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Abstract— To facilitate automated bin picking when parts
cannot be grasped, pushing actions have the potential to
separate objects and move them away from bin walls and
corners. In the context of the Dexterity Network (Dex-Net)
robot grasping framework, we present two novel push policies
based on targeting free space and diffusing clusters, and
compare them to three earlier policies using four metrics. We
evaluate these in simulation using Bullet Physics on a dataset
of over 1,000 synthetic pushing scenarios. Pushing outcomes
are evaluated by comparing the quality of the best available
grasp action before and after each push using analytic grasp
metrics. Experiments conducted on scenarios in which Dex-Net
could not successfully grasp objects suggest that pushing can
increase the probability of executing a successful grasp by more
than 15%. Furthermore, in cases where grasp quality can be
improved, the new policies outperform a quasi-random baseline
by nearly 2 times. In physical experiments on an ABB YuMi,
the highest performing push policy increases grasp quality by
24%.

I. INTRODUCTION

E-commerce warehousing applications often involve grasp-
ing and extracting objects with varying geometries and
material properties from densely cluttered heaps or bins.
Industry has shown interest in automating these tasks with
robots. Deep learning methods can enable robots to grasp
objects in isolation on a flat workspace, and these methods
have recently been extended to grasping in clutter [19], [28],
[34], [35]. Perception in cluttered bin environments remains
a difficult problem, and scenarios may arise where the robot
is unable to execute a collision-free grasp due to object
proximity to the bin walls or to other objects [16], [37].
Pushing can change the position or orientation of parts so
that a grasp with a higher probability of success can be
executed [7], [14], [20].

It may not be necessary to completely separate objects for
robust grasps to become available, and a series of pushes may
be inefficient. Previous work measures the success of pushes
as the degree of separation between objects and attempts to
minimize the number of push actions to achieve separation
[7], [12]. We explore directly using grasp confidence metrics
instead of an indirect metric such as object separation for
comparison of push policies, and attempt to maximize grasp
confidence over a single push action.

In this paper, we explore pushing policies and analyze
performance in bin picking environments. We simulate
grasping and pushing policies over a set of 3D CAD models
as sample objects using robust quasi-static analysis and the
Bullet physics engine. By dropping objects into a virtual bin
and executing sequences of grasping actions, we generate a
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Fig. 1: Before (left) and after (right) images of successful pushes in simulation
(top) and in physical experiments with the ABB YuMi (bottom).

dataset of over 1,000 simulated scenarios in which pushing
could potentially be useful. For each of these scenarios, we
evaluate five pushing policies against a baseline policy using
metrics that quantify changes in grasp availability.

This paper makes three contributions:
1) Metrics to measure effectiveness of pushing actions,
2) Two novel push policies based on targeting free space

and diffusing clusters
3) Experimental data from 1,000 simulated and physical

bin scenarios where all initial state grasps generated by
Dex-Net 2.0 and 3.0 have low confidence [35], [36].

II. RELATED WORK

Mason pioneered research on analytic models of push
mechanics [38]. Lynch and Akella described the mechanics
of stable pushing and described how to create a plan for
controlled pushing of an object through a series of obstacles
[3], [31], [32], [33]. Recently, both analytic and learning
techniques have been applied to learn physical pushing models
for objects so they can be guided to a target location [1],
[2], [4], [18], [25]. Goldberg and Brost showed that pushing
objects to a location is desirable because it allows for objects
to be grasped [6], [15]. Dogar and Srinivasa built on the idea
of “push-grasping” to reduce uncertainty in grasping objects
in clutter, using predefined 3D models of the objects to be
grasped and attempting to estimate pose of each object in
the scene before planning an action [10], [11]. Kehoe et al.
extended these ideas to model uncertainty in the shape of the
object [22]. In the Amazon Picking Challenge, the Technische
Universitat Berlin team used pushing to enhance suction [13].
Team MIT used “topple” and “push-rotate” primitives to
aid in grasping and bin-clearing [45]. These primitives were
designed for a specific scenario in the competition, where
some objects were initially ungraspable.

