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Abstract— Rapidly expanding internet resources and wireless
networking have potential to liberate robots and automation
systems from limited onboard computation, memory, and soft-
ware. “Cloud Robotics” describes an approach that recognizes
the wide availability of networking and incorporates open-
source elements to greatly extend earlier concepts of “Online
Robots” and “Networked Robots”. In this paper we consider
how cloud-based data and computation can facilitate 3D robot
grasping. We present a system architecture, implemented pro-
totype, and initial experimental data for a cloud-based robot
grasping system that incorporates a Willow Garage PR2 robot
with onboard color and depth cameras, Google’s proprietary
object recognition engine, the Point Cloud Library (PCL)
for pose estimation, Columbia University’s GraspIt! toolkit
and OpenRAVE for 3D grasping and our prior approach to
sampling-based grasp analysis to address uncertainty in pose.
We report data from experiments in recognition (a recall rate
of 80% for the objects in our test set), pose estimation (failure
rate under 14%), and grasping (failure rate under 23%) and
initial results on recall and false positives in larger data sets
using confidence measures.

I. INTRODUCTION

Consider the goal of a household robot that can reliably
declutter floors, tables, and desks by identifying objects,
grasping them, and moving them to appropriate destinations
such as shelves, cabinets, closets, or trash cans. Errors in
object recognition could be costly: an unwrapped chocolate
bar could be mistaken for a cellphone and moved to the
charging station, or vice versa—a cellphone could be placed
in the trash can. Recognition in unstructured environments
such as homes is challenging as the set of objects that may
be encountered dynamically grows as our global economy
designs new products at an increasing pace to satisfy con-
sumer and shareholder demands.

The “cloud”—the Internet and its associated data and
users—is a vast potential source for computation and data
about objects, their semantics, and how to manipulate them
[16] [22]. People upload millions of digital photos every
day and there are several image labeling projects using
humans and machine learning [37] [42] [45]. In this paper
we propose an architecture that integrates Google’s object
recognition engine with open-source toolkits and a sampling-
based grasping algorithm to recognize and grasp objects.
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Fig. 1. After training, when an object is presented to the Willow Garage
PR2 robot, the onboard camera sends an image to a Google server which
returns a (possibly empty) set of recognized objects with associated 3D
models and confidence values. For each object, the server also returns an
associated set of grasps with associated confidence values. A set of measured
3D depth points is processed with this data locally to estimate object pose
and select a grasp for execution or a report that the confidence values are
insufficient for grasp selection. After executing a grasp, the robot assesses
the outcome and stores results in the cloud server for future reference.

Although networked robotics has a long history [3] [20]
[21], Cloud Computing facilitates massively parallel compu-
tation and real-time sharing of vast data resources. Cloud
Robotics has potential to improve robot performance in at
least five ways [19]: 1) Big Data: indexing a global library
of images, maps, and object data [10] [14], 2) Cloud Com-
puting: parallel grid computing on demand for statisti-
cal analysis, learning, and motion planning [9], 3) Open-
Source / Open-Access: humans sharing code, data, algo-
rithms, and hardware designs [6] [8] [46], 4) Collective
Robot Learning: robots sharing trajectories, control policies,
and outcomes, and 5) Crowdsourcing and call centers: offline
and on-demand human guidance for evaluation, learning, and
error recovery [13] [41].

The present paper considers how Big Data and Cloud
Computing can enhance robot grasping. We train an object
recognition server on a set of objects and link it with a
database of CAD models and candidate grasp sets for each
object, where the candidate grasp sets are selected using
a variant on the quality measure from our previous work,
where we studied how parallel computation in the cloud
can facilitate computing of optimal grasps in the presence
of shape uncertainty [27] [28]. In this paper, we extend
the sampling based approach to consider 3D objects with
uncertainty in pose.

We report two sets of experiments, the first with a set of
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Fig. 2. System Architecture for offline phase. Digital photos of each object are recorded to train the object recognition server. A 3D CAD model of each
object is created and used to generate a candidate grasp set. Each grasp is analyzed with perturbations to estimate robustness to spatial uncertainty.
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Fig. 3. System Architecture of online phase. A photo of the object is taken by the robot and sent via the network to the object recognition server. If
successful, the server returns the stored data for the object. The robot then uses the measured 3D point set with the pressured 3D Mesh model to perform
pose estimation, and selects a grasp from the reference set of candidate grasps. After executing the grasp, the robot assesses the outcome and stores results
in the cloud server for future reference.

six household objects and the second with 100 objects. We
used the Willow Garage PR2 robot [7] and created reference
3D mesh models and sets of candidate grasps, which were
uploaded to the server.

