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£ Introduction

c o

&_/ The goals of Artificial Intelligence can be divided into +two main
areas: to design & machines to do tasks otherwise done by human beings,
{ and to investigate into the nature of intelligent functions. Often, as

in the case of computer assisted instruction (CAI), these areas overlap.

Vi

Developing a tool always involves studying the task. If the tool is
(' to be used for welding or guiding a missile, then its development will,
on the wholae, remain in the concrete realm. But if the tool is te be
used for educgting human wminds, then one must study ¢the task of
' -learning. Hou do we acquirte knowledge? How does the mind develop?
What is the nature of this development? What, in other words, is
Thaught? Needless to say, these avenues can lead one away Ffrom the
(. welding shop; the battlefield, or even the classroom, into the realms of
philosophical speculation.
A/
The LADYBUS Project falls wunder the subject of computer assisted
C instruction, being cancerned with the teaching of linear algebra. The
goal was not ¢o build.a machine to feach algebra to students, but rather
a machiﬁe to teach future teachers about the learning process. - This

A involved writing a computer program to simulate the learning student --

not only the ideal student, but also the real student, who often learns

. ( . )
only after making mistakes.
perfvm\ algebrd with
( The prOJec+ was based on the idea that students by—wefms a systematic:
series (protocol) of procedures, even if their’results are incorrect and
L -
appear to be random errors. If the protocols that 1lead ¢to incorrect
{ answers can be identified and reconstructed, then, for many cases, we
will be able to reproduce the behavior the the student. In this vreport,
( .

\’/all protocols uhich lead to incorrect answers will be referred to as

(
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“mal~rules", and the theory which holds that these are an accurate model
of the learning mind as the "mal-rule theary".

This report will investigate some theories of Learning and
Educational Psychology which provide the basis for the mal-rule ¢theory.
Two existing programs which address this theory, BUGGY and LMS, wil}ﬁ\
then be described. Armed with this background, we will examine the
LADYBUG progran, its development and algorithms. If we assume that the
mal-rule thecry is valid, then we can confine the discussion to the best
- way to implerent the mal-rule model given the constraints of ¢the
programming .language. This “‘engineering’ work has in fact been the
ma jor focus of effort in the LADYBUG Project. But I think it would be a
mistake not to make an attempt, in conclusion, to assess the validity of
the task and raise some questions as to fhe wider implications of the

mal-vrule theory.

Learning Theories and the Roots of the Mal-Rule Theory
Jean Piage$ was one of the first psychologists to probe beneath the
surface of childhood learning. What he found can be divided into tuy
a?eas for the purposes of this report: views on performance, that is the
way in which humans perform tasks such as problem—solving, and views on
1éé¥qing. or how humans aquire the ability to perform. For Piaget these

areas uere inseparable; as Seymour Papert says in Mindstorms, Piaget

felt that one could not separate the process from the structure of what
is being learned CPapertl.

In the area of performance, Piaget embraced the notion of the schema,
first put forth by the neurologist, H. Head, which was defined as ‘an
active organization of past experiences’ (Stonesl &hich form an
intelléctual structure. Piaget felt that. every cognitive act was

controlled by a schemai much of his work was devoted to qualititively

and quantitatively describing these schema.
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Piaget sau schemata as being characterized by discrete substeps which
are grouped together into a sequential and cohesive unit. For instance,
when a baby wants to shake a rattle, he must first reach out his hand,

curl his +fingers around ¢the handle, and then move his hand back ad

forth. As the child grows these steps become more and more internalized

until they resemble a single action. It should be possible to break

down seemingly complex tasks into a series of pure pracedures, which can

‘be used like bricks to rebuild the task—solving process. Furthermore,

Piaget thought fundamental the idea of transfer, whereby the bricks used
to build one. process could be combined with other bricks té\build a neuw
process for a previously unfamiliar task.

Here-isrwhere learning comes in. A child iz faced with a task he has
never seen be?ore. Piaget found that the child’s responses to this
sitvation ‘will reflect a melange of organized but inappropriate earlier
structures and the halting and sporadic use of as yet incompletely
organized new Graduwally, the new structure will crystallize into a
‘¢ightly~knit, organized, and stable whole’ L[Flavelll,.