Another class of related work focuses on pushing heaps
of objects for interactive segmentation. Hermans et al. [17]



reason about boundaries between objects and keep a “push
history” to estimate likelihoods that each cluster in an image
is a separate object. They plan pushes along the object
boundaries to attempt to force two nearby objects apart. While
they score potential pushes on workspace boundaries and
likelihood of collision with other clusters, their analysis does
not account for scenarios where objects may be laying on
top of one another. Chang et al. also consider interactive
singulation of objects in clutter, pushing clusters of objects
away from other clusters so that they can be grasped [7]. They
track clusters between actions to gain evidence of singulation
and adapt their pushing strategy based on the results of the
previous pushes. However, their approach relies on object
tracking, which may be sensitive to sensor noise. Several other
groups study pushing as a means of interactive perception or
segmentation, where actions are used to inform segmentation
of objects from the background [21], [24], [30]. These use
fixed-length pushes to distinguish objects from each other
or the background, but do not use pushing to aid in future
grasping attempts. In all of these cases, multiple pushing
actions are necessary to confirm singulation of the object.
We seek to extend these previous pushing methods for bin
picking applications by introducing a bounded workspace
and new push metrics.

“Singulation” applies pushing mechanics and planning to
the task of separating or extracting objects that lie close
together, and it is often required for successful object recog-
nition or grasping. Model-based approaches such as the one
proposed by Cosgun et al. [8] planned a series of robot actions
to clear space for a target object in two-dimensional, tabletop
pushing scenarios. Without prior knowledge of the objects, it
can be challenging to estimate object geometries, poses, and
other physical properties of the objects and environment [43],
which can affect the efficiency of pushing actions [44]. For
this reason, recent work has focused on learning strategies
to push objects apart. Laskey et al. have used learning from
demonstrations to successfully singulate and grasp one object
in clutter with continuous push trajectories [26], [27]. Omrcen
et al. [39] used many examples of pushing objects to train a
fully-connected two-layer neural network that predicted 3D
object motion for proposed actions. They then used these
predictions to push objects to the edge of a table where
they could be grasped. Boularias et al. [5] have also applied
reinforcement learning to the task of pushing and grasping
in clutter, extending their application to two objects. Eitel et
al. [12] explore singulation in clutter using a push proposal
convolutional neural network, showing that they can separate
up to 8 objects with at least a 40% success rate in an average
of 11 push actions. In contrast to their work, which seeks to
minimize the number of push actions to separate all objects,
we find one push at each opportunity, take into account bin
walls and corners, and analyze push success based on new
metrics in addition to object separation distance.

III. PROBLEM STATEMENT

Given a depth image of one or more objects in a bin as
input, find the push action that maximizes the probability of
a successful grasp of an object from the bin. A push action
is defined by a line segment at a constant height parallel to
the workspace.

A. Assumptions

We assume a robot with a parallel-jaw gripper or suction
end effector, and rigid objects in clutter resting in a bin. We
assume quasi-static physics and soft finger point contacts.
All objects considered are able to be grasped in at least
one stable pose. We also assume known gripper and bin
geometries and a single overhead depth camera with known
intrinsics. For purposes of finding free regions in the bin
and boundaries between objects, we approximate distances
using object center of mass. This approximation allows for
reasonable computational efficiency in simulation, as finding
minimum distances between two meshes is an expensive
operation. In addition, we assumed object distances to be
the distance between each object’s center of mass when
determining which objects to push. In physical experiments
we approximate the center of mass of each object to be the
centroid of each objects points from the point cloud.

B. Definitions

1) States: Let x = (O, To) ∈ X be the ground truth state
of the heap, where O represents the geometries and inertial
and material properties of all objects in the heap, and To
represents the poses of the objects with respect to the camera.

2) Observations: Let y ∈ Y be an observation of the state
x which consists of a depth image of height H and width
W taken by the overhead camera.

3) Actions: Let:

• uj = (p, φ) ∈ R3×S1 be a parallel jaw grasp defined by
a center point p = (x, y, z) ∈ R3 between the jaws and
an angle in the plane of the table φ ∈ S1 representing
the grasp axis,

• us = (p, φ, θ) ∈ R3×S2 be a suction grasp defined by a
target point p = (x, y, z) ∈ R3 and spherical coordinates
(φ, θ) ∈ S2 representing the axis of approach,

• ug ∈ Uj
⋃
Us be a generic grasp action, either a suction

grasp or parallel jaw grasp, and
• up = (q, r) ∈ R3 × R3 be a linear pushing action in

3D space defined by a start point q = (x, y, z) and an
end point r = (x′, y′, z′), with respect to the camera

4) Reward: Let the reward functionR ∈ {0, 1} be a binary
function that indicates whether an object has been successfully
grasped and removed from the bin. Pushing actions receive
a reward of 0.