II. RELATED WORK

Goldberg and Kehoe [19] survey related work in Cloud
Robotics and Automation. There has been significant
progress in object recognition, from identifying features that
are rapidly computable and invariant to translation, scale, and
rotation, to learn the visual representation by incorporating
semantic attributes and context information [17] [31] [34]
[40] [44].

Researchers are working to improve both the scalability
and accuracy of large-scale image recognition [26] [33] [35],
making object recognition systems commercially viable. The
purpose of this paper is to show how such a high-quality
large-scale object recognition server can be incorporated
into part of a cloud-based pipeline to improve grasping
in robotics. Recent research has demonstrated the cloud’s
ability to enable information sharing between networked
robots to accomplish tasks widely separated in time and
space [24] [29] [30] [46].

There is substantial research on grasping [11]. While some
research has looked at object recognition for grasping in
isolation [25] [43], most work approaches it as a unified
task. Approaches for object recognition for grasping include

using local descriptors based on training images [15], and
3D model reconstruction involving 3D object primitives for
pose estimation [23]. Saxena et al. [39] developed a method
for calculating grasp points for objects based on images,
where the grasps were learned from prior grasps for similar
objects. This approach removed the need for a full 3D
reconstruction of the object, but didn’t take advantage of
existing commercial object recognition systems.

III. PROBLEM STATEMENT

In the offline phase, the system considers a set of physical
objects O: o1 to oNO

. For each object oi, we use 3D
sensing to obtain an associated reference 3D point set Θi

and construct a 3D triangular mesh model vi. We then use
the Columbia University GraspIt! toolkit to pre-compute a
set of candidate grasps Gi = {gi,k | k ∈ [1, NG]} for each
object and assign an associated confidence value sGi,k

to
each grasp.

For each object oi, we also capture a set of reference
images at different viewpoints φi,j for j ∈ [1, Noi ]. We
define the training set of images Φ = {φi,j | i ∈ [1, NO], j ∈
[1, Noi ]}. Given this set, the Google object recognition
engine applies machine learning methods to analyze the set.
Also during the offline phase, semantic information about
each object such as an identifier key, name, weight, surface
properties such as friction, etc. can be stored in the cloud
server.



The online phase uses confidence thresholds for image
recognition, pose estimation, and grasping, denoted cI , cT ,
and cG, respectively. In the online phase, when an object
from the set O is presented to the robot, an image of the
object φ and 3D point set Θ are taken, and the image is sent
to the Google object recognition engine. The robot receives
back a match set consisting of matched training images with
associated confidence measures: M = {(φi,j , si,j) |φi,j ∈
Φ}. We define the match object set as the set of objects for
which at least one image was matched, along with the highest
confidence score for each object: MO = {(oi, soi) | ∃j :
(φi,j , si) ∈M ∧ soi > s′ ∀j′, s′ : (φi,j′ , s

′) ∈M}
If |MO| = 0 , this is called a null recognition. If |MO| = 1,

this is called a single recognition. If |MO| > 1, this is called
a multiple recognition. If the confidence sI < cI , we stop
and report that the object cannot be identified. Otherwise,
the system identifies the object as o = argmaxoi soi , with
confidence sI = maxoi soi . If the identified object is correct
and sI ≥ cI , the trial is successful. If o is incorrect and
sI ≥ cI , it is a false positive. If o is correct but sI <
cI , it is a false negative. If the recognition confidence is
above threshold, we retrieve the associated 3D point set Θo

and estimate object pose T with an associated confidence
measure sT . If the pose estimate confidence sT < cT , stop
and report that the pose cannot be determined. Otherwise, the
system uses the pose and associated pre-computed grasps Go

and grasp confidence values to select the feasible grasp g∗

with the highest confidence s∗G. If the confidence s∗G < cG,
stop and report that no grasp is found. Otherwise, the robot
executes the grasp, attempts to lift the object, uses the gripper
state to estimate the success of the grasp, and stores the data
and results.