Thus we can view learning as the building of new structures wusing
previousfg-e:isting bricks. An important corvollary to this idea is that
errors: oOT incorrect responses. are no longer considered trandom-behavior
unrelated to rationality, but are now seen as resulting from the same
bricks that uvill wultimately form the correct response. With this
perspective on performance, it becomes tempting to analyze students’
errors for the misplaced bricks 

The Russian psychologist L.S.Vigotsky did some experiments on
perceptual +thinking in the 1930s which involyed Jﬁst such an analysis.
He constructed wooden blocks varying in size.,shape, color, and height.
He chose the wvariables such that the blocks could be grouped in
different ways, for instance some blue blocks may be triangles, but not

all the triangles were blue. He then asked the children to group the



blocks. [Vigotsky’s experiment was much more complex, involving nensense
syllables and langquage concepts; I‘m only describing what is relevant to

our discussionl.

§

Céreful study of several hundred subjects led Vigotsky to identify

wéét! he called the pseudo-contept. “The pseudo—concept resembles th??}
adult concept: for example the child might select all the ¢&riangles to
form a group. He does not, however, make his selection on the basis of
triangularity but upon the concrete visible likeness rvather 1like ¢&he
associative complex‘[Btones, 1571. What he is saying 1is that the
child‘s responseé do seem to be governed by an intellectual structure; a
structure, houwever, which is inappropriate to the question asked.

In short, students’ errors don‘t come from a chaotic pile of
carelessly strewn bricks, but +from a carefully constructed stack.
Unfortunately, this stack may contain one or more wrong bricks or may be
missing a feu crucial ones. It is the Jjob of fhe conscientious teacher
to study this stucture and help to repair it.

What does all this have to do with algebra and the mal-rule theorué
Everything. {¢hat the mal-rule theory po;tulates is that most algebr(qw
errors do not result from . random behavibr but from highly organized

schema which produce regults consistent with ¢their structure but not

with the external standard. The mal—-rule is 1like WVigotsky’s
pseudo—concept, It Tresembles the correct rule, but is somehow not quite
perfect. What is important is that the mal—-rule is still a +rule, in

that it will be qonsiétentlg applied again and again unless externally
corrected (external in that some +{feedback 1is required, even for
self—corvection).

To cement the idea I would 1like to make an analogy with how one
learns to hit a golf ball. The golf pro demonstrates, and then the

student makes an attempt. The golt pro watches the performance.

comparing each phase, the backswing, contact, and follow-through, witP~3
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his acquired knpowledge of common errors (mal-rules). He may notice that
the golfer is crooking his left elbow, or forgetting to shift his weight

on the follow—through., He will patiently correct these as he identifies

__ them wuntil ¢the swing becomes closer and closer to the ideal.

To return to the LADYBUG Project, one characteristic of a good golf
instructor is his familiarity with the common ervors and ability to spot
them. Accordingly, a good algebra teacher should be familiar with the
common algebra errors. But identifying the appropriate error is often
more difficult with algebra because the teacher only sees the end result
on the test paper. The intermediate steps are not explicit. This is
like asking &the golf pro to tell you what’s wrong with your swing just
by watching where the ball lands!

But of course algebra errors are usually far less subtle than ¢their
counterparts‘in golf. With training, an algebra teacher should be able
to recognize many common ervors.

Training a %eacher vecognize mal-rules requires having some knowledge
of what the particular mal-rules are. This should be done empivrically:.
by analyzing real.students. Some work has been done lately by Sleeman
and by Alan Bundy in the area of iﬁductivelg diagnasing mal-{ﬁles from
the erroneous answers. ‘

LADYBUG, however, was concerned with implementing same
previously—~identified mal-rules [see Appendix], The forerunner in this
kind of attempé¢ was a program written in 1978 by J.S. Brown and Richard
Burton, which ¢they called BUGGY.