5) Grasp Success Distribution: Let p(R|u,x) be a grasp
success distribution that models the ability of a suction or
parallel jaw grasp to resist gravitational wrenches under
uncertainty in sensing, control, and disturbing wrenches [36],
[40].

6) Grasp Quality Function: Let the grasp quality function
Q(u,x) = E[R|u,x] be a function that takes as input a
parallel jaw grasp uj or suction grasp us and the state x and
evaluates the probability of success for that action given the
current state. The grasp quality function Q is a continuous
function on the interval [0, 1].

7) Composite Policy: A composite policy π(x) receives
as input a state x and returns either a grasp action ug or a
push action up.



C. Objective
The high-level goal is to maximize mean picks per hour

(MPPH), defined as:

E[ρ] = E


N∑
i=0

R(π(xi),xi)

N∑
i=0

∆(π(xi))

 (1)

where ∆(π(xi)) is the time spent sensing, planning, and
executing the action π(xi). If we assume a constant execution
time for each of N push or grasp actions, Equation 1 can be
simplified to:

E[ρ] =

N∑
i=0

Q(π(xi),xi)

N∆̄
(2)

where ∆̄ is the average time needed to execute an action.
Multiple consecutive unsuccessful grasps increase the

total number of actions N without contributing a reward
R, decreasing E[ρ]. When grasp quality is low, successful
pushing actions lead to successful grasps, contributing a
higher reward over the same number of actions. We focus on
the subtask of choosing a push action to maximize probability
of a robust grasp being available in the next timestep in
scenarios where the initial grasp quality is low.

Let the function f : X ×Up → X define the state transition
such that xt+1 = f(xt,up,t) for a pushing action up,t at time
t. Then we wish to find:

u∗p,t = arg max
up,t∈Up

Q(u∗g,t+1,xt+1)

where u∗g,t+1 is the grasp that maximizes Q for the next state
xt+1.

To consider when a push action would be more efficient
than a grasp action at the current timestep t = 0, we analyze
which action u0 maximizes the sum of expected rewards Ψ
over a two-timestep period t = {0, 1}. At time t = 0, we
measure the binary reward for grasp actions and assign a
reward of 0 for push actions. At time t = 1 we measure the
probability of success for the best grasp action given the new
state of the heap, Q(u∗g,1,x1):

Ψ(u0,x0) = E[R(u0,x0) +R(u∗g,1,x1)]

≈ R(u0,x0) +Q(u∗g,1,x1)

By comparing the sum of expected rewards for both actions at
times t = 0 and t = 1, we determine which action maximizes
the total reward over the given period. We formalize this as
follows:

Ψp = Ψ(up,x0) ≈ Q(u∗g,1,xp,1)

Ψg = Ψ(ug,0,x0) ≈ R(ug,0,x0) +Q(u∗g,1,xg,1)

We prefer the push action when Ψp > Ψg .

IV. PUSH-ACTION METRICS

We define four metrics to evaluate pushing policies on
the dataset of generated heaps in simulation, where we have
ground truth object poses. The first, mean object separation
gain, is a metric based on previous work [7], [12] and rewards

pushing policies that create as much separation between
objects as possible. The other three metrics reward pushing
policies that lead to available high-quality grasps in the
next timestep, measured using robust gravitational wrench
resistance analysis as in [36]. These metrics quantify the
change in grasp quality (probability of a successful grasp)
due to a pushing action. In all cases, we approximate inter-
object distance and bin-object distance using centers of mass
for computational efficiency.

A. Mean Object Separation Gain

Mean Object Separation Gain measures the average degree
of separation between objects in the heap [12]. Prior work
has focused on minimizing the number of pushes necessary
to achieve a minimum separation between all objects in the
heap; however our goal is to maximize the expected reward
at the next timestep. Highly-successful pushing actions such
as totally separating a single object from a heap might not
increase the minimum separation at all, as other objects in the
heap may still be touching. Therefore, we use a normalized
change in the mean object separation for our first metric,
and we call this adapted version of prior object separation
metrics mean object separation gain. For n objects, mean
object separation is defined as:

D =

n−2∑
i=0

n−1∑
j=i+1

‖oi − oj‖2 +
n−1∑
i=0

minbj∈B ‖oi − bj‖2(
n
2

)
+ n

where o is a vector of object centroids, and B is the set of
bin edges. D is an average of the pairwise distances between
objects and each object’s distance to the bin. Thus, mean
object separation gain is defined as:

∆D =
D1 −D0

max(D0, D1)

where D0 is the initial mean object separation and D1 is the
mean object separation after the push action. We normalize
this quantity by the larger mean object separation of the initial
and final states to get a value between -1 and 1.