IV. SYSTEM ARCHITECTURE

The system architecture of the offline phase is illustrated
in Figure 2. The offline phase includes training of the object
recognition server, as described in Section IV-A, the creation
of object reference data as described in Section IV-B and the
creation and analysis of the candidate grasp set as described
in Section IV-C.

The system architecture of the online phase is illustrated in
Figure 3. This phase begins when an object is detected by the
robot system. It takes a photo and captures a 3D point cloud
and sends this to the object recognition server, as described
in Section IV-D. Online pose estimation and grasp selection
are described in section Section IV-E.

A. Offline Phase: Object Recognition

Google Goggles is a popular network-based image recog-
nition service accessible via a free app for Android and
iPhone smartphones [2]. The app sends a photo of an
unknown object or landmark to the server, which rapidly
analyzes it to return a ranked list of descriptions and as-
sociated web links or a report that no reference can be
identified (Figure 4).

We use a custom version of this system that runs on
Google’s production infrastructure. Our version can be

Fig. 4. A photo taken by a smartphone can be uploaded to the Google object
recognition engine where it is analyzed, and results such as a list of relevant
websites are returned to the user. We use a variant of this system where
results determine object identity, pose, and appropriate grasp strategies.

trained on specific image sets and given a new image, returns
the match set with confidence values. The server is exposed
as two HTTP REST [18] endpoints—one for training, and
one for recognition. The training endpoint accepts a set of
2D images of objects with labels identifying the object.
The recognition endpoint accepts an image and returns a
(possibly empty) set of matches. Each match is a stored
image (from training) with its corresponding label and a
confidence measure between 0 and 1.

B. Offline Phase: Object Model

For each object, we construct two 3D models: a point set
Θ and a triangular mesh v. For our experiments, we selected
one stable reference orientation for each object, and use two
Microsoft Kinect sensors to scan a point set, which is filtered
using tools from PCL, the Point Cloud Library [5] to define
Θ, which is processed with surface reconstruction tools in
PCL to create a reference 3D triangular mesh model. The 3D
mesh model, reference point set, and candidate grasp sets are
hosted on Google Cloud Storage [1], which is a multi-tenant
and widely-replicated key-value store. Each object’s data is
associated with the same unique string used to train the
object recognition server. From this key, a REST URL can
be constructed to retrieve the data. In future work, we will
explore alternative methods based on precise object geometry
that may be used to compute stable poses on the planar
worksurface and more accurate pose estimation and grasp
generation.

C. Offline Phase: Robust 3D Grasp Analysis

The candidate grasp sets are generated using the Columbia
University GraspIt! system [32]. GraspIt! takes as input the
3D triangular mesh model v and a model of the gripper that
includes desired contact locations. We specify the built-in
model of the Willow Garage PR2 parallel-jaw gripper. For
each object model, GraspIt! generates a set of grasps that
are feasible for a disembodied gripper. GraspIt! generates
the set by randomly sampling a starting pose for the gripper
in its open state surrounding the object, and then uses a
simulated annealing method to iteratively improve the quality
of the grasp [12]. This is repeated for a number of starting
poses to produce a grasp set G = {gk | k ∈ [1, NG]}. In
our experiments, 60 grasps were generated for each object.
Each grasp gk is evaluated by GraspIt! to estimate a grasp
“quality” qk as described in [12].



To estimate robustness to pose uncertainty, we use a
variant of our previous sampling-based algorithm that models
2D shape uncertainty [27] and [28]. We extend that algorithm
to model uncertainty in object pose as follows. Given the
object’s triangular mesh model v, we generate NP pertur-
bations in object pose by considering Gaussian distributions
around the nominal position and orientation of the object.
GraspIt! estimates grasp quality, qk,l, for each perturbation.
The weighted average of these values for a grasp over all
perturbations, where the weights are the probability of a
perturbation occurring, is used as the confidence measure
for each candidate grasp:

sGk
=

∑
l

p(vl)qk,l

D. Online Phase: Object Recognition

In the online phase, the system submits an image to
the Google object recognition server to retrieve the match
set. After filtering matches below the confidence threshold,
the best remaining match is taken. If there are no matches
above the threshold, the robot stops and reports no matches
found. Otherwise, the robot queries Cloud Storage for the
reference data for the object. In the future, if no matches
above threshold are found, the robot may take appropriate
action such as moving its camera to obtain a better image.

