in
a position to answer such questions as, “how much information does a
tilt operation give me?™ and “how many bits am | really getting from my
sensor?”

8 Extensions to identification and shape uncer-
tainty

Our approach of planning is readily extanded to problems in object iden-
tification and shape uncertainty. We simply extend the task state space X
to incorporats the additional variables, A successful search of the graph
would result in a sequence of actions and sensor cperations terminating
at some some singleton node, implying a completely determined cbject
in a completely determined location. Fer instance, Erdmann and Mason
(1986) considered the problem of an Allen wreach in the tilting tray, with
its reflection unknown. The two reflecticns correspond to two different
shapes in the plane: a J wrench and an L wrench. If we augment the task
swate variable a binary state variable, taking on either of the values J or
L o indicate the wrench's reflection state, our planner can immediately
be applied to determine which type of wrench is present, as well as its
location in the tray. The construction is equivalent to Donald's (1986)
definition of “generalized configuration-space™ to include variables de-
scribing possible shape variations.

We can also deal with problems in “configurable” sensors, which are in
principle no different from the problems we have already considered. For
example, suppose that our tiling-tray's tight beam can be moved closer
to or further from the wall on command. The task state space X would
be augmented with a variable describing the lLight beam position, which
could then be selected to provide the most information,

There are some interesting variations on this. If we hypothesize that
senscr re-configurations are applicable only as the first moticn, we have
a sensor design problem. For any given object, the graph search will
choose a sensor location and the crientation program, Simitarly, we can
pose seusor calibration problems, asking the robot o resolve uncertainty
in the sensor model. Suppose the light beam’s positon is fixed, but
unknown. We zugment the task state with a variable that reflects the
sensor’s position, and proceed as before, During the course of execution
of the plan, the robot would simultaneously deduce the sensor location
and the object orientation,

9 Conclusion

The paradigm of treating robot planning as a game with nature general-
izes readily and provides a very powerful framework for reasoning about
robot task planning. Our expesiesce with the example problems shows
that this approach can be applied fruitfully to real task domains, not just
toy problems. For more complex domains the introduction of symbotic
relationships and expliclt representation of uncertainty may be necessary,
We are also interested in exploring extensions to stochastic models, iden-
tification, and calibmtion problems.
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