B. Parallel Jaw Grasp Quality Gain

Parallel jaw grasp quality gain measures the change in
best available parallel jaw grasp, allowing us to differentiate
grasp probabilities of success by end-effector. The parallel
jaw grasp quality is defined as follows:

Q∗j = max
uj∈Uj

Qj(uj ,x)

where Uj is the set of all parallel-jaw grasps available on
objects in the heap. We approximate the grasp set with a finite
set of 100 sampled grasps per object. Parallel-jaw grasps are
sampled from approximately antipodal pairs of points on the
surface of each object. Parallel jaw grasp quality gain is then
defined as:

∆Q∗j = Q∗j,1 −Q∗j,0

where Q∗j,0 is the initial parallel jaw grasp quality and Q∗j,1
is the parallel jaw grasp quality after the push action.



C. Suction Grasp Quality Gain

Suction grasp quality gain measures the change in best
available suction grasp, again allowing us to differentiate
grasp probabilities of success by end-effector. The suction
grasp quality is defined as follows:

Q∗s = max
us∈Us

Qs(us,x)

where Us is the set of all suction grasps available on objects
in the heap. The grasp set is approximated in the same way
as the parallel-jaw grasps, and suction grasps are sampled
uniformly across the surface of each object with approach
axes coinciding with surface normals. Suction grasp quality
gain is then defined as:

∆Q∗s = Q∗s,1 −Q∗s,0

where Q∗s,0 is the initial suction grasp quality and Q∗s,1 is the
suction grasp quality after the push action.

D. Overall Grasp Quality Gain

Overall grasp quality gain measures the change in best
available grasp. Overall grasp confidence is defined as:

Q∗o = max
(
Q∗j , Q

∗
s

)
Overall grasp quality gain is then defined as:

∆Q∗o = Q∗o,1 −Q∗o,0

where Q∗o,0 is the initial overall grasp quality and Q∗o,1 is the
overall grasp quality after the push action.

V. PUSH POLICIES

We compare five policies, two from prior work, two novel
and a baseline method. The baseline method is a quasi-random
baseline policy similar to the one used by Hermans et al. [17].
All policies operate on both ground truth state information
in simulation or the depth maps observations described in
Section III. For a full state input, we performed collision
checking using the Flexible Collision Library and use the
known object centers of mass and poses. For a depth image
input, we transform the depth image to a point cloud, segment
the bin and the objects using the Euclidean Clustering method
described in the PointCloud Library [41], and execute an
Image Clearance Checker that checks for object and gripper
collisions. The object center of mass is approximated to be
the centroid of the segmented cluster of points from the point
cloud [29]. For the following section, references to “object”
can be replaced with segmented cluster in the case of point
cloud inputs. The “free space point” pi is defined as the point
that maximizes the minimum Euclidean distance from object
i to the other objects in the bin and the bin walls, penalizing
distance from the starting location with an L2 regularization
term.

A. Quasi-Random Policy
The Quasi-Random Policy generates a linear push action

using the following three steps:
1) Choose one object in the heap at random,
2) Choose a direction at random, and
3) Push for a fixed length at the center of mass toward

the chosen object in the chosen direction.
The push action is clipped to the bounds of the bin so that
the gripper will not collide when executing the action.

B. Boundary Shear Policy
The boundary shear policy is adapted from the pushing

policy introduced in Hermans et al. in [17]. It aims to separate
the two closest objects in the heap by pushing one of them
along the boundary between the two objects.

1) Find the two closest objects in the heap with centers
of mass ci and cj ,

2) Construct a line cicj connecting the centers of mass
of the two closest objects projected to the plane of the
bin bottom, and a line cicj⊥ perpendicular to cicj that
defines the vector approximating the boundary of the
two objects,

3) Generate four possible push vectors, two for each object,
that extend through the centers of mass of the objects
in the direction cicj⊥, and

4) Choose the push direction which is closest to the
direction of free space and is collision free.