E. Online Phase: Pose Estimation and Grasp Selection

If the object recognition server identifies the object with
sufficient confidence, the reference data is used in the fol-
lowing steps. First, estimating the pose of the object using
a least-squares fit between the detected 3D point cloud
and the reference point set using the iterative closest point
method (ICP) [36] [38]. We use the ICP implementation from
PCL. The ICP algorithm performs a local optimization and
therefore requires a reasonable initial pose estimate to find
the correct alignment. We run ICP over a series of initial pose
estimates. Ideally, the object data would include information
about the stable poses of the object and these would be used
as the initial pose estimates. We approximate this by using
a fixed set of rotations for our pose estimates. We include
72 rotations about an internal vertical axis and for each of
these rotations, we additionally include 8 rotations of 90◦

pitch down, to transform each object from an “upright” pose
to a “horizontal” one.

Then, the initial estimate is computed by aligning the
rotated reference point set to the detected point cloud such
that the reference point set is on the work surface and the
sides of the point cloud and point set are roughly aligned.
For each initial pose estimate, the ICP algorithm generates
an alignment and confidence score for that alignment, which
is the sum of squared distances for all point correspondences
it found. The alignment with the highest confidence score is
chosen.

Using each estimated object pose, a candidate grasp is
chosen from the candidate grasp set based on feasibility as
determined by the grasp planner. The robot arm movement

for the grasp then is planned using the inverse kinemat-
ics planner from OpenRAVE, a robotics motion-planning
library [4]. Once the grasp is executed, success is determined
based on the final position of the gripper jaws. The outcome
data, including the image, object label, detected point cloud,
estimated pose, selected grasp, and success or failure of the
grasp, is uploaded to the key-value store for future reference.

V. EXPERIMENTS WITHOUT CONFIDENCE MEASURES

Fig. 5. The first set of objects used for the tests in Section V and Section VI-
B. The objects were selected as representative of common household objects
and are easily graspable by a parallel-jaw gripper.

We performed two sets of experiments. The first included
a set of six objects and included end-to-end testing of image
recognition, pose estimation, and grasping. The second set of
experiments focused on evaluating the confidence measures
for image recognition, using a larger set of 100 objects, and
pose estimation, using the first set of objects. The confidence
measure experiments are presented in Section VI.

We experimented with the set of six household objects
shown in Figure 5. We used the Willow Garage PR2, a two-
armed mobile manipulator. We selected these objects because
they represent common object shapes and are graspable by
the PR2’s parallel-jaw gripper. The experimental hardware
setup is shown in Figure 1. We used a robot-head-mounted
ASUS Xtion PRO sensor, similar to a Microsoft Kinect, as
our 3D sensor, and used the PR2’s built-in high-definition
Prosilica camera.

A. Object Recognition
We evaluated the performance of the Google object recog-

nition server using a variety of training image sets.
We used the PR2’s camera to capture 615 object images

for training. We took images of objects in different poses
against solid black and wood grain backgrounds, and under
ambient florescent lighting and bright, diffuse incandescent
light.

1) Test Results: We created 4 different training sets—a
set of images randomly sampled from our pool (R), and
three rounds of hand-selected training images (A,B,C). We
trained the server on each set and used the remaining images
in our pool to evaluate recognition performance. The hand-
selected sets used human intuition about what would make
a representative set of images.



Training
Set Size Recall Recall

Rate
Training
Time (s)

Recall
Time (s)

R 228 307/387 0.79 0.45 0.29
A 92 247/422 0.59 0.40 0.29
B 52 215/422 0.51 0.39 0.28
A+B 144 317/422 0.75 0.40 0.29
C 49 199/422 0.47 0.39 0.30
A+B+C 193 353/422 0.84 0.40 0.29

TABLE I
IMAGE RECOGNITION PERFORMANCE FOR IMAGE TRAINING SETS. SET

R WAS RANDOMLY SAMPLED. SETS A, B, AND C WERE

HAND-SELECTED. THE AVERAGE CALL TIMES FOR TRAINING AND

MATCHING A SINGLE IMAGE ARE GIVEN.

Table I shows the recall on the test set for the three training
sets. We were able to achieve higher recall than random
sampling through multiple rounds of hand-selected training
images, but we were surprised to see that random sampling
performed nearly as well (79% vs. 84%). Although there
were many images for which the system was unable to make
any identification (i.e., null recognitions), there were no false
positives among the images we tested. For images where
no object was recognized, such as those shown in Figure 6,
lighting or the camera angle often obscured the text on labels.