BUGGY

BUGGY gets its name from its authors’ name for mal-rules, which they
call ‘bugs’, in much the same way as computer programmers refer ¢to

faults in a program as ‘bugs’ [Brown, 19781]. BUGGY began as an attempt

\_/ to build a deep—structure model of a student learning how ¢to subtract

{



two numbhers, The authors studied data collected from 1300 Nicaraguan
children and identified 60 possible bugs. They also rvecognized that
many movre bugs could rvesult from combinations of these &C “primifive’
bugs acting together. With the heip of @ computer, they found thatf
40, 0f the students followed consistent mal—-rules.

The next step was to build a model that would replicate many of the

more common ‘mal-rules. They introduced the term diagnostic model ‘to
mean a rvepresantation of a student’s procedural knowledge or skill that
depicts his internalization of a skill as a variant of a correct version
of that skill’ [Cgot that?l. Basically, what they meant is ¢hat the
mal—-rules should be <closely related ¢o the correct rules. A minor
change to the set of correct rules should be sufficient to produce
mal-rule behavior.. Why? Because this seems to be the most humanlike
representation. \

One of the nain tasks of Artificial Intelligence is ¢teo learn about
haw human beings - fthink. The study of <¢this question +Ffalls under
Cognitive Science. . Much effort goes into structuring computer programf’\
in a way -which wa hope might resemble <the way a human mind is
structured. Programs with this goal are Judged as to whether or ﬁot
they are ‘psychologically valid-’. |

Many crifteria can be applied, +for instance the relative times of
performance of hard and easy problems shouyld compare with human
responses. Or, as in the case with BUGEY and LADYBUG, mal-rule behavior
should be replicated from a structure similar to the correct structure.
That is, a change of one or two lines in éhe correct program should be
sufficient to produce mal-rule errors. '

Brown and Burton used a procedural natwork to represent the task of
subtracting two numbers. A procedural network is a collection of

independent opcrations linked to @ control structure. Mal-rules can be

~

replicated by variations to a procedure gr to the control structure.



' The format of the BUGGY ‘game’ was as +follows. BUGGY randomly
‘ selects a mal-rule: not revealing it to the uvser. A sample problem with
erroneous ansiter i shown to the user, who plays the role of a detective

_ trying to discover the mal-rule. BUGGY then asks the user to offer some

\_/problems, which BUGGY duly solves using the mal-rule. When the user
o thinks he has discovered the pattern, he is asked to describe the bug in
( English (BUGCY simply stores this datai the authors have found +that
these descriptions often demonstrate that the user cannot adequately
explain a mal-rule even when he understands how it works),. Then BUGGY
( offers some problems and asks the user to solve them using the mal-rule.

If the chosen mal-rule 1is verified: EUGGY provides a standard
description and moves on to a new mal-rule. Otherwise, BUGGY tells the
{ user to provide»more diagnostic problems. |
When tested with student teachers in the Boston Area, it was shown to
significantly improve their ability ¢to diagnose'subtraction errors.
{ More importan€¢ly, ‘the realization that errors that appear ‘random’ are
-0ften ¢the surface manifestations of a systematic underlying bug is a
major conceptual breakthrough for many student teachers’/{Brown, p. 1671,
D. H, Sleeman applied the mal—;ule theory to simple algebra problems
in 1981 at Leeds University. His Leeds Modelling System (LMS) is less
concerned with teaching teachers than identifying the mal-rules and
( reducing the search space of combinations. He is presently working
toward develonsing a test that could isolate and identify most common
mal-rules with a minimum of test problems. I am indebted to his
{ articles for providing five of the six.mal-rules implemented in LADYBUG
fsee Appendixl. ’
Choice of Domain
First of all, what is linear algebra? For those frightened by
"higher mathematics": relax. Linear algebra is the most basic form of

K{jalgebra. Sanple problems look like this:

)
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gy - 5 = 4

4xy + & = 12 + 2y

It‘s called “lincar" because it can be used to describe sfraight line?ﬁ\
on a Cartesian graph. Almost all schoolchildren are taught how teo solve

these simple equations when they are about 12 years old.