C. Free Space Policy
The free space policy aims to separate the two objects

in the heap with closest centers of mass by pushing one of
them along a direction toward the most free space, taking
into account bin walls and other objects. It generates the push
action using the following steps:

1) Find the two objects in the heap with closest centers
of mass ci and cj ,

2) For each object, find the free space point pi defined
above,

3) Draw lines cipi, cjpj from each of the centers of mass
of the two closest objects to the points p1 and p2,
respectively, with each point projected to the plane of
the bottom of the bin,

4) Generate two possible push vectors, one for each object,
that extend through the centers of mass of the objects
in the collision-free directions closest to cipi and cjpj ,
and

5) Choose from the two possible collision-free push
actions based on the minimum distance from the current
center of mass of object i to pi.

D. Maximum Clearance Ratio Policy
The maximum clearance policy, defined by Chang, Smith,

and Fox [7], analyzes the available space for an object to be
pushed into and the cluttered area it is being pushed from.

1) Calculate clearance in front of and behind each object
for 16 uniform directions spanning angles between 0
and 2π by moving the objects footprint in the given
direction and checking for collisions with other objects
or the bin, and



2) Choose push action that maximizes ratio of space in the
forward direction to space in the backward direction
and is collision free.

E. Cluster Diffusion Policy
The cluster diffusion policy groups objects into clusters

based on their position. It considers pushes of objects away
from their corresponding cluster centers, along the vector
originating from the cluster center to the object center of
mass.

1) Separate objects into clusters of one to three objects
and find the centroid of each cluster mi,

2) Define pushing vectors mici that connect center of
cluster to center of mass ci of each object in its cluster,
and

3) Score each of the potential push actions as their cosine
similarity with the direction of most free space for
the given object, and execute the push action with the
highest score.

VI. SIMULATION EXPERIMENTS

We generate heaps of 3D object meshes from the Thingi-
verse, and the KIT and 3DNet datasets in a bin. We initialize
simulations by sampling over distributions of heap size, 3D
object models, camera pose, and friction coefficients to get
an initial state x0. We randomly drop objects into the bin,
and repeatedly execute parallel jaw and suction grasps until
the bin is cleared or the grasping policy described in [34],
[35], [36] fails n times in a row or has confidence below a
threshold. If the bin is not cleared, we record the heap. We
then roll out each push policy on the same set of heaps, and
measure the performance of each policy using the metrics in
Section IV. Algorithm 1 describes the process of grasping
objects out of the bin and marking scenarios during the bin
picking simulation when no high-quality grasp actions are
available.

With the dataset of over 1000 pushing scenarios collected,
each of the policies described in Section V were rolled out
on the set of heaps, using pybullet [9] for simulating gripper-
object and object-object interactions in the bin, and the metrics
in Section IV were measured for each pushing action. We
reject heaps where none of the policies (including the quasi-
random policy), were able to generate positive values for
Overall Grasp Confidence Gain either due to object geometry
or extreme cases of object positioning in the bin (e.g. object
lying directly in a corner of the bin). These heaps reduce
the performance across all policies, and rejection sampling
allows us to focus on cases that highlight differences between
the pushing policies. The remaining 481 pushing scenarios,
termed improvable heaps were used to compare policies to
the baseline policy.

Figure 2 shows that all five policies studied had positive
Overall Grasp Confidence Gain over the set of improvable
heaps by 5 percent, even in cases where they performed
poorly in terms of Mean Object Separation Gain. The Free
Space and Boundary Shear policies performed the best on
the improvable heaps, with average Overall Grasp Quality
Gains of 17% and 18%, which outperformed the baseline
by an absolute 7% and 8%, respectively. We note that the
maximal clearance ratio policy performed best on the mean

Algorithm 1: Bin Dataset Generation
Sample over distributions of heap size, 3D object models,
camera pose, and friction coefficients to create heap;

t = 0;
consecutive failures = 0;
while consecutive failures < max failures &&

objects in heap > 0 do
Randomly sample grasps over all objects in heap to
create grasp set U ;

Prune U using collision checking and proximity to
other grasps;

Find best grasps u∗j and u∗s;
Find Q∗o;
if Q∗o > threshold then

Execute best grasp u∗;
if grasp succeeded then

consecutive failures = 0;
else

increment consecutive failures;

Allow objects to settle;
increment t;

else
Add heap to bin dataset;

object separation gain metric, but the boundary shear and
free space policies outperformed it by three times in overall
grasp confidence gain. This result suggests grasp confidence
gain is not always correlated with object separation and could
better measure push action success in bin picking.