Fig. 6. Example images where no object could be identified.

B. Pose Estimation

Object Total
Trials Failures Failure

Rate
Average
Time (s)

Air freshener 15 2 0.13 7.4
Candy 15 0 0.00 1.4
Juice 15 1 0.07 10.2
Mustard 15 2 0.13 10.6
Peanut butter 15 2 0.13 2.1
Soap 15 0 0.00 3.6

TABLE II
POSE ESTIMATION RESULTS. WE MANUALLY DETERMINE FAILURE

WHEN THE ESTIMATED POSE IS MORE THAN 5 MM OR 5 DEGREES FROM

THE TRUE POSE.

We evaluated the system’s pose estimation using 15 stable
poses for each object. We manually declare failure when the
estimated pose is more than 5 mm or 5◦ from the true pose.
We observed that rotational symmetries of the object can
cause the ICP algorithm to find a well-fitting but incorrect
pose; most often this occurred with the estimated pose being
inverted vertically from the true pose. For example, the
shape of the mustard bottle is roughly symmetric above and
below the waist of the bottle if the spout is disregarded. The

ICP algorithm discards the spout this as part of its outlier
rejection step, and produces a high quality score with an
inverted pose for this object. We analyze this situation further
in Section VI-B.

C. Grasping

Object Candidate
Grasp Set Size Total Trials Failures Failure

Rate

Air freshener 76 13 2 0.15
Candy 30 15 3 0.20
Juice 105 14 1 0.07
Mustard 61 13 3 0.23
Peanut butter 80 13 2 0.15
Soap 30 15 0 0.00

TABLE III
GRASP EXECUTION RESULTS. FOR CASES WHERE POSE ESTIMATION IS

SUCCESSFUL, THE SYSTEM ATTEMPS TO GRASP AND LIFT THE OBJECT

OFF THE WORKSURFACE. WE DECLARE FAILURE IF THE ROBOT DOES

NOT ACHIEVE A GRASP OR DROPS THE OBJECT DURING LIFTING.

We evaluated grasping with cases where pose estimation is
successful by having the system execute a grasp and attempt
to lift the object off the worksurface. We declare failure if
the robot does not achieve a grasp or drops the object during
or after lifting. For some objects such as the air freshener
and mustard bottle, small errors in pose estimation had a
significant effect on grasp outcome. This is not surprising
since in stable horizontal poses, the mustard bottle is nearly
the width of the PR2’s gripper opening. For the air freshener,
the rounded and curved shape made it prone to rolling out
of the gripper as it closed.

VI. EXPERIMENTS WITH CONFIDENCE MEASURES

We also studied the confidence measures generated by
image recognition using a larger data set of 100 objects and
14,411 images. We also revisited pose estimation using the
original data set from Section V.

A. Image Recognition

The second, larger data set included objects for which
we only had images, not the physical objects. The data set
consists of 100 objects, with approximately 140 images of
each object. The set consists of photos of each object in a
single stable pose, brightly lit against a white background.
The images were taken at two low-elevation angles in 5◦

increments around the object, and from directly above in 90◦

increments. The confidence measure associated with image
recognition is a match score returned by the Google server.
This score, which falls between 0 and 1, is calculated based
on a log likelihood passed through a transfer function that
is used to maintain stability of the scores when the log
likelihood formulation is updated. We randomly sampled a
subset of images from the set for training and then tested all
the remaining images. We repeated this procedure for sample
set sizes ranging from 100 images to 7000. This larger data
set provided us with conditions that did not exist in the
smaller set used for end-to-end testing. For example, some



Fig. 7. Objects from the second data set used in Section VI-A. This
set includes 14,411 images of 100 objects that are commercially available
household products and toys. The images include photos of the object in a
single pose, brightly-lit against a white background. The images were taken
at two low-elevation angles in 5◦ increments around the object, and from
directly above in 90◦ increments.
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Fig. 8. Recall rate vs. training set size as a percent of total image set
size. The image set consists of 14,411 images of 100 different objects. The
image set was tested by randomly sampling a number of images to train the
object recognition server, and using the remaining images for testing. The
recall rate is the fraction of the images tested that the object recognition
server correctly identified.

of the objects were different models of the same products,
differing only in color scheme or text. Other objects had
similar shapes and colors.