I chose tha domain of linear algebra for several reasons. First,.
because it is malhematical, it can be described very precisely:
certainly an advantage when dealing with a computer. Seccond, I

restrictad the domain to linear algebra so that answers could be
expressed simply, without the need +for square-roots or logarithms.
Lastly, being aware that work had recently been done in the Edinburgh Al
Department on a symbolic manipulation program, PRESS, I figured that I
might be able %o apply some of its vesults to LADYEUG.
Definition of Goals

After reading some literature and evaluating my capabilities, I
decided to narrow my goals to thre=: 1) to write a psychologically valif-\
program for correctly solving linear algebra problems, 2) to implement
several mal-rules suggested by Sleeman (examples to follow), and 3) to
intertace fthe modeller such that it could be used by someone unfamiliar
with computers.

DEVELCPMENT
Programming Considerations

In order to make a mal-rule theory modeller psychologically wvalid,

oneg must exaniné the theory. It holds that students trying to learn

algebra followu consistent rules which lead them to an answer, though the

answer may be urong. This assumes that algebra can be broken in
Piagetian substeps (rules). Furthermore, it requires that these rules
be capable of being independently added, removed, or modified. Thus

5
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! what was needed was @ computer program which brole the task into simple.
easily modified, substeps.

. Ancther aspect of algebra is that it wsvally involves performing one

|« —~particular rule, such as moving an integer to <the rtight-hand—-side,
\ : | )
; \‘/repeatedlq. Thus some element of rTecursivity was desireable in the
programming language®. Lastly, I needed a language that was available on

( the Edinburgh system.

This languwage, not surprisingly, was PROLOG, a recursive list

processing language. A ‘program’ in PROLOG is a set of relationships
{ between variables. These relationships can take the form of reuwrite
Tules. & reurite rule is an ordered pair of expressions, whereby one

expression is used as a template for comparison and €he ofther as a
:: template for transformation. For example, the rule of arithmetic
identity would appear as follows:
rewrite(X + O =Y , X = VY}.

It means the same as:

K_j ) - X+ 0=Y -> X=Y
What this anmounts to is a symbolic vepresentation of algebra. It
views the process from a meta-level where all constituents ére
considered as block-like symbols €o be manipulated. The ’vafiéble’, X
is treated as a constant at the meta level. This symbolic

representation allows us to express relationships between mathematical
formulae. [Bundy: Artificial Mathematicians, p. 1471.

It was found that all linear algebra rules could be expressed with
rewrite rules. As a result, it was not necessary ¢to consider other
techniques (bags), which I wanted to avoid in favor of simplicity and
clarity.

Choice of Algorithm
With thoughts toward implementation, I chos; to implement ¢the

\Jjalgorithm which I myself use in solving linear algebra equations. Dr.



Bundy had ddantified three major steps in the solving process:

Attraction, Collectian (consolidstioni, and lIsaolation.

dtEraciion: 2%y - 5 = 3 -2 2% = 3 + 3
Consolidation: 2#x = 2+ 5 -2 2#x = B
Isolatiaon: 2#x = 8 -2 x = 4 /a\

The order of the steps is important; I found that if each step were
exhaustiveliy applied, then all problems could be solved with three steps
in tho above arder.
| Implemantation .
From this paint on, things may begin to get a bit technical; those
unfamiliar with PROLOG may want f£o skip this section.
Each of Bundy’s steps was to be implemented as a PROLOG predicate.
To do this, all patterns which are applicable to a predicate must be
made to match at least oﬁe clause of that predicate. For the ATTRACT

predicate, I found that 18 unique patterns were possible in attracting

integers to the left—hand-side (LLHS) of the equation and variable terms

to the RHS. In order to make thé code as understandable as possible, I
wrote 18 explicit clauses such as the ones belouw. f—\
. X+ I =Y -2 X=Y-~1
I + X =Y -> X =Y -1
X1 - 1 +X2=Y -2 X1 + X2 =Y + I

As with all procedural networks, fhe program operates on several
levels, each controliing the level directly below. In ¢the case of
CENTIPEDE, ¢he SOLVE predicate was wused ¢o direct the process from
ATTRACT fo COMZOLIDATE to ISOLATE. Supervision of each predicate’s
clauses is handled by PROLOG, which recursive}g exhausts each predicate
before returning to the control leval. o |