Fig. 2: Means and standard errors of the mean for each policy and each
metric. All policies have Overall Grasp Confidence Gain values above 0.1,
but Mean Object Separation Gain values do not correspond to Overall Grasp
Confidence Gain values, suggesting objects do not need to be separated to
be grasped.

To analyze the distribution of Overall Grasp Quality Gain,
we separately recorded the Suction Grasp Quality Gain and
Parallel Jaw Quality Gain for each pushing action. These
results can be seen in Figure 3 and imply that pushing affects
the parallel jaw grasps more than it affects suction grasps.
Pushing actions typically move objects around the bin, but
rarely topple them onto a new face or side. Suction relies on
sampling grasps on the top faces of the objects; if the face
does not change, then it is unlikely that the suction grasp
confidence will change significantly. However, for the parallel



jaws, grasp confidence depends strongly on available space
around the object. Thus, pushing an object to a freer location
can shift the parallel jaw grasp confidence more dramatically.

Fig. 3: Means and standard errors of the mean for each policy and each
type of end effector. These results suggest pushing has a larger effect on
the parallel jaws. We speculate that this effect occurs due to suction grasps
relying on faces of objects being available, and are thus less likely to be
affected by pushing, whereas parallel jaw grasps are heavily affected by
space around the object.

Next, we hypothesized that the policies would outperform
the baseline policy on average and make higher confidence
grasps available to the grasping policies at the next timestep.
We used analysis of variables (ANOVA) and linear regressions
to quantify the differences between policies for each metric. A
one-way repeated measures ANOVA was run for each metric,
and at least one policy was determined to be statistically
different from the baseline policy for Mean Object Separation
Gain (F(3, 1907) = 19.01, p < 0.001), Overall Grasp
Confidence Gain (F(3, 1205) = 24.81, p < 0.001), and
Parallel Jaw Grasp Confidence Gain (F(3, 1205) = 21.38,
p < 0.001). However, none of the policies were determined
to be statistically different from the baseline for the Suction
Grasp Confidence Gain metric.

To further analyze the differences between policies statisti-
cally, we ran robust linear regressions over 1907 observations
for each metric, controlling for differences between heaps. The
results showed that the free space and boundary shear policies
are statistically different from the baseline in both Overall
Grasp Confidence Gain and Parallel Jaw Confidence Gain
(p < 0.001). Although they are statistically different from the
baseline, we notice that the coefficient is about 0.1 units of
grasp confidence, meaning that the baseline policy actually
performs very well under many conditions. We hypothesize
that the baseline policy performs well on average because it
always contacts an object. Thus, it always changes the state
of the heap, which can often generate grasps. Additionally,
337 of the 481 improvable heaps had fewer than four objects,
so the baseline policy often planned similar actions to the
other policies since it had fewer options to choose from. The
heap sizes are often small since the original grasping policy
which generated the heaps rarely fails consecutively on heaps
with many objects to choose from.

We examined many individual heaps to understand the
magnitude and variance of the policies impact. Figure 4
shows an example where each policy outperformed the
baseline, while Figure 5 depicts an example where the baseline
performance exceeds that of each policy. In Figure 4, we can
see that the non-baseline policies choose to push one of the

two objects that overlap, and they all achieve a large increase
in the parallel jaw metric by uncovering the red object initially
lying underneath another object. The Boundary Shear and
Free Space policies perform especially well, separating all
of the objects. Note that the object does not need to be
completely uncovered for the grasp to be available. This
reflects the difference between measuring grasping metrics
and object separations because in this case, the objects are
still touching but a parallel jaw grasp becomes available.

In contrast, in Figure 5, we can see that the non-baseline
policies fail to find a collision-free push that can move one
of the objects away from the corner of the bin. The baseline
policy’s action is clipped so that it does not collide with
the bin, and results in it slightly increasing the parallel jaw
grasp confidence by nudging the green object further from
the other object. The non-baseline policies have no effect on
the grasp confidence metrics. This figure illustrates one of
the current failure modes with the pushing policies that we
have implemented. By taking a conservative approach and
avoiding collisions at all costs, we are sometimes unable to
plan a push that moves the objects away from the bin edges.