The recall rate is plotted in Figure Figure 8, which shows
much better results than in the first experiment. In Table I,
set R was 37% of the total image set size, and resulted in
a recall rate of 0.79. With our larger set, training with 35%
of the images resulted in a recall rate of 0.90. The rate of
false positives, which was below 1% for all training sets, is
plotted in Figure 9.

Because the object recognition server returns multiple
matches with confidences, we considered how this data
might be used to recognize false positives. We trained the
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Fig. 9. False positive rate vs. training set size as a percent of total image
set size. The image set consists of 14,411 images of 100 different objects.
The image set was tested by randomly sampling a number of images to train
the object recognition server, and using the remaining images for testing.
The false positive rate is the fraction of images tested for which the object
recognition server identified an object that was not correct. Note that the
maximum false positive rate is under 1%.

Fig. 10. Two examples of false positives, which occur less than 1% in
our experiments. The images on the left are the measured images, and the
images in the right column are what was matched.

system using 3000 randomly selected images, roughly 20%
of our image set. We considered two separate cases: when
only a single object is matched (a single recognition), and
when multiple objects are matched (multiple recognition).
In the single recognition case, the average score of a correct
recognition was 0.49, whereas the average score of a false
positive was 0.06. This suggests a threshold could be used to
identify false positives. For example, if the maximum false
positive score, 0.15, was used as the threshold, only 6% of
correct recognitions would have been erroneously identified
as false positives. When the server returns multiple possible
object matches, the relative confidences of the different
matches can be considered. In our experiments, we found



that, on average, the second best object had a score 30%
of the best object for a correct recognition, but for a false
positive, the second best object had a score 79% of the
best object. This also suggests a threshold could be used
to identify false positives.

B. Pose Estimation

The confidence measure associated with pose estimation
using ICP is the sum of the squared distances of correspond-
ing points in the sensed and reference point clouds. This
is calculated by the ICP algorithm. In our implementation,
this value was used to rank ICP alignment solutions for
different initial poses. Occasionally, incorrect alignments
received high scores.

The sensed point cloud only includes one side of the
object, whereas the reference model includes all sides. When
properly aligned, there are occluded points on the reference
cloud with no correspondences on the sensed point cloud.
The ICP has thresholds that allow for these points to be
filtered out so that they do not affect the score. However,
this also allows incorrect alignments to receive good scores
in some cases. In a baseline test of three objects where this
occurred: the air freshener, mustard, and peanut butter as
shown in Figure 5, 4 out of 10 pose estimations were found
to be incorrect.

To address this, we extended our pose estimation algorithm
to compute the aspect ratios of the aligned reference cloud
and the sensed cloud. We first project the measured and
reference point clouds onto the camera plane. For each of
the resulting 2D point sets, we compute the second order
moment to find the principal axis in the 2D plane. We reject
the alignment if the angle between the principal axes is
above a threshold (in our tests, we used π/10). Using this
new method, 9 of 10 pose estimations were correct. In the
failure case, the estimate was 180◦ from the correct pose.
The shapes are very similar in this case, and the second
order moment was not sufficient to detect it.

VII. DISCUSSION AND FUTURE WORK

This paper presents a system architecture, implemented
prototype, and initial experiments and analysis for Cloud-
based object recognition and grasping. Object recognition is
performed in the cloud using a variant of the Google Goggles
proprietary object recognition engine. We incorporated open-
source software for pose estimation and grasping and intro-
duce a sampling-based approach to pose uncertainty in 3D
grasping. While we are encouraged by initial results, much
remains to be done to allow such a system to be scaled up
for many objects (and robots).

In our future work, we will seek to improve each aspect
of the system. For image recognition, we will seek more
details of the Google implementation and work to incorporate
more sophisticated analysis of the confidence measures and
match sets to reduce false positives and false negatives. For
pose estimation, we will introduce precise CAD models of
object geometry rather than relying on 3D point sets, and
combine information about stable poses, surface patches,

and color information to streamline pose estimation. We will
also refine grasp analysis based on precise CAD models of
each object, stable pose models, and sampling for robustness
to uncertainty in object shape. We will also develop active
approaches to low confidence values. For example, when the
object recognition engine returns results with low confidence,
the robot can move its camera to obtain subsequent images.
Similar strategies can be developed to respond to low confi-
dence in pose estimation and grasping.
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