Evaluation of Methoq i

The resultant program, CENTIPEDE, required 18 ATTRACT <clauses, 7

CONSOLIDATE clauses, and two ISOLATE clauses. The code was easy to read

i0
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and the
correctly.

realized the

program

drawbacks

admivably solwad

It wasn‘t until I considered

to ¢his method.

almost all linear algebra problems

implementing mal-rules that I

ény simple alteration to the

. predicates, such as making ATTRACT f‘forget’ to change signs as it moved

“\—/quantities acrosss the ‘=’ sign, required ¢that all 18 clauses be

—~

=5

manually altered!

though it was

‘forgetting’
the

terms on

such specific mal-rules would be rarely found,

to change signs on

This was certainly not

recognized that highly

integers

LHS, could be conveniently

the direction

to go, even
specific mal-rules, such as
sandwiched between wvariable

implemented. I decided that

and that it would be

inordinately difficult for the teacher—user to discover them.

Also, it

psycholegically wvalid.

"order ¢to

The latter seened more likely,

uas

perform this task,

necessary to ask

Does the

whether
student learn

or does he learn three more genevral rules”?

or not such a method was

27 separate rules in

-

so I began to consider ways of condensing

the program into fewer, more general clauses.

Salvation came from advisors Bundy and Sterling.

‘a technique

that would parse the required elements from the equation.

be
the program.

clauses,

=

LHS

Furthermore,

they

shared by several predicates,

fHS and match(LHS, I, REST)

TATCH was

CULMINATION

The LADYEBUG Algorithm

had used in PRESS.

more versatile

-7

when they suggested

This involved a MATCH predicate

MATCH could

thereby greatly reducing redundancy in
When implemented, MATCH reduced ATTRACT from 18 to only 4

The new ATTRACT clauses are of the {form:

REST RHE —~ 1

than the 18 old predicates.

LADYBUG was able to solve all sample problems.

Ceneralization of the CONSDLIDATE predicate

Upon studying various mal-rules and some outside literature [Sleemanl

\,}I decided to generalize the CONSOLIDATE predicate such that it would add

11



all inftegnvrs on a sidc, ignoring x ‘s if they appear. If ¢the problem
were being salved properly, Gthis would not lcaa to ervors: as Lthe LHS
would be supplied with ‘#x’ at a highewr level.

The rationale behind this decision was threefold. One, using the
same predicate for both LHS and RHS would reduce the number ofﬁ\
predicates required; Second, this predicate would embody a simple rule:
‘Now, add all the numbers on a side’ which seemed appropriste to the
envirvranment: Third, and most importsently, this rule could be applied ¢to
an equation even if the attraction step were omitted. In fact, omission
of the attraction step, I discovered, led ¢to a very interesting
mal-rule: Simply adding all numbers on each side and then ‘forcing’ the
result to look like the standard by supplying an x to the LHS. This
mal—-rule was subsequently implemented by simply omitting ATTRACT from
the sequence of operations. '

Interfacing LADYBUG for Student Teachers

l.ast, an intertace was built for LADYBUG which involved placing all
mal-rules into.Sne +ile, each as a diséinct sequence of +he existing
predicates. This  interface also included a t;acing provision whic.
could display all steps explicitly if asked. Two further additions
involved sample problems and two predicates ¢to ‘switch’ the tracer
on/off and to choose a mal-rule.

CONCLUSION

What can be gained from this effort? The goal of serious research is
to contribute in some way to humanify’s body of knowledge. If we apply
that goal to' the LADYBUG Project, then she was less than a smash
success. But if the goal was a more personal one, %o provide a
small—scale erample of Al research, to learn what such research estaiis e
and how it might be implemented, then the [LADYBUG soared.

A large part of +the project involved research into Educational

Psychology, a discipline I had never before encountered. I searchef-\

i2



arduously far information on mal-rules from this neck of the woods but
was unable 4o find anything erplicit beyond Vigotsky ‘s pscudo-concepts.