VII. PHYSICAL EXPERIMENTS

We planned pushes for bin picking on an ABB YuMi using
the Boundary Shear policy, the best performing policy in
simulation, over 35 heaps of objects with varying geometry
such as tools, toys, produce, and industrial parts. Each heap
contained between two and ten objects in configurations with
few accessible grasps, such as two bottles side-by-side. For
each heap, the robot acquired a point cloud of the bin with
a Photoneo PhoXi depth sensor, segmented the point cloud
using Euclidean Cluster Extraction implemented in the Point
Cloud Library [41], and planned a push using point clusters
as objects and the cluster centroid as an estimate of the center
of mass of each object. The robot then executed the push
by closing the parallel jaw gripper and following the linear
push trajectory. Each push took approximately 1.0 seconds
to plan.

For each push, we measured the Overall Grasp Quality
Gain of parallel-jaw and suction grasps planned by a Grasp
Quality Neural Network policy [35], [36]. We categorized
performance based on the grasp quality for the best grasp in
the initial heap (pre-pushing). Heaps with Qo < 0.25 had an
Overall Grasp Quality Gain of 0.24± 0.07, while heaps with
Qo < 0.5 had an Overall Grasp Quality Gain of 0.12± 0.06.

VIII. DISCUSSION AND FUTURE WORK

Analytic pushing methods can generalize well to heaps of
different sizes and geometries on a tabletop environment, but
with the bin as a workspace boundary, the action space for
pushing is much more limited. Thus, in many cases, pushing
any of the available objects in the bin in any direction will
yield a change in the state of the heap large enough to change
grasp access and affect grasp metrics. However, we have
shown that several policies are statistically different from
a baseline when controlling for the difficulty of each heap,
based on new grasp-centric metrics to measure effectiveness
of pushing and given the assumptions in Section III.

In future work, we will further explore how the approxi-
mations and assumptions made affect the results presented.
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Final State

Initial State

Fig. 4: For this heap, each policy outperforms the baseline with respect to overall grasp confidence gain. The initial state with the planned action (top row)
and final state after executing the planned action (bottom row) are shown for each policy. The blue arrow represents the planned push and the the initial
gripper position is represented by the tail of the arrow, while the final position is represented by the head.

Baseline Cluster DiffusionBoundary Shear Free Space Max Clearance

Final State

Initial State

Fig. 5: The baseline marginally outperforms all the other policies with respect to overall grasp confidence gain due to object placement. The initial state
with the planned action (top row) and final state after executing the planned action (bottom row) are shown for each policy. The blue arrow represents the
planned push and the the initial gripper position is represented by the tail of the arrow, while the final position is represented by the head.

For example, we will continue to benchmark the policies
presented here, as well as other policies, on the physical
robot in order to determine the effectiveness of each policy
on the physical system and how closely our simulator can
represent the physical system. Further experiments will also
provide a larger sample size for statistical analysis on the
physical system. We will also consider different metrics, such
as maximum separation distance, which could better inform
the state of each heap. For this analysis, we chose a two-step
time horizon as an approximation of the normalized total
expected reward over all time shown in Equation 2 because
greedy grasping policies have been shown to perform very
well in clutter, suggesting long-term rewards are not strongly
correlated to grasp actions [34], [42]. In our next experiments,
we will test this approximation by measuring the effect of
pushing over the course of longer time horizons. Additionally,
we made strong assumptions about the boundaries, geometries,
and poses of the objects that were analyzed by representing
them as points at their center of mass for finding free space
in the bin. We seek to modify our simulations to calculate
minimum distances between meshes more efficiently while
still accounting for the entirety of the objects. We also will
look to exploit quicker free space computation in image space
as an alternative to our current object assumptions.

Furthermore, in this work, we assume that if none of
the five policies were able to prove grasp quality, then the
heap is not improvable. Some heaps may be improvable by

some policy not tested in this work. In the future, we will
determine why some heaps are not able to be improved and
seek a method for determining when heaps can be improved
without testing several policies on them. For example, when
objects are entangled, or cannot easily be pushed due to
object pose or shape, we could attempt a different push or
grasp action.

As extensions to this work, we will identify and explore
more complex push policies that include multiple linear
segments and continuous motions in the plane and out of
plane (e.g., to topple or flip objects). We will also explore
how push policies can be learned from human demonstrations
[27] and from automated execution data shared via the Cloud
[23].
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