It seems that nost researchers tacitly assume the concept of mal-rules ’

when they discuss behavior. I would s4ill like {o find some information
dealing diractly with the mal-rule concept.
N\ \
As for the choice of progect, I would not hesitate to choose it
again. I an not aware that any Ffield ¢testing bhas been done on a

BUGGY-type algebra program but am confident that something positive
would rtesult from such an experiment. The potential for future work on
this kind of progect is enormous.

In the course of my research I met with Dr. Margaref Donaldson, who
strongly encouraged me .to go +to the source, the <classroom, for
direction. It has evidently been her experience that the scholar

_cloistered auay in the ivy tower is unlikely to understand what goes on
in the child’s mind.

I think that this advicé certainly applies to the LADYBUG Prayect. I
built my model from introspection, and I now reélize that the methods

\used by someona who has used algebra for many years aré quite different
from those of the neophyte. For instance, I now realize that the method
taught to schoolchildren involves applying identical rules to both sides
of an equation, always stressing the equality of both sides; and
gradually isolating the variable, For instance, rather <than offering
the rule:

X+ I =Y -2 X =Y -1

the teacher uill break it into the following steps:

X+ I =Y -> X+ I (- 1I)=Y (- 1)
X+ I (=I) =Y (-1} =>X+0 =Y -1
X+ 0=Y-1 -2 X=Y-1

I think ¢that <the latter method will prove more meaningful and will be

retained longer by the student. Maybe a future LADYBUG-type of program

/
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could bhe built to model this metbud of problen—solving.

T found  Ehat exvevienced tex bares conld offer a wealth of lknowledge
about «tudents’® protecels. One soychology student showed @2 a mal-ruloe

I had nover Lthought of:

3 v = 3 -2 x = &
Ancther showed me /5\
x - 7 = 12 -2 o= 12/-7
Both of thesa have the added attraclion of being discovered empirically
from veal children.

As for the program itself and the ‘enginecring’ efforts o% trying to
build this nodel on the 2972 wusing PROLOG I am for the most part
pleased with the results. The vewrite rule have been successful for the
mal-rules implemeﬁted. although 1 am beginning to think that the added
flexibility of the ‘bags’ ‘predicate may prove desireable. As Leon
Sterling pointed out, the best approach may be to write a new string
parser which would allow access to all elements of the equation and not
be limited by the tree structure of PROLOC. For example, PROLDG is not
able to parse ‘3X’ as two separate atoms. (.\

I+ I had rmore time, I would like to test LADYBUG out on some student
teachers, The interface could stand some polishing, and it might ©be

nice to build in some delay loops o mimic a pause as the ‘child’ works

out the answer.

One area unexplored by LADYBUS was combinations of errors. This has
been a magor focus of effort by Brown,Burton and D. H. Sleeman, and
deserves invasbtigation. In fact, the existing program: LADYBUG, is

~

well-svited to such models.
Post Script
The LADYBUC Project can, and shoﬁld. be judged from more than one
level. Beginning with the end, there is how well ¢the program works.

Back from +&here we can examine how well it is structured. Does the

)
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progrant slegantly make use of the proagramming language? The next step.

. does {ihe gregram atcurately represent the mal-rule theory? Could the

program be of henedit to studant teachers? Pass the mal-rule thesory

,\accuratelg ranresent student beﬁavior? Dogs ths mgl—rule theory

k_)accuratelg represent student €hought? Do human beings think in bterms of

{
rules?

r Althouvgh my work was cvonfined 6o considering oanly the Ffirst Ffew
quastions, it is the final few which are most imporitant. I will not
cloud this vreport with my own speculation on such questions as it 1is

( merely that —-— spéculafion” But I would like %o close this document by

\
mevaly offering another quastion.
The idea that our minds can, in fack: aperate in a manner alalogous
to a machine 15 ehilling. We find ihat many errore which seam to bhe
random areg cauvsed not by a lack of obedience to the rules, bLut by

slavish obedisnce %o the wrong rules. Can it be that our minds are

comiurised of rules we are unable to disobey?

